JPH0548133A - Laminated solar battery - Google Patents

Laminated solar battery

Info

Publication number
JPH0548133A
JPH0548133A JP3232399A JP23239991A JPH0548133A JP H0548133 A JPH0548133 A JP H0548133A JP 3232399 A JP3232399 A JP 3232399A JP 23239991 A JP23239991 A JP 23239991A JP H0548133 A JPH0548133 A JP H0548133A
Authority
JP
Japan
Prior art keywords
type
photoelectric conversion
conversion element
pin photoelectric
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3232399A
Other languages
Japanese (ja)
Inventor
Ichiro Yoshida
一郎 吉田
Kazuhiko Yoshida
一彦 吉田
Takeshi Ishikawa
岳史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3232399A priority Critical patent/JPH0548133A/en
Publication of JPH0548133A publication Critical patent/JPH0548133A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve the initial energy conversion efficiency of a laminated solar battery and, at the same time, to reduce the deterioration by light of the battery. CONSTITUTION:The first and second pin photoelectric conversion element units 3 and 4 of this laminated a-Si solar battery 100 are directly joined to each other by an ohmic contact. In order to obtain the ohmic contact, the p-type a-SiC:H8 of the second unit 4 viewed from the light incident direction side is doped with boron by 0.6-1.5%. In addition, in order to control the quantities of the light rays made incident to the units 3 and 4 and to make the electric currents generated by the units 3 and 4 equal to each other, the film thicknesses of the i-type (intrinsic-type) semiconductors of the units 3 and 4 are respectively set at 30-100nm and 200-600nm. Therefore, the initial energy conversion efficiency of the battery 100 can be improved and the deterioration by light of the battery can be reduced even when the battery is exposed to the sunlight for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽光を電気エネルギ
ーに変換する光発電システムや長期間電気機器を安定し
て作動させるための主要電源である積層型太陽電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic system for converting sunlight into electric energy and a laminated solar cell which is a main power source for stably operating electric equipment for a long period of time.

【0002】[0002]

【従来技術】従来、アモルファスシリコン太陽電池(以
下、a-Si太陽電池という)は、単結晶シリコン太陽電
池に比べ大面積の太陽電池を容易に製造できる。又、製
造工程も簡単で低コストであるという利点を有するため
太陽電池開発の中心に位置づけられている。
2. Description of the Related Art Conventionally, an amorphous silicon solar cell (hereinafter referred to as an a-Si solar cell) can easily manufacture a solar cell having a large area as compared with a single crystal silicon solar cell. Further, it is positioned at the center of solar cell development because it has advantages of simple manufacturing process and low cost.

【0003】[0003]

【発明が解決しようとする課題】ところで、現在のa-
Si太陽電池は初期エネルギー変換効率が低く、又、長
期間の屋外使用においてエネルギー変換効率の低下(以
下、光劣化という)が生じるという問題がある。この
内、初期エネルギー変換効率の向上に関しては、積層構
造を用いて変換効率を向上させる試みがなされており、
例えば、特開昭64−59966号公報「多層積層型ア
モルファス太陽電池」にて開示されたものが知られてい
る。このものでは、pin光電変換素子単位のp型層と
n型層との両方にオーミック結合し得る薄膜層を介して
接合している。そして、積層構造の結合に際して、キャ
リヤの再結合を促進、即ち、高い初期エネルギー変換効
率を狙う方法として提案されている。しかし、a-Si成
膜技術に加え、非常に薄い膜を2つのpin光電変換素
子単位の中間に設けるという複雑な半導体製造プロセス
が要求される。更に、もう一つの課題である光劣化に関
して十分な効果を得るには至っていないのである。
However, the present a-
The Si solar cell has a problem that the initial energy conversion efficiency is low, and the energy conversion efficiency is lowered (hereinafter referred to as photodegradation) during long-term outdoor use. Among them, with respect to the improvement of the initial energy conversion efficiency, an attempt has been made to improve the conversion efficiency by using a laminated structure,
For example, the one disclosed in Japanese Patent Laid-Open No. 64-59966, “Multilayer Amorphous Solar Cell” is known. In this structure, both the p-type layer and the n-type layer of the pin photoelectric conversion element unit are bonded via a thin film layer capable of ohmic coupling. Then, it has been proposed as a method for promoting the recombination of carriers, that is, a high initial energy conversion efficiency when the laminated structures are combined. However, in addition to the a-Si film forming technique, a complicated semiconductor manufacturing process of providing a very thin film in the middle of two pin photoelectric conversion element units is required. Furthermore, it has not reached the sufficient effect with respect to another problem, that is, photodegradation.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、初期エネ
ルギー変換効率を向上すると共に長時間の太陽光照射に
よる光劣化を小さくすることができる積層型太陽電池を
提供することである。
The present invention has been made to solve the above problems, and an object of the present invention is to improve the initial energy conversion efficiency and reduce the photodegradation due to the irradiation of sunlight for a long time. It is to provide a laminated solar cell capable of achieving the above.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、アモルファス半導体材料によりp型、
i(真性)型、n型のアモルファス半導体膜を順次形成
した2つのpin光電変換素子単位を積層して成る積層
型太陽電池において、前記2つのpin光電変換素子単
位間は対向するp型層又はn型層に不純物をヘビードー
プしてオーミック接触にて直接接合すると共に光入射方
向側から見た該2つのpin光電変換素子単位のi(真
性)型半導体の膜厚を順に30〜100nm,200〜600nmの
範囲でそれら2つのpin光電変換素子単位にて励起さ
れるキャリヤが等しくなるように対応させて形成するこ
とを特徴とする。
The structure of the invention for solving the above-mentioned problems is a p-type amorphous semiconductor material,
In a laminated solar cell in which two pin photoelectric conversion element units in which i (intrinsic) -type and n-type amorphous semiconductor films are sequentially formed are laminated, a p-type layer facing each other between the two pin photoelectric conversion element units or The n-type layer is heavily doped with impurities and directly joined by ohmic contact, and the film thickness of the i (intrinsic) type semiconductor of the two pin photoelectric conversion element units viewed from the light incident direction side is in the order of 30 to 100 nm, 200 to It is characterized in that they are formed so that the carriers excited in the unit of the two pin photoelectric conversion elements are equal in the range of 600 nm.

【0006】[0006]

【作用】2つのpin光電変換素子単位間は対向するp
型層又はn型層に不純物をヘビードープしてオーミック
接触にて直接接合されている。即ち、2つのpin光電
変換素子単位間をオーミック接触するために複雑な半導
体製造プロセスが必要でないことから低コストとなる。
又、2つのpin光電変換素子単位間が低抵抗で接合さ
れることにより初期エネルギー変換効率が向上する。こ
のためには、例えば、光入射方向側から見た第2のpi
n光電変換素子単位におけるp型層材料として、a-Si
C:Hにドーパントとしてボロンを0.6〜1.5%添加した
ものを用いる。又、光入射方向側から見た上記2つのp
in光電変換素子単位のi(真性)型半導体の膜厚は順
に30〜100nm,200〜600nmの範囲でそれら2つのpi
n光電変換素子単位にて励起されるキャリヤが等しくな
るように対応させて形成されている。これにより、2つ
のpin光電変換素子単位は光入射量が制御できると共
にそれらの発生電流を同じにできる。すると、2つのp
in光電変換素子単位の光劣化が同程度に抑えられ、積
層型太陽電池の経時変化を抑制できる。即ち、積層型太
陽電池の光劣化は2つのpin光電変換素子単位のうち
の劣化の大きい方に影響されるのである。
[Function] Two pin photoelectric conversion element units are opposite to each other.
The type layer or the n-type layer is heavily doped with impurities and directly bonded by ohmic contact. That is, since a complicated semiconductor manufacturing process is not required for making ohmic contact between two pin photoelectric conversion element units, the cost is low.
Further, the initial energy conversion efficiency is improved by joining the two pin photoelectric conversion element units with low resistance. For this purpose, for example, the second pi seen from the light incident direction side
As a p-type layer material in an n photoelectric conversion element unit, a-Si
C: H with 0.6 to 1.5% of boron added as a dopant is used. Also, the above two p's viewed from the light incident direction side
The film thickness of the i (intrinsic) type semiconductor in the in photoelectric conversion element unit is in the order of 30 to 100 nm and 200 to 600 nm.
Carriers excited in units of n photoelectric conversion elements are formed so as to be equal to each other. As a result, the two pin photoelectric conversion element units can control the amount of incident light and can generate the same current. Then two p
Photodegradation of each in photoelectric conversion element unit can be suppressed to the same extent, and a change with time of the laminated solar cell can be suppressed. That is, the photodegradation of the stacked solar cell is affected by the larger of the two pin photoelectric conversion element units.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る積層型a-Si太陽電池の構
造を示した模式図である。積層型a-Si太陽電池100
は、ガラス基板1に透明導電膜(以下、TCOという)
2を形成後、第1のpin光電変換素子単位3と第2の
pin光電変換素子単位4を形成し、この上に金属電極
11が形成されている。上記第1のpin光電変換素子
単位3はプラズマCVD法によりp型a-SiC:H5、
i(真性)型a-SiC:H6、n型μc-Si:H7を順
次形成して構成されている。又、上記第2のpin光電
変換素子単位4も同じくプラズマCVD法によりp型a
-SiC:H8、i(真性)型a-SiC:H9、n型μc
-Si:H10を順次形成して構成されている。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a schematic diagram showing the structure of a laminated a-Si solar cell according to the present invention. Multilayer a-Si solar cell 100
Is a transparent conductive film (hereinafter referred to as TCO) on the glass substrate 1.
After forming 2, the first pin photoelectric conversion element unit 3 and the second pin photoelectric conversion element unit 4 are formed, and the metal electrode 11 is formed thereon. The first pin photoelectric conversion element unit 3 is a p-type a-SiC: H5, which is formed by a plasma CVD method.
An i (intrinsic) type a-SiC: H6 and an n-type μc-Si: H7 are sequentially formed. In addition, the second pin photoelectric conversion element unit 4 is also made of p-type a by the plasma CVD method.
-SiC: H8, i (intrinsic) type a-SiC: H9, n type μc
-Si: H10 are sequentially formed.

【0008】a-Si太陽電池の光劣化は、光照射により
導電率が低下する効果(Staebra−Wronski効果)が原
因であると言われている。この効果の生じる原因につい
ては、種々の説があり明確になっていないが、基本的な
考え方としては、a-Si膜内で光照射により励起された
キャリヤ(電子又は正孔)が再結合する際、新たな再結
合中心が形成されて、それが再びキャリヤを再結合させ
結果的に、光照射によるり導電率が低下するのではない
かと言われている。a-Si太陽電池において光劣化を低
減する手法としては、i(真性)型層の膜厚を薄くする
ことで太陽電池内部の電界強度を上昇させ、光励起され
た電子と正孔がi型膜内で再結合する頻度を低下させて
再結合中心の増加を抑える方法が知られている。しか
し、具体的にi型層の膜厚と光劣化との関係を長期間の
光照射で確認するのは非常に手間がかかるため、i型層
の膜厚と光劣化との関係は明確ではなかった。
It is said that the photo-deterioration of the a-Si solar cell is caused by the effect of decreasing the conductivity due to light irradiation (Staebra-Wronski effect). The cause of this effect is not clear due to various theories, but the basic idea is that carriers (electrons or holes) excited by light irradiation in the a-Si film are recombined. At this time, it is said that new recombination centers are formed, which recombine the carriers again, and as a result, the conductivity may decrease due to light irradiation. As a method of reducing photodegradation in an a-Si solar cell, the electric field strength inside the solar cell is increased by reducing the film thickness of the i (intrinsic) type layer, and the photoexcited electrons and holes are converted into the i-type film. There is known a method of suppressing the increase of recombination centers by decreasing the frequency of recombination within the inside. However, it is extremely time-consuming to confirm the relationship between the film thickness of the i-type layer and photodegradation by long-term light irradiation, and therefore the relationship between the film thickness of the i-type layer and photodegradation is not clear. There wasn't.

【0009】そこで、発明者らは、先ず、光入射量と光
劣化との関係において、i型層の膜厚により光劣化がど
の程度改善されるかを知るための実験研究を行った。図
2の評価用デバイスを参照して説明する。評価用デバイ
スとしては、ガラス基板12にTCO13を形成後、プ
ラズマCVD法によりボロンを 0.2%添加した膜厚20n
mのp型a-SiC:H14、50nmのi(真性)型a-
SiC:H15、リンを1%添加した30nmのn型μc-
Si:H16を順次形成し、この上にAl 電極17を形
成した。これと同様の構造でi型a-SiC:H15の膜
厚のみを100,200,400nm と変えた1つのpin光電変
換素子単位から成る単層a-Si太陽電池をそれぞれ作成
準備した。先ず、これらを疑似太陽光下100mW/cm2
照度において初期エネルギー変換効率を測定した。次
に、これらの試料を疑似太陽光の下で試料温度を年間平
均温度40℃に保持して、年間照射エネルギーの1年分に
相当する日射量5000MJ/m2 を照射し、エネルギー変
換効率の変化(以下、光劣化率という)を評価した。図
3は、上述の結果であり、i型層の膜厚(nm)を変え
た時の初期エネルギー変換効率(%)と光劣化率(1年
後)(%)との関係を示した特性図である。この結果か
ら、i型層の膜厚が薄くなるに従って光劣化率は小さく
なることが分かった。この光劣化率を従来の光劣化率40
%の半分である20%以下とするためには、i型層の膜厚
を 100nm以下とするのが適当である。しかし、太陽電
池の発生する電流はi型層の膜厚に比例するためi型層
が余り薄いと十分な光電流が得られないことになる。つ
まり、i型層の膜厚の下限は、急激な出力低下を生じる
ことがない30nmとなる。つまり、積層型a-Si太陽電
池を構成する第1のpin光電変換素子単位のi型層の
膜厚は 30〜100nmが望ましいことが分かった。
Therefore, the inventors first conducted an experimental study to find out how much the photo-deterioration is improved by the film thickness of the i-type layer in the relation between the light incident amount and the photo-deterioration. This will be described with reference to the evaluation device shown in FIG. As an evaluation device, a film thickness of 20 n obtained by forming TCO 13 on the glass substrate 12 and adding 0.2% of boron by plasma CVD method.
m p-type a-SiC: H14, 50 nm i (intrinsic) type a-
SiC: H15, 30 nm n-type μc-with 1% phosphorus added
Si: H16 was sequentially formed, and an Al electrode 17 was formed thereon. Single-layer a-Si solar cells each having one pin photoelectric conversion element unit having a structure similar to this, in which only the film thickness of i-type a-SiC: H15 was changed to 100,200,400 nm were prepared. First, the initial energy conversion efficiency of these was measured under an illuminance of 100 mW / cm 2 under simulated sunlight. Next, the temperature of these samples is kept under simulated sunlight at an annual average temperature of 40 ° C., and the solar radiation amount of 5000 MJ / m 2 corresponding to one year of the annual irradiation energy is applied to measure the energy conversion efficiency. The change (hereinafter, referred to as photodegradation rate) was evaluated. FIG. 3 is a result showing the above, and is a characteristic showing the relationship between the initial energy conversion efficiency (%) and the photodegradation rate (after one year) (%) when the film thickness (nm) of the i-type layer is changed. It is a figure. From this result, it was found that the photodegradation rate decreased as the thickness of the i-type layer decreased. This light deterioration rate is 40
In order to set the thickness to 20% or less, which is half of the%, it is appropriate to set the film thickness of the i-type layer to 100 nm or less. However, since the current generated by the solar cell is proportional to the film thickness of the i-type layer, if the i-type layer is too thin, a sufficient photocurrent cannot be obtained. That is, the lower limit of the film thickness of the i-type layer is 30 nm, which does not cause a sudden decrease in output. That is, it was found that the film thickness of the i-type layer of the first pin photoelectric conversion element unit constituting the laminated a-Si solar cell is preferably 30 to 100 nm.

【0010】一方、積層型a-Si太陽電池の光劣化は第
1のpin光電変換素子単位と第2のpin光電変換素
子単位との両者の光劣化により生じる。即ち、第1のp
in光電変換素子単位のi型層の膜厚を従来より薄くし
て光劣化を抑えても、第2のpin光電変換素子単位の
光劣化が大きい場合には、積層型a-Si太陽電池でも大
きな光劣化が生じる。ここで、第2のpin光電変換素
子単位の光劣化は、第1のpin光電変換素子単位によ
り一部吸収された光が第2のpin光電変換素子単位に
入射し第2のpin光電変換素子単位で励起された電子
正孔対が再結合して新たに再結合準位を形成するために
生じる。第2のpin光電変換素子単位におけるi型層
の膜厚も十分薄くすれば光劣化は抑えられる。しかし、
直列接続された乾電池で電流を同一にした場合に最大の
出力が得られるのと同様に、積層型a-Si太陽電池でも
第1のpin光電変換素子単位と第2のpin光電変換
素子単位との電流を同じにしないと最大出力が得られな
い。又、第1のpin光電変換素子単位と第2のpin
光電変換素子単位との電流が同じ場合でもその中間に高
い抵抗層が形成されればそこで大きな電気的損失が生じ
て出力が低下する。積層型a-Si太陽電池は第2のpi
n光電変換素子単位のp型層に抵抗の高いa-SiC:H
を用いているため、このp型層の抵抗を低減するために
ボロンを多量添加して抵抗の低下効果を調べた。図4
は、その評価用デバイスの構成を示す模式図である。評
価用デバイスとしては、ガラス基板20にTCO21を
形成した後、n型μc-Si:H22とp型a-SiC:H
23を形成し、TCO21の上にAl 電極24とp型a
-SiC:H23の上にAl 電極25を形成した。このよ
うな構造のp型a-SiC:H23にボロンを0.15〜2%
添加して1つのpin光電変換素子単位から成るa-Si
太陽電池である評価用デバイスをそれぞれ作成準備し
た。これら評価用デバイスに照度100mW/cm2の疑似太
陽光を照射した。図5は、ボロン添加量(%)を変えた
時の電流(mA)−電圧(V)特性を示す。ボロン添加量
が 0.6%未満の時は、a-Si太陽電池が流す方向とは逆
方向へ電流が流れるが、ボロン添加量が 0.6%以上では
殆ど0となるため、ボロン添加量は 0.6%以上が望まし
い。又、抵抗はボロン添加量を増加させることにより小
さくなるが、ボロン添加量が過剰であるとa-SiC:H
の光学ギャップが狭くなり光の透過量を低下させるため
最大添加量としては3%程度までである。つまり、積層
型a-Si太陽電池を構成する第2のpin光電変換素子
単位のp型層のa-SiC:Hへのボロン添加量は0.6〜
1.5%が望ましいことが分かった。
On the other hand, the photodegradation of the laminated a-Si solar cell is caused by the photodegradation of both the first pin photoelectric conversion element unit and the second pin photoelectric conversion element unit. That is, the first p
Even if the photo-deterioration is suppressed by making the film thickness of the i-type layer in the in-photoelectric conversion element unit smaller than in the past, even if the photo-deterioration in the second pin photoelectric conversion element unit is large, even in the laminated a-Si solar cell Large photodegradation occurs. Here, the photodegradation of the second pin photoelectric conversion element unit means that the light partially absorbed by the first pin photoelectric conversion element unit enters the second pin photoelectric conversion element unit and enters the second pin photoelectric conversion element unit. This occurs because electron-hole pairs excited in the unit recombine to form a new recombination level. If the film thickness of the i-type layer in the second pin photoelectric conversion element unit is also sufficiently thin, photodegradation can be suppressed. But,
Similar to the case where the maximum output is obtained when the current is the same in the dry cells connected in series, the laminated type a-Si solar cell has the first pin photoelectric conversion element unit and the second pin photoelectric conversion element unit. The maximum output cannot be obtained unless the currents of are the same. Also, the first pin photoelectric conversion element unit and the second pin photoelectric conversion element unit
Even if the current is the same as that of the photoelectric conversion element unit, if a high resistance layer is formed in the middle of the same, a large electrical loss occurs and the output decreases. The laminated a-Si solar cell has a second pi
n-photoelectric conversion element unit p-type layer has high resistance a-SiC: H
Therefore, a large amount of boron was added to reduce the resistance of the p-type layer, and the effect of reducing the resistance was investigated. Figure 4
FIG. 3 is a schematic diagram showing the configuration of the evaluation device. As an evaluation device, after forming a TCO 21 on a glass substrate 20, an n-type μc-Si: H22 and a p-type a-SiC: H are formed.
23 is formed, and the Al electrode 24 and the p-type a are formed on the TCO 21.
An Al electrode 25 was formed on -SiC: H23. Boron is added to p-type a-SiC: H23 having such a structure in an amount of 0.15 to 2%.
A-Si consisting of one pin photoelectric conversion element unit added
A device for evaluation, which is a solar cell, was prepared and prepared. These evaluation devices were irradiated with pseudo sunlight having an illuminance of 100 mW / cm 2 . FIG. 5 shows the current (mA) -voltage (V) characteristics when the boron addition amount (%) was changed. When the amount of added boron is less than 0.6%, current flows in the direction opposite to the direction of flow of the a-Si solar cell, but when the amount of added boron is 0.6% or more, it becomes almost zero, so the amount of added boron is 0.6% or more. Is desirable. Also, the resistance becomes smaller by increasing the added amount of boron, but if the added amount of boron is excessive, a-SiC: H
Since the optical gap becomes narrower and the light transmission amount is reduced, the maximum addition amount is up to about 3%. That is, the amount of boron added to a-SiC: H in the p-type layer of the second pin photoelectric conversion element unit constituting the laminated a-Si solar cell is 0.6 to
It turns out that 1.5% is desirable.

【0011】上述の実験結果を考慮して、図1に示す積
層型a-Si太陽電池100を製作した。第1のpin光
電変換素子単位3のi型a-Si:H6の膜厚を80nmと
し、第2のpin光電変換素子単位4のi型a-Si:H
9の膜厚を200〜600nmとした試料を作成した。第1の
pin光電変換素子単位3と第2のpin光電変換素子
単位4との各p,n型層は前述の材質及び膜厚を用い
た。又、第2のpin光電変換素子単位4のp型a-Si
C:H8にはボロンを 0.7%添加した。これら試料の初
期エネルギー変換効率と光劣化率とを前述の方法で評価
した。図6は、積層型a-Si太陽電池100の第2のp
in光電変換素子単位4のi型a-Si:H9の膜厚(n
m)を変えた時の初期エネルギー変換効率(%)と光劣
化率(1年後)(%)との関係を示した特性図である。
即ち、本発明の積層型a-Si太陽電池100は、従来の
1つのpin光電変換素子単位から成る太陽電池よりも
高い初期エネルギー変換効率で光劣化率も半分程度に抑
制できることを示している。
Taking the above experimental results into consideration, the laminated a-Si solar cell 100 shown in FIG. 1 was manufactured. The film thickness of the i-type a-Si: H6 of the first pin photoelectric conversion element unit 3 is set to 80 nm, and the i-type a-Si: H of the second pin photoelectric conversion element unit 4 is set to 80 nm.
A sample having a film thickness of 9 of 200 to 600 nm was prepared. The p and n-type layers of the first pin photoelectric conversion element unit 3 and the second pin photoelectric conversion element unit 4 were made of the above-mentioned materials and film thicknesses. Also, the p-type a-Si of the second pin photoelectric conversion element unit 4 is used.
0.7% of boron was added to C: H8. The initial energy conversion efficiency and the photodegradation rate of these samples were evaluated by the methods described above. FIG. 6 shows the second p-type of the stacked a-Si solar cell 100.
in photoelectric conversion element unit 4 i-type a-Si: H9 film thickness (n
It is a characteristic view which showed the relationship between the initial energy conversion efficiency (%) when changing m), and a photodegradation rate (1 year after) (%).
That is, it is shown that the laminated a-Si solar cell 100 of the present invention can suppress the photodegradation rate to about half with a higher initial energy conversion efficiency than the conventional solar cell composed of one pin photoelectric conversion element unit.

【0012】次に、積層型a-Si太陽電池100を、以
下の膜厚等から成る構成にて製作した。第1のpin光
電変換素子単位3のi型a-Si:H6の膜厚を80nm、
第2のpin光電変換素子単位4のi型a-Si:H9の
膜厚を 400nm、その他の層における材質及び膜厚は前
述と同じとした。そして、第2のpin光電変換素子単
位4のp型a-SiC:H8にボロンを 0.015%(従来の
ボロン濃度)〜2%添加した試料を作成準備した。そし
て、上記第2のpin光電変換素子単位4のp型a-Si
C:H8へのボロン添加により光学ギャップがどの程度
変化するかについて実験考察した。図7は、上述の結果
であり、ボロン添加量(%)と光学ギャップ(eV)と
の関係を示した特性図である。ボロン添加量が2%程度
で光学ギャップの変化が小さくなることを示している。
これは、ボロン添加量が従来よりも増加するに従い、吸
収係数が増加することによる。つまり、第2のpin光
電変換素子単位4のp型a-SiC:H8へのボロン添加
は第2のpin光電変換素子単位4の光劣化の抑制にも
寄与している。図8は、積層型a-Si太陽電池100の
第2のpin光電変換素子単位4のp型a-SiC:H8
へのボロン添加量(%)を変えた時の初期エネルギー変
換効率(%)と光劣化率(1年後)(%)との関係を示
した特性図である。光劣化率はボロン添加量が 1.0%程
度で最小となる。一方、初期エネルギー変換効率はボロ
ン添加量が 1.5%よりも大きくなると低下する。これ
は、第2のpin光電変換素子単位4のp型a-SiC:
H8がi型a-Si:H9へ入射する光を吸収する作用に
よるものである。これらの結果からも第2のpin光電
変換素子単位4のp型a-SiC:H8へのボロン添加が
光劣化抑制にも寄与していることが分かる。
Next, a laminated a-Si solar cell 100 was manufactured with the following film thickness. The film thickness of the i-type a-Si: H6 of the first pin photoelectric conversion element unit 3 is 80 nm,
The film thickness of the i-type a-Si: H9 of the second pin photoelectric conversion element unit 4 was 400 nm, and the material and film thickness of the other layers were the same as those described above. Then, a sample was prepared in which 0.015% (conventional boron concentration) to 2% of boron was added to the p-type a-SiC: H8 of the second pin photoelectric conversion element unit 4. Then, the p-type a-Si of the second pin photoelectric conversion element unit 4 is used.
An experiment was conducted to examine how much the optical gap is changed by adding boron to C: H8. FIG. 7 is a characteristic diagram showing the above results and showing the relationship between the boron addition amount (%) and the optical gap (eV). It is shown that the change in the optical gap becomes small when the amount of boron added is about 2%.
This is because the absorption coefficient increases as the amount of boron added increases from the conventional amount. That is, the addition of boron to the p-type a-SiC: H8 of the second pin photoelectric conversion element unit 4 also contributes to the suppression of the photodegradation of the second pin photoelectric conversion element unit 4. FIG. 8 shows the p-type a-SiC: H8 of the second pin photoelectric conversion element unit 4 of the laminated a-Si solar cell 100.
FIG. 6 is a characteristic diagram showing the relationship between the initial energy conversion efficiency (%) and the photodegradation rate (after one year) (%) when the amount (%) of boron added to is changed. The photodegradation rate becomes the minimum when the amount of boron added is about 1.0%. On the other hand, the initial energy conversion efficiency decreases when the amount of boron added exceeds 1.5%. This is the p-type a-SiC of the second pin photoelectric conversion element unit 4:
This is due to the action of H8 absorbing the light incident on the i-type a-Si: H9. From these results, it is understood that the addition of boron to the p-type a-SiC: H8 of the second pin photoelectric conversion element unit 4 also contributes to the suppression of photodegradation.

【0013】[0013]

【発明の効果】本発明は、以上説明したように、2つの
pin光電変換素子単位間をオーミック接触にて直接接
合し、pin光電変換素子単位のi(真性)型半導体の
膜厚をそれぞれ所定の範囲としているので、エネルギー
変換効率が向上されると共に光劣化の少ない信頼性の高
い積層型a-Si太陽電池を得ることができる。又、本発
明の積層型a-Si太陽電池では光劣化を従来の半分程度
に抑えることが可能となり、その分だけ面積を小さくで
きるため、大幅なコスト低減を図ることができるという
効果を有する。
As described above, according to the present invention, two pin photoelectric conversion element units are directly joined by ohmic contact, and the thickness of the i (intrinsic) type semiconductor of the pin photoelectric conversion element units is set to a predetermined value. Therefore, it is possible to obtain a highly reliable laminated a-Si solar cell with improved energy conversion efficiency and less photodegradation. Further, in the laminated a-Si solar cell of the present invention, photodegradation can be suppressed to about half of that in the conventional case, and the area can be reduced by that amount, so that there is an effect that a large cost reduction can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る積層型a-Si
太陽電池の構成を示した模式図である。
FIG. 1 is a laminated a-Si according to a specific embodiment of the present invention.
It is the schematic diagram which showed the structure of the solar cell.

【図2】1つのpin光電変換素子単位から成る単層a
-Si太陽電池の模式図である。
FIG. 2 is a single layer a composed of one pin photoelectric conversion element unit.
-Si is a schematic view of a solar cell.

【図3】図2の単層a-Si太陽電池におけるi型層の膜
厚を変化させた時の初期エネルギー変換効率と光劣化率
との関係を示した特性図である。
3 is a characteristic diagram showing a relationship between an initial energy conversion efficiency and a photodegradation rate when the film thickness of an i-type layer in the single-layer a-Si solar cell of FIG. 2 is changed.

【図4】第1のpin光電変換素子単位と第2のpin
光電変換素子単位との接合部における電流−電圧特性を
調べるために製作された評価用デバイスの模式図であ
る。
FIG. 4 is a first pin photoelectric conversion element unit and a second pin.
It is a schematic diagram of the evaluation device manufactured in order to investigate the current-voltage characteristic in the junction part with a photoelectric conversion element unit.

【図5】図4の評価用デバイスのp型層へのボロン添加
量を変化させた時の電流−電圧特性を示した特性図であ
る。
5 is a characteristic diagram showing current-voltage characteristics when the amount of boron added to the p-type layer of the evaluation device of FIG. 4 is changed.

【図6】本発明に係る積層型a-Si太陽電池における第
2のpin光電変換素子単位のi型層の膜厚を変化させ
た時の初期エネルギー変換効率と光劣化率との関係を示
した特性図である。
FIG. 6 shows the relationship between the initial energy conversion efficiency and the photodegradation rate when the film thickness of the i-type layer of the second pin photoelectric conversion element unit in the laminated a-Si solar cell according to the present invention is changed. FIG.

【図7】本発明に係る積層型a-Si太陽電池における第
2のpin光電変換素子単位のp型層へのボロン添加量
と光学ギャップとの関係を示した特性図である。
FIG. 7 is a characteristic diagram showing the relationship between the amount of boron added to the p-type layer of the second pin photoelectric conversion element unit and the optical gap in the laminated a-Si solar cell according to the present invention.

【図8】本発明に係る積層型a-Si太陽電池における第
2のpin光電変換素子単位のp型層へのボロン添加量
を変化させた時の初期エネルギー変換効率と光劣化率と
を示した特性図である。
FIG. 8 shows initial energy conversion efficiency and photodegradation rate when the amount of boron added to the p-type layer of the second pin photoelectric conversion element unit in the laminated a-Si solar cell according to the present invention is changed. FIG.

【符号の説明】[Explanation of symbols]

1−ガラス基板 2−透明導電膜(TCO) 3−第1のpin光電変換素子単位 4−第2のpi
n光電変換素子単位 5−p型a-SiC:H 6−i型a-Si:H 7−
n型μc-Si:H 8−p型a-SiC:H 9−i型a-Si:H 10
−n型μc-Si:H 11−金属電極 100−積層型a-Si太陽電池
1-Glass Substrate 2-Transparent Conductive Film (TCO) 3-First Pin Photoelectric Conversion Element Unit 4-Second Pi
n photoelectric conversion element unit 5-p type a-SiC: H 6-i type a-Si: H 7-
n-type μc-Si: H 8-p-type a-SiC: H 9-i-type a-Si: H 10
-N type μc-Si: H 11-metal electrode 100-multilayered a-Si solar cell

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アモルファス半導体材料によりp型、i
(真性)型、n型のアモルファス半導体膜を順次形成し
た2つのpin光電変換素子単位を積層して成る積層型
太陽電池において、 前記2つのpin光電変換素子単位間は対向するp型層
又はn型層に不純物をヘビードープしてオーミック接触
にて直接接合すると共に光入射方向側から見た該2つの
pin光電変換素子単位のi(真性)型半導体の膜厚を
順に 30〜100nm,200〜600nmの範囲でそれら2つの
pin光電変換素子単位にて励起されるキャリヤが等し
くなるように対応させて形成することを特徴とする積層
型太陽電池。
1. A p-type, i
A stacked solar cell comprising two pin photoelectric conversion element units in which (intrinsic) -type and n-type amorphous semiconductor films are sequentially formed, wherein a p-type layer or an n-type photoelectric conversion element unit facing each other is provided between the two pin photoelectric conversion element units. The type layer is heavily doped with impurities and directly bonded by ohmic contact, and the film thickness of the i (intrinsic) type semiconductor of the two pin photoelectric conversion element units viewed from the light incident direction side is 30 to 100 nm and 200 to 600 nm in order. In the range, the laminated solar cell is formed so that carriers excited in the two pin photoelectric conversion element units are made equal to each other.
JP3232399A 1991-08-19 1991-08-19 Laminated solar battery Pending JPH0548133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3232399A JPH0548133A (en) 1991-08-19 1991-08-19 Laminated solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3232399A JPH0548133A (en) 1991-08-19 1991-08-19 Laminated solar battery

Publications (1)

Publication Number Publication Date
JPH0548133A true JPH0548133A (en) 1993-02-26

Family

ID=16938637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3232399A Pending JPH0548133A (en) 1991-08-19 1991-08-19 Laminated solar battery

Country Status (1)

Country Link
JP (1) JPH0548133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926028A (en) * 1996-05-17 1999-07-20 Tokyo Electron Limited Probe card having separated upper and lower probe needle groups
WO2011148679A1 (en) * 2010-05-27 2011-12-01 シャープ株式会社 Photovoltaic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926028A (en) * 1996-05-17 1999-07-20 Tokyo Electron Limited Probe card having separated upper and lower probe needle groups
WO2011148679A1 (en) * 2010-05-27 2011-12-01 シャープ株式会社 Photovoltaic device
JP2011249577A (en) * 2010-05-27 2011-12-08 Sharp Corp Photoelectric conversion device

Similar Documents

Publication Publication Date Title
US6784361B2 (en) Amorphous silicon photovoltaic devices
US4776894A (en) Photovoltaic device
US4612559A (en) Solar cell of amorphous silicon
JPS58139478A (en) Amorphous solar battery
US20070227587A1 (en) Photoelectric Cells Utilizing Accumulation Barriers For Charge Transport
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
US20140109961A1 (en) Compositionally-graded band gap heterojunction solar cell
JPH11150282A (en) Photovoltaic element and its manufacture
TW201349520A (en) Solar cell and module using the same
JP2012038783A (en) Photoelectric conversion element
US4857115A (en) Photovoltaic device
JPH0548133A (en) Laminated solar battery
JPH0463550B2 (en)
WO2020158023A1 (en) Solar battery cell, method for manufacturing same, and solar battery module
JP2936269B2 (en) Amorphous solar cell
JPS61135167A (en) Thin-film solar cell
JP3245962B2 (en) Manufacturing method of thin film solar cell
KR101223055B1 (en) Method of preparing solar cell and solar cell prepared by the same
JPH0586677B2 (en)
JPS58137263A (en) Solar cell
Uchida et al. Amorphous silicon photovoltaic modules
JP2884171B2 (en) Amorphous solar cell
JP2713799B2 (en) Thin film solar cell
JP3143392B2 (en) Stacked solar cell
JPH0444433B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040922

Free format text: JAPANESE INTERMEDIATE CODE: A621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111104

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20131104

LAPS Cancellation because of no payment of annual fees