JPH0547914B2 - - Google Patents

Info

Publication number
JPH0547914B2
JPH0547914B2 JP82220082A JP22008282A JPH0547914B2 JP H0547914 B2 JPH0547914 B2 JP H0547914B2 JP 82220082 A JP82220082 A JP 82220082A JP 22008282 A JP22008282 A JP 22008282A JP H0547914 B2 JPH0547914 B2 JP H0547914B2
Authority
JP
Japan
Prior art keywords
data
string
code
component
code word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP82220082A
Other languages
Japanese (ja)
Other versions
JPS59112409A (en
Inventor
Kazuyuki Takeshita
Yasuhiro Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Hitachi Ltd
Original Assignee
Hitachi Denshi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK, Hitachi Ltd filed Critical Hitachi Denshi KK
Priority to JP22008282A priority Critical patent/JPS59112409A/en
Publication of JPS59112409A publication Critical patent/JPS59112409A/en
Publication of JPH0547914B2 publication Critical patent/JPH0547914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements

Description

【発明の詳細な説明】 本発明はデイジタル磁気記録再生装置のロータ
リートランスによる低域しや断特性の影響を受け
難くした符号方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coding system that is less susceptible to the effects of low-frequency damping characteristics caused by a rotary transformer of a digital magnetic recording/reproducing device.

従来、低域しや断の影響を受け難い符号方式と
して8−10変換と呼ばれる方式があり、8ビツト
の符号語に10ビツトの符号語の中から直流平衡の
とれた組合せを対応させて直流成分を抑圧してい
たが、10÷8=1.25と25%の冗長度を持ち、その
分記録帯域が余分に必要であるという欠点を持つ
ていた。それに対し、8−8マツピングと呼ばれ
る新しい変調方式が現れて来た。これはアナログ
信号をA/D変換器でデイジタル化する場合、あ
らかじめ前置フイルタでサンプリング周波数の1/
2以上の成分は除去されている事を利用するもの
であり、原理的にはベースバンド上にあるデイジ
タルデータをサンプリング周波数の1/2の周波数
に対応する周期で反転することにより変調するも
のである。
Conventionally, there is a method called 8-10 conversion as a coding method that is less susceptible to the effects of low frequency discontinuation, in which a DC balanced combination of 10-bit code words is matched to an 8-bit code word. However, it had the disadvantage of having a redundancy of 25% (10÷8=1.25) and requiring an extra recording band. In response, a new modulation method called 8-8 mapping has appeared. When digitizing an analog signal using an A/D converter, a pre-filter is used to digitize the analog signal to 1/1 of the sampling frequency.
It takes advantage of the fact that components of 2 or more are removed, and in principle modulates digital data on the baseband by inverting it at a frequency corresponding to 1/2 of the sampling frequency. be.

この場合、ベースバンド上で低周波であつた成
分はキヤリヤ(サンプリング周波数の1/2)近傍
にスペクトラムが移り、ベースバンド上でキヤリ
ヤ近傍であつた成分は低周波にスペクトラムが移
るわけであるが、前述の如く前置フイルタでキヤ
リヤ成分はすでに除去されているので直流成分は
少ない。しかしながら前置フイルタであまりにも
キヤリヤ周波数より低いカツトオフ周波数でアナ
ログ信号を除去してしまうと伝送帯域を有効に利
用することはできないので、前置フイルタのカツ
トオフ周波数はキヤリア周波数の極近傍とされ
る。この場合、低周波成分が多少残ることになる
が、例えば直流しや断をビツト周波数の1/280と
した場合に、前記キヤリヤから16%下の周波数で
振幅1MSB(最上位ビツト)相当の正弦波を入力
した場合、最大70%程度のサグとなつてしまう。
In this case, the spectrum of the component that was low frequency on the baseband shifts to near the carrier (1/2 of the sampling frequency), and the spectrum of the component that was near the carrier on the baseband shifts to the low frequency. As mentioned above, the carrier component has already been removed by the pre-filter, so the direct current component is small. However, if the prefilter removes the analog signal at a cutoff frequency that is too lower than the carrier frequency, the transmission band cannot be used effectively, so the cutoff frequency of the prefilter is set very close to the carrier frequency. In this case, some low frequency components will remain, but for example, if DC or disconnection is set to 1/280 of the bit frequency, a sine signal with an amplitude of 1 MSB (most significant bit) at a frequency 16% below the carrier will be generated. If you input waves, there will be a sag of up to 70%.

又、検査ビツトはただのデータ列にすぎないの
で上記変換を行なつても直流平衡はとれず、その
まま記録すると、この部分で大きくサグが生じて
前後のデータも含めて再生時のアイ開口率を劣化
させる。
In addition, since the test bit is just a data string, DC balance cannot be achieved even if the above conversion is performed, and if it is recorded as is, a large sag will occur in this part, and the eye opening ratio during playback including the previous and subsequent data will be affected. deteriorate.

一つの方法として検査ビツトにだけ乱数をかけ
て統計的に直流平衡をとることが考えられるが、
検査ビツトは飛び飛びに入つているので効果は充
分でない。
One method is to statistically balance the DC by multiplying random numbers only to the test bits, but
Since the inspection bits are placed at random, the effect is not sufficient.

本発明は前記欠点を除去し、パリテイ部でも直
流平衡が狂わない様にするとともに、8−8マツ
ピングの不完全さの為に生じた低周波成分もあわ
せて抑圧するものである。
The present invention eliminates the above-mentioned drawbacks, prevents the DC balance from being disturbed even in the parity section, and also suppresses low frequency components caused by imperfection of 8-8 mapping.

一般にデータ処理は8ビツト単位で行なうと都
合が良いのでここでは符号語は8ビツト単位で送
信されるものとする。又、検査ビツトはできるだ
け細かく誤りを検出するために8ビツトのCRC
(巡回冗長検査符号)が用いられているとする。
8ビツトの検査ビツトが100ビツト〜300ビツト毎
に入つているとする。この付加される検査語内で
殆んど直流平衡をとるには8ビツトのもとの検査
ビツトから10ビツト以上からなる符号語を作りそ
の内で直流平衡のとれたものだけ対応させて付加
符号語とすれば良い。
Since it is generally convenient to perform data processing in units of 8 bits, it is assumed here that the code word is transmitted in units of 8 bits. In addition, the check bits are 8-bit CRC to detect errors as finely as possible.
(Cyclic redundancy check code) is used.
Assume that 8 check bits are inserted every 100 to 300 bits. In order to achieve almost DC balance within this added check word, a code word consisting of 10 or more bits is created from the original 8 bits, and only those with DC balance are made to correspond to the additional code. It is good to use it as a word.

一方、8−8マツピングでは低周波成分が出る
がその変化率はたかだか100ビツトに対して20%
ぐらいである。例えば16語に対し1つの検査語を
付けるとすれば全体では136ビツトとなる。
On the other hand, in 8-8 mapping, low frequency components appear, but the rate of change is at most 20% for 100 bits.
That's about it. For example, if one test word is attached to 16 words, the total will be 136 bits.

そこで、本発明では上述の平衡符号語の他に
“1”の符号と“0”の符号の差(すなわち重み)
が2ないし4の正及び負の重みの不平衡符号語を
検査語に割り当て、データの8−8マツピングで
生じた低周波成分を軽減するように適合的にこれ
らの検査語を選択して付加符号語とする。こうす
れば、136ビツトで生じた不平衡がたかだか27ビ
ツトぐらいであるので、最悪時の低周波成分を13
%改善できる。さらに一般的な8−8マツピング
されたデータでは、直流成分は約10%程度である
ので、直流成分を約30%程度改善できることにな
る。
Therefore, in the present invention, in addition to the above-mentioned balanced code word, the difference between the code of "1" and the code of "0" (that is, the weight)
Assign unbalanced code words with positive and negative weights of 2 to 4 to test words, and select and add these test words adaptively so as to reduce the low frequency components generated by 8-8 mapping of data. Use it as a code word. In this way, the imbalance caused by 136 bits is only about 27 bits, so the worst-case low frequency component is reduced to 13
% can be improved. Furthermore, in general 8-8 mapped data, the DC component is about 10%, so the DC component can be improved by about 30%.

これで不足する場合には8ビツトに対して12ビ
ツトをあてれば良い。これによつて6ビツト〜8
ビツトの改善を行なうことが出来、さらに細かく
制御することが可能である。
If this is insufficient, you can use 12 bits instead of 8 bits. This allows 6 bits to 8
It is possible to improve the bit rate and to have more fine control.

第1図は本発明方式を実現するための符号器の
実施例であつて、入力画像信号1は前置フイルタ
2によつてサンプリング周波数の1/2以上の周波
数成分を除去され、A/D変換器3でデイジタル
データに変換される。次に8−8マツピング変換
器4で直流平衡が概略とれたデータ列5に変換さ
れる。次にデータは一方では遅延メモリで本処理
に伴う遅延時間分だけ遅らせてタイミングを合わ
せ、他方では符号器7で検査ビツト8を生成す
る。
FIG. 1 shows an embodiment of an encoder for realizing the method of the present invention, in which an input image signal 1 is filtered by a pre-filter 2 to remove frequency components of 1/2 or more of the sampling frequency, and an A/D The converter 3 converts the data into digital data. Next, an 8-8 mapping converter 4 converts the data into a data string 5 with approximately DC balance. Next, the data is delayed on the one hand by the delay time associated with this processing in a delay memory to match the timing, and on the other hand, the encoder 7 generates check bits 8.

又、同時にDSV(電荷蓄積値)を計算する演算
器9で、直流成分がどちらにどの位ずれているか
という制御信号10を出力する。8−10変換器1
1は制御信号10によつて10ビツトのデータ出力
12を入力8に対して適合的に出力する。このま
まではパリテイビツトが連続する部分でデータレ
ートが上るのでバツフアメモリ13で時間軸を調
整する。
At the same time, an arithmetic unit 9 that calculates DSV (charge accumulation value) outputs a control signal 10 indicating which direction and how much the DC component has shifted. 8-10 converter 1
1 outputs a 10-bit data output 12 adaptively to the input 8 by means of a control signal 10. If this continues, the data rate will increase where the parity bits are continuous, so the buffer memory 13 is used to adjust the time axis.

同様にメモリ6で遅延されたデータ15は直並
列変換器16で画像データ部分と検査ビツト部分
とを継ぎ合せると同時に直列データ17に変換し
て記録増幅器へと出力される。言うまでもなくこ
の信号は直流成分(低周波成分)が抑圧されてい
る。
Similarly, the data 15 delayed in the memory 6 is connected to the image data part and the inspection bit part by the serial/parallel converter 16, and simultaneously converted into serial data 17 and outputted to the recording amplifier. Needless to say, the DC component (low frequency component) of this signal is suppressed.

次に再生について説明する。第2図は本発明に
よつて得た符号を記録媒体に記録し、これを再生
した信号を復号するための復号器の実施例であ
る。再生信号18はシフトレジスタ19で並列デ
ータ20に変換され、同期検出器21で同期信号
22を生成し、これによつてリングカウンタ23
をリセツトし、クロツク24を1/8にカウントダ
ウンして4相のクロツク25を出力する。
Next, playback will be explained. FIG. 2 shows an embodiment of a decoder for recording a code obtained according to the present invention on a recording medium and decoding a signal reproduced from the code. The reproduced signal 18 is converted into parallel data 20 by a shift register 19, and a synchronization signal 22 is generated by a synchronization detector 21, thereby generating a ring counter 23.
is reset, the clock 24 is counted down to 1/8, and a four-phase clock 25 is output.

一方、カウンタ26は同様にして1同期区間を
周期としてカウントしてROMアドレス27を作
る。
On the other hand, the counter 26 similarly counts one synchronization period as a cycle to generate the ROM address 27.

ROM28はアドレス27から4つの位相の選
択データ29及びクロツクが1相から順次4相へ
と切換り、再び4相から1相へと戻る時に位相が
ジヤンプするのを防ぐための1クロツクインヒビ
ツトフラグ30を出力してクロツク選択器31で
セレクテツドクロツク32を作りラツチ33のク
ロツク入力とする。シフトレジスタ19の直列出
力34はシフトレジスタ35で10ビツトの並列デ
ータ36に変換され、ラツチ33で並列にラツチ
される。ラツチされたデータ37は8−8マツピ
ング逆変換器38で元の画像データ39に変換さ
れると同時に10−8変換器40で検査ビツト8に
変換し、選択器41で統合される。
The ROM 28 contains four phase selection data 29 from the address 27 and a one-clock inhibit to prevent the phase from jumping when the clock sequentially switches from one phase to four phases and returns from four phases to one phase again. A flag 30 is output, a selected clock 32 is generated by a clock selector 31, and the selected clock 32 is inputted to a latch 33. The serial output 34 of the shift register 19 is converted into 10-bit parallel data 36 by the shift register 35 and latched in parallel by the latch 33. The latched data 37 is converted into original image data 39 by an 8-8 mapping inverse transformer 38, and at the same time, converted into check bits 8 by a 10-8 converter 40, and integrated by a selector 41.

この後で誤りの検出や訂正が行なわれることに
なるがその説明は省略する。
After this, error detection and correction will be performed, but their explanation will be omitted.

以上説明した様に本発明によれば冗長度をあま
り増加させることなく検査ビツトの直流平衡と8
−8マツピング等のデータの統計的性質を利用し
て直流成分を抑圧する方式の不完全さを除去する
ことが出来る。又、これに要するハードウエアも
比較的簡単である。
As explained above, according to the present invention, the DC balance of the test bits and the
The imperfections of the DC component suppression method can be removed by using statistical properties of data such as -8 mapping. Furthermore, the hardware required for this is relatively simple.

なおここでは検査点に8−10ブロツク変換を行
なつた場合について述べたがm<nの範囲でm,
nは自由である。
Here, we have described the case where 8-10 block transformation is performed on the inspection points, but in the range of m<n, m,
n is free.

又、検査点以外にも同符号を混入してさらに低
域の改善を行なつてもよいことはもちろんであ
る。
Furthermore, it goes without saying that the same code may be mixed in other than the test points to further improve the low frequency range.

又、検査点が集中している部分ではこの冗長度
がもつたいないので、検査点が平均点に画像デー
タ中に分散する様に処理を行なつてもよい。
Furthermore, since this redundancy is not sufficient in areas where inspection points are concentrated, processing may be performed so that the inspection points are dispersed in the image data at an average point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の符号器の構成を示す
図、第2図は本発明によつて得た符号を復号する
ための復号器の実施例の構成を示す図である。 1:入力画像信号、3:A/D変換器、4:8
−8マツピング変換器、6:メモリ、7:符号
器、9:演算器、11:8−10変換器、13:バ
ツフアメモリ、16:直並列変換器。
FIG. 1 is a diagram showing the configuration of an encoder according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of an embodiment of a decoder for decoding codes obtained according to the present invention. 1: input image signal, 3: A/D converter, 4: 8
-8 mapping converter, 6: memory, 7: encoder, 9: arithmetic unit, 11: 8-10 converter, 13: buffer memory, 16: serial-parallel converter.

Claims (1)

【特許請求の範囲】[Claims] 1 アナログ信号を順次サンプリングして所定語
長のデジタル信号列に変換し、該デジタル信号列
のサンプリング周波数の整数分の1の周波数に対
応する周期で反転変調することを含む符号変換に
より直流成分の圧縮を行つて記録用のデータ符号
語列を作成し、該データ符号語列のいくつかの符
号語毎に誤り検査用の検査ビツトを含む付加符号
語を付加してデータブロツクとし、該データブロ
ツクを記録媒体に順次シリアルアクセスにより記
録・再生するための符号方式において、上記デー
タ符号語列に残留する直流成分を検出する手段を
備え、かつ上記付加符号語は少なくとも平衡符号
語及び正負の重みの不平衡符号語を含み、検出さ
れた直流成分を軽減する重みの符号語を適合的に
選択して上記データ符号語列に付加して上記デー
タブロツクを形成することを特徴とする符号方
式。
1 Analog signals are sequentially sampled and converted into a digital signal string of a predetermined word length, and the DC component is converted by code conversion, which includes inverse modulation at a frequency corresponding to an integer fraction of the sampling frequency of the digital signal string. Compression is performed to create a data code string for recording, additional code words containing check bits for error checking are added to each code word of the data code string to form a data block, and the data block is A coding method for recording and reproducing data on a recording medium by sequential serial access, comprising means for detecting a DC component remaining in the data code word string, and the additional code word includes at least a balanced code word and a positive/negative weight. A coding system characterized in that a codeword containing an unbalanced codeword and having a weight that reduces a detected DC component is adaptively selected and added to the data codeword string to form the data block.
JP22008282A 1982-12-17 1982-12-17 Encoding system Granted JPS59112409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22008282A JPS59112409A (en) 1982-12-17 1982-12-17 Encoding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22008282A JPS59112409A (en) 1982-12-17 1982-12-17 Encoding system

Publications (2)

Publication Number Publication Date
JPS59112409A JPS59112409A (en) 1984-06-28
JPH0547914B2 true JPH0547914B2 (en) 1993-07-20

Family

ID=16745643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22008282A Granted JPS59112409A (en) 1982-12-17 1982-12-17 Encoding system

Country Status (1)

Country Link
JP (1) JPS59112409A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675650A (en) * 1985-04-22 1987-06-23 Ibm Corporation Run-length limited code without DC level

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883313A (en) * 1981-11-13 1983-05-19 Sony Corp Encoding method for digital picture data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883313A (en) * 1981-11-13 1983-05-19 Sony Corp Encoding method for digital picture data

Also Published As

Publication number Publication date
JPS59112409A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
JP3590209B2 (en) Modulation coding method
AU632722B2 (en) Digital filter
US6850573B1 (en) Coding apparatus and method, decoding apparatus and method, and recording medium
JP3482212B2 (en) Encoding device and method for encoding (n-1) -bit information words into n-bit channel words, and decoding device and method for decoding channel words into information words
JP3091497B2 (en) Digital modulation method, digital modulation circuit, digital demodulation circuit, and digital demodulation method
KR100274213B1 (en) Rll(2,25) modulation code and method of coding/decoding digital data utilizing its code
JPH0547914B2 (en)
EP0178027A2 (en) Method of transmitting information, encoding devide for use in the method, and decoding device for use in the method
JPH0233770A (en) Decoding method
JPS58139313A (en) Digital magnetic recorder and reproducer
JPS6013539B2 (en) code conversion device
JPS60109358A (en) Coding device of binary data
KR840008871A (en) Audio information storage method and apparatus therefor
JPH1198021A (en) Demodulation device and method and transmission medium
JPH0480576B2 (en)
KR950011290B1 (en) Address generating circuit
JPH07123214B2 (en) D / A converter
KR20010021043A (en) Trellis code for extended partial response maximum likelihood(eprml) channel
JPH0746478B2 (en) Code system
JPH0574253B2 (en)
JP2898132B2 (en) Digital modulation method and apparatus
JPS6034182B2 (en) Signal error detection and correction method
JPH1042287A (en) Transmission device
JPH0435320A (en) 1-bit digital/analog converter
KR940002472B1 (en) Buffer-memory address generating apparatus and method therefor