JPH0547617A - Bonded substrate and manufacture thereof - Google Patents

Bonded substrate and manufacture thereof

Info

Publication number
JPH0547617A
JPH0547617A JP19797791A JP19797791A JPH0547617A JP H0547617 A JPH0547617 A JP H0547617A JP 19797791 A JP19797791 A JP 19797791A JP 19797791 A JP19797791 A JP 19797791A JP H0547617 A JPH0547617 A JP H0547617A
Authority
JP
Japan
Prior art keywords
substrate
bonded
semiconductor
semiconductor substrate
chamfered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19797791A
Other languages
Japanese (ja)
Other versions
JP2678218B2 (en
Inventor
Shigeru Takahashi
茂 高橋
Hironori Inoue
洋典 井上
Yasumichi Yasuda
保道 安田
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19797791A priority Critical patent/JP2678218B2/en
Publication of JPH0547617A publication Critical patent/JPH0547617A/en
Application granted granted Critical
Publication of JP2678218B2 publication Critical patent/JP2678218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To improve a yielding ratio of devices from a peripheral part of a bonded semiconductor substrate, where two bonded substrates, i.e., a device forming silicon substrate and a supporting silicon substrate are bonded with insufficient adhesive strength. CONSTITUTION:There is a gap in a peripheral part of bonded faces between a supporting silicon substrate 2 and a device forming silicon substrate 1. The gap is filled with a polycrystalline silicon 4, and then the main face of the device forming silicon substrate 1 is ground and abraded to a given thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン系または化合
物系の個別半導体装置、集積回路装置等における半導体
の貼りあわせ基体及びその製造方法に係り、特に高耐圧
や大電流用集積回路装置に使われる誘電体分離基体や、
電気的ノイズ対策等に使われるSOI(Silicon On Ins
ulator)構造の貼りあわせ基体及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded substrate of a semiconductor in a silicon-based or compound-based individual semiconductor device, an integrated circuit device or the like and a method for manufacturing the same, and particularly to a high breakdown voltage or large current integrated circuit device. A dielectric isolation substrate,
SOI (Silicon On Ins) used for electrical noise countermeasures
and a method for manufacturing the same.

【0002】[0002]

【従来の技術】支持用基板と素子形成用基板とを直接貼
りあわせて一体化する方法としては特開昭48−715
80号公報が挙げられる。また支持基板上に素子形成用
基板を貼りあわせた後、素子形成用基板を所望の厚さま
で研削、研磨する場合に関する方法としては特開平2−
202024号公報が挙げられる。
2. Description of the Related Art A method for directly adhering a supporting substrate and an element forming substrate to integrate them is disclosed in JP-A-48-715.
No. 80 publication is cited. Further, as a method relating to the case where an element forming substrate is attached to a supporting substrate and then the element forming substrate is ground and polished to a desired thickness, there is disclosed in Japanese Patent Laid-Open No.
202024 publication is mentioned.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の内、特
開昭48−71580号公報に開示された技術では、基
体周辺の1〜10mm程度の領域の支持用基板と素子形
成用基板との接着力は、中央付近に比較して小さく、素
子形成用基板を貼りあわせた後、若しくは所望の厚さま
で研削、研磨している時に接着力の小さい部分で剥離す
るという問題がある。これは、シリコン基板の製作時に
シリコン基板端面の欠けやクラックの防止策として端面
部分にテ−パ状の研磨仕上げを行う一般的な面取り作業
や、表面の鏡面仕上げ作業があるが、この時に基板表面
の外周の面取り領域及びそれを超える領域にも数十Å程
度のなだらかな凹凸や傾斜が生じる。このため、上記基
板同士を直接貼りあわせた場合の基体の側壁には前記面
取りでできる隙間及びそれよりさらに内径側にも微小な
隙間が生じる。その結果、接着力の小さい部分が発生す
るものと思われる。この接着力の小さい部分は経験的に
5mm程度の範囲内である。このため図13に示すよう
に、支持基板21に素子形成用基板11を貼りあわせた
後、若しくは、所望の厚さまで研削、研磨した後に基体
周辺の角部(約10mm程度の範囲)を一定角度で研磨
して除去し、テ−パ部71を形成するか基体周辺の10
mm程度を切断除去していた。そのため同一基体内での
半導体装置の取得率が、大幅に低下していた。
Among the above-mentioned conventional techniques, in the technique disclosed in Japanese Unexamined Patent Publication No. 48-71580, a supporting substrate and an element forming substrate in a region of about 1 to 10 mm around the base are formed. The adhesive force is smaller than that in the vicinity of the center, and there is a problem in that after the element forming substrates are bonded together, or when they are ground or polished to a desired thickness, they are separated at a portion having a small adhesive force. This is because there are general chamfering work that performs taper-like polishing finish on the end face part as a measure to prevent chipping and cracking of the end face of the silicon substrate when manufacturing the silicon substrate, and mirror finishing work on the surface. In the chamfered area on the outer periphery of the surface and in the area beyond that, gentle unevenness and inclination of about several tens of liters are generated. Therefore, when the substrates are directly bonded to each other, a gap formed by the chamfering and a minute gap on the inner diameter side are formed on the side wall of the base body. As a result, it is considered that a portion having a small adhesive force is generated. The portion having a small adhesive force is empirically within a range of about 5 mm. Therefore, as shown in FIG. 13, after the element forming substrate 11 is attached to the supporting substrate 21, or after the substrate is ground and polished to a desired thickness, the corner portion (range of about 10 mm) around the substrate is fixed at a constant angle. The taper portion 71 is formed by polishing with 10 to remove it.
About mm was cut and removed. Therefore, the acquisition rate of semiconductor devices in the same substrate is significantly reduced.

【0004】一方、特開平2−202024号公報の技
術によると図14に示すように、素子形成用基板12の
周辺に間隙部72を設けて貼りあわせた後、前記間隙部
に有機物系若しくはSOG32を埋め込み、この埋め込
み材料が研削、研磨面に表れるか若しくはその表れ方に
より所定厚さを確保している。この方法によると素子形
成用基板側即ち、研削、研磨により薄膜化する基板の周
辺は前記間隙72及び埋め込み材料32が存在するため
素子形成不可能な領域となり、結局同一基体内での半導
体装置の取得率が低下することとなる。さらにこの方法
による接着剤は前述したように有機物系若しくはSOG
であり、その接着力は基体中央付近の接着力より小さい
ことは自明であり、前記公知例と同様研削、研磨時に局
所的に剥離する。また、半導体装置を形成するにあた
り、高温の熱処理工程があるので、この方法によって形
成した基体は研削、研磨後に必ず前記埋め込み材料32
を除去する工程が必要となる。さらに埋め込み材料32
を除去した部分の間隙部が存在すると高温の熱処理の前
工程である洗浄時やハンドリング時、熱処理用石英治具
へのセット時等において間隙部端部で切欠きが生じ、こ
の切欠き粉の飛散による半導体装置の歩留まり低下の要
因となる。
On the other hand, according to the technique disclosed in Japanese Unexamined Patent Publication No. 2-202024, as shown in FIG. 14, after a gap 72 is provided around the element forming substrate 12 and the substrates are bonded together, an organic material or SOG 32 is formed in the gap. Are embedded, and a predetermined thickness is secured by the appearance of this embedded material on the ground or polished surface or the appearance thereof. According to this method, the element forming substrate side, that is, the periphery of the substrate which is thinned by grinding and polishing, becomes the region in which the element cannot be formed due to the existence of the gap 72 and the filling material 32, and eventually the semiconductor device of the same substrate is formed. The acquisition rate will decrease. Further, as described above, the adhesive produced by this method is an organic material or SOG.
It is obvious that the adhesive force is smaller than the adhesive force in the vicinity of the center of the substrate, and it is locally peeled off at the time of grinding and polishing as in the known example. In addition, since a high-temperature heat treatment step is performed when forming a semiconductor device, the base material formed by this method is always used after the embedding material 32 after grinding and polishing.
Is required. Further embedding material 32
If there is a gap in the removed portion, a notch will occur at the end of the gap during cleaning or handling, which is a pre-process of high-temperature heat treatment, and when setting on a quartz jig for heat treatment. This causes a reduction in the yield of semiconductor devices due to scattering.

【0005】本発明の目的は、同一基体内での半導体装
置の取得率の低下や半導体装置の歩留まりの低下を生じ
る恐れの少ない貼りあわせ基体及びその製造方法を提供
することにある。
It is an object of the present invention to provide a bonded substrate and a method of manufacturing the same, which is less likely to cause a reduction in the acquisition rate of semiconductor devices and a reduction in the yield of semiconductor devices in the same substrate.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明は、基板の周縁部が他部より薄く形成されている
基板同士の接合面周縁部に形成される隙間に無機接着材
料が充填されている貼りあわせ基体である。
In order to achieve the above object, the present invention is to fill an inorganic adhesive material in a gap formed in a peripheral portion of a bonding surface between substrates in which the peripheral portion of the substrate is formed thinner than other portions. It is a bonded substrate.

【0007】また本発明は、周縁が面取りされた第1の
半導体基板と、前記第1の半導体基板の面取りされた側
の面に接合された第2の基板と、前記第1の半導体基板
と第2の基板との接合面周縁であって前記面取りによっ
て形成された隙間に充填された無機接着材料と、を備え
た貼りあわせ基体である。ここで、第1の半導体基板は
シリコン系材料から成る基板であるものがよい。また、
第2の基板はシリコン(Si)系材料、カ−ボン(C)
系材料、アルミニウム(Al)系材料、ガラス系材料及
び前記各材料の酸化物又は窒化物の中から選ばれる材料
であるものがよい。また、無機接着材料は、酸化シリコ
ン、窒化シリコン、多結晶シリコン、無機系シラノ−ル
基からなる材料、燐系ガラス、硼素系ガラス、鉛系ガラ
スの群から選ばれる材料であるものがよい。
According to the present invention, a first semiconductor substrate having a chamfered peripheral edge, a second substrate bonded to a chamfered surface of the first semiconductor substrate, and the first semiconductor substrate are provided. A bonded base body, comprising: an inorganic adhesive material filled in a gap formed by the chamfering on a peripheral edge of a bonding surface with a second substrate. Here, the first semiconductor substrate is preferably a substrate made of a silicon material. Also,
The second substrate is silicon (Si) based material, carbon (C)
A material selected from a group of materials, an aluminum (Al) group material, a glass group material, and an oxide or a nitride of each of the above materials is preferable. The inorganic adhesive material is preferably a material selected from the group consisting of silicon oxide, silicon nitride, polycrystalline silicon, inorganic silanol-based material, phosphorus glass, boron glass, and lead glass.

【0008】また本発明は、周縁が面取りされた第1の
半導体基板と、前記第1の半導体基板の面取りされた側
の面に接合された第2の基板と、前記第2の基板の周縁
域で且つ第1の半導体基板と接する面側に形成された溝
と、前記溝内に充填された無機接着材料と、を備えた貼
りあわせ基体である。ここで、溝の深さは5μm以下が
よい。
Further, according to the present invention, a first semiconductor substrate having a chamfered peripheral edge, a second substrate bonded to a chamfered side surface of the first semiconductor substrate, and a peripheral edge of the second substrate. A bonded base comprising a groove formed in the region and on the surface side in contact with the first semiconductor substrate, and an inorganic adhesive material filled in the groove. Here, the depth of the groove is preferably 5 μm or less.

【0009】また本発明は、周縁が面取りされた第1の
半導体基板と、前記第1の半導体基板の面取りされた側
の面に接合された第2の基板と、前記第1の半導体基板
と第2の基板との接合面の周縁部及び他部を接着する、
熱エネルギ−により流動性を有する接着材料と、を備え
た貼りあわせ基体である。ここで、接着材料は、無機系
シラノ−ル基からなる材料、燐系ガラス、硼素系ガラス
及び鉛系ガラスの群から選ばれる材料であるものがよ
い。
Further, according to the present invention, a first semiconductor substrate having a chamfered peripheral edge, a second substrate bonded to a chamfered side surface of the first semiconductor substrate, and the first semiconductor substrate are provided. Gluing the peripheral portion of the joint surface with the second substrate and the other portion,
A bonded base body, which comprises an adhesive material having fluidity due to thermal energy. Here, the adhesive material is preferably a material selected from the group consisting of inorganic silanol-based materials, phosphorous glass, boron glass and lead glass.

【0010】また本発明は、周縁が面取りされた第1の
半導体基板の表面に絶縁膜を形成する工程と、電気的導
体材料から成る第2の基板を前記第1の半導体基板に重
ねあわせる工程と、重ねあわせた両基板の周縁側壁にで
きる隙間に充填材料を充填する工程と、その後の熱処理
工程とを含む貼りあわせ基体の製造方法である。
Further, according to the present invention, a step of forming an insulating film on the surface of the first semiconductor substrate whose peripheral edge is chamfered, and a step of superimposing a second substrate made of an electrically conductive material on the first semiconductor substrate. And a step of filling a gap formed on the side walls of the peripheral edges of both substrates with a filling material, and a subsequent heat treatment step.

【0011】また本発明は、周縁が面取りされた第1の
半導体基板と電気的導体材料から成る第2の基板とを重
ねあわせる工程と、重ねあわせた両基板の周縁側壁にで
きる隙間に充填材料を充填する工程と、その後の熱処理
工程とを含む貼りあわせ基体の製造方法である。
Further, according to the present invention, a step of superimposing a first semiconductor substrate having a chamfered peripheral edge and a second substrate made of an electrically conductive material, and a filling material in a gap formed on the peripheral side walls of the superposed substrates. And a subsequent heat treatment step.

【0012】また本発明は、周縁が面取りされた第1の
半導体基板の面取り部分を除去して平坦化する工程と、
平坦化された前記第1の半導体基板に第2の基板を貼り
あわせる工程と、を含む貼りあわせ基体の製造方法であ
る。ここで、面取り部分を除去する方法は研磨材料等に
よる機械的平坦化方法がよい。また、面取り部分を除去
する方法はイオン化されたガス等によるエッチングで平
坦化する方法がよい。
According to the present invention, a step of removing a chamfered portion of the first semiconductor substrate whose peripheral edge is chamfered to flatten the surface,
And a step of adhering a second substrate to the planarized first semiconductor substrate, which is a method for manufacturing a bonded base. Here, the method of removing the chamfered portion is preferably a mechanical flattening method using a polishing material or the like. As a method of removing the chamfered portion, a method of flattening by etching with ionized gas or the like is preferable.

【0013】また本発明は、支持用シリコン基板と、こ
の支持用シリコン基板に接合された素子形成用シリコン
基板と、この素子形成用シリコン基板に形成され隣合う
半導体単結晶島を電気的に絶縁分離する分離用SiO2
膜と、各半導体単結晶島に設けられた素子と、を備えた
半導体装置において、前記支持用シリコン基板と素子形
成用シリコン基板との接合構造は前記のいずれかの貼り
あわせ基体の構造であることを特徴とする半導体装置で
ある。
The present invention also electrically insulates a supporting silicon substrate, an element forming silicon substrate bonded to the supporting silicon substrate, and an adjacent semiconductor single crystal island formed on the element forming silicon substrate. Separating SiO 2
In a semiconductor device including a film and an element provided on each semiconductor single crystal island, the bonding structure between the supporting silicon substrate and the element forming silicon substrate is one of the above-mentioned bonded base structures. It is a semiconductor device characterized by the above.

【0014】[0014]

【作用】無機接着材料により埋め込んでも素子形成用基
板側は当初の形のまま即ち単結晶シリコンのままである
ので、同一基体内での半導体装置の取得率の低下は生じ
ない。また無機接着材料は基体を構成して成る材料と同
系統の材料を用いるので、熱膨張係数の差による湾曲や
剥離も生じない。さらに無機接着材料は基体を構成して
成る材料と同系統の材料を用いるので接着力が大きく剥
離が生じる恐れが少ない。
Since the element forming substrate side remains in its original shape, that is, the single crystal silicon, even if it is embedded with the inorganic adhesive material, there is no reduction in the acquisition rate of semiconductor devices in the same substrate. Further, since the inorganic adhesive material is of the same type as that of the material constituting the substrate, no bending or peeling due to the difference in thermal expansion coefficient occurs. Further, since the inorganic adhesive material is of the same type as the material constituting the substrate, the adhesive strength is large and the possibility of peeling is small.

【0015】[0015]

【実施例】【Example】

実施例1 図1は本発明の実施例を示す。底面に誘電体分離用Si
2膜3を有する所定厚さの素子形成用シリコン基板1
は、支持用シリコン基板2と直接貼り合わされ、その周
辺に隙間7が生じる。この隙間7は多結晶シリコンより
なる接着材埋め込み層4により充填され、この重点によ
り、基板1と基板2は中央付近から外周まで強固に接着
されている。素子形成用シリコン基板1には隣り合う半
導体単結晶島6間を電気的に絶縁分離するための単結晶
島間分離用SiO2膜5が形成されている。また、各半
導体単結晶島6内にはpn接合の組合せから成るダイオ
−ド、サイリスタ等の他、MOS等から成る能動素子が
単独若しくは集積化されている。以上のように構成され
て成る半導体装置基体10は、全ての能動素子形成と素
子間の配線工程が終了後はダイシング装置等により各半
導体装置毎に分断される。
Embodiment 1 FIG. 1 shows an embodiment of the present invention. Si for dielectric isolation on the bottom
Element-forming silicon substrate 1 having a predetermined thickness and having an O 2 film 3
Is directly bonded to the supporting silicon substrate 2, and a gap 7 is formed around it. The gap 7 is filled with the adhesive material embedding layer 4 made of polycrystalline silicon, and due to this emphasis, the substrate 1 and the substrate 2 are firmly bonded from the vicinity of the center to the outer periphery. On the element forming silicon substrate 1, a SiO 2 film 5 for separating single crystal islands for electrically insulating and separating the adjacent semiconductor single crystal islands 6 is formed. Further, in each semiconductor single crystal island 6, an active element made of MOS or the like is used alone or integrated in addition to a diode made of a combination of pn junctions, a thyristor and the like. The semiconductor device substrate 10 configured as described above is divided into individual semiconductor devices by a dicing device or the like after all active element formation and wiring steps between elements are completed.

【0016】分断された各半導体装置の内、半導体装置
基体10の周辺に位置していた半導体装置は、図2に示
す様に誘電体分離用SiO2膜3と支持基板2との間に
は接着材埋め込み層4が存在することとなるが、前述し
た様に接着材は多結晶シリコンから成っているので、支
持用基板2のシリコンと誘電体分離用のSiO2膜3と
の接着力は極めて大きくなり、剥離することは無い。
Among the divided semiconductor devices, the semiconductor device located around the semiconductor device substrate 10 is located between the dielectric isolation SiO 2 film 3 and the supporting substrate 2 as shown in FIG. Although the adhesive embedding layer 4 exists, since the adhesive is made of polycrystalline silicon as described above, the adhesive force between the silicon of the supporting substrate 2 and the SiO 2 film 3 for dielectric isolation is It becomes extremely large and never peels off.

【0017】このように本実施例によれば、前記基体1
0の周辺に位置する各半導体装置81であっても基体中
央に位置する各半導体装置と同様にして製品として使え
るので、引例(特開昭48−38690号及び特開平2
−202024号公報)で開示されているような素子形
成不能領域となる恐れは少ない。
As described above, according to this embodiment, the substrate 1
Since each semiconductor device 81 located around 0 can be used as a product in the same manner as each semiconductor device located in the center of the substrate, it is referred to (Japanese Unexamined Patent Publication No. 48390/48 and Japanese Unexamined Patent Publication (Kokai) No. Hei 2 (1996) -38690).
There is little risk of becoming an element non-formable region as disclosed in Japanese Laid-Open Patent Publication No. 202024).

【0018】図3は図1の構造を得るための製造方法を
示す。図1と同一符号は同一部品を示す。先ず、図3
(a)に示す様に、将来半導体装置が形成される単結晶
シリコン基板1に誘電体絶縁分離用のSiO2 膜3を形
成する。次に図3(b)に示す様に、SiO2 膜3を形
成した前記単結晶シリコン基板1と支持基板2とを直接
貼りあわせて所定の熱処理を施す。次に図3(c)に示
す様に、熱CVD(Chemical Vapor Deposition)法によ
り多結晶シリコン4を成長し前記隙間部7を埋め込む。
次に図3(d)に示す様に、不要部分の多結晶シリコン
膜を除去した後、素子形成用シリコン基板1側を研削、
研磨して所定の厚さに仕上げる。その後、図1に示した
如くエッチングによる分離溝の形成及びSiO2 膜の形
成により誘電体分離膜5に囲まれた複数のシリコン単結
晶島6を有する半導体装置基体10を得る。
FIG. 3 shows a manufacturing method for obtaining the structure of FIG. The same reference numerals as those in FIG. 1 indicate the same parts. First, FIG.
As shown in (a), a SiO 2 film 3 for dielectric isolation is formed on a single crystal silicon substrate 1 on which a semiconductor device will be formed in the future. Next, as shown in FIG. 3B, the single crystal silicon substrate 1 having the SiO 2 film 3 formed thereon and the supporting substrate 2 are directly bonded to each other and subjected to a predetermined heat treatment. Next, as shown in FIG. 3C, a polycrystalline silicon 4 is grown by a thermal CVD (Chemical Vapor Deposition) method to fill the gap 7.
Next, as shown in FIG. 3D, after removing an unnecessary portion of the polycrystalline silicon film, the element forming silicon substrate 1 side is ground,
Polish to a specified thickness. After that, as shown in FIG. 1, a semiconductor device substrate 10 having a plurality of silicon single crystal islands 6 surrounded by a dielectric isolation film 5 is obtained by forming an isolation groove and an SiO 2 film by etching.

【0019】これまでの説明では多結晶シリコンの形成
方法として熱CVD法によって説明したが、前記隙間部
7を充分に埋め込むことのできる技術であれば他の方法
例えばプラズマCVD等でもよい。
In the above description, the method of forming polycrystalline silicon has been described by the thermal CVD method, but any other method such as plasma CVD may be used as long as it is a technique capable of sufficiently filling the gap 7.

【0020】実施例2 図4は他の実施例を示す。図1と同一符号は同一部品を
示す。本実施例と図1の実施例との相違点は、支持基板
2側に意図的に面取り領域より大きな溝73を設けた点
である。この溝73は前述した実施例の熱CVD法によ
って面取りでできる隙間部7を多結晶シリコンにより埋
め込む場合、多結晶シリコンの成長速度が大きすぎて隙
間部7内部にボイドが発生したり、隙間部7を熱酸化シ
リコン膜や熱窒化シリコン膜により埋め込む場合、熱酸
化シリコン膜や熱窒化シリコン膜の成長速度が大きすぎ
て隙間部7内部の単結晶シリコンに応力が発生するのを
防ぐことを目的としている。従って、本実施例の溝73
の形状は前述のように埋め込む材料の成長速度にみあっ
た形状であることが必要であり、基板端から5mm程度
まで減圧CVDにより埋め込むには溝の深さdは経験的
に約5μm以下が好ましい。
Embodiment 2 FIG. 4 shows another embodiment. The same reference numerals as those in FIG. 1 indicate the same parts. The difference between this embodiment and the embodiment of FIG. 1 is that a groove 73 intentionally larger than the chamfered region is provided on the support substrate 2 side. When the gap 7 formed by chamfering by the thermal CVD method of the above-described embodiment is filled with polycrystalline silicon, the groove 73 is too high in the growth rate of polycrystalline silicon to cause voids inside the gap 7 or the gap 7. When burying 7 with a thermal silicon oxide film or a thermal silicon nitride film, the purpose is to prevent stress from being generated in the single crystal silicon inside the gap 7 due to the growth rate of the thermal silicon oxide film or the thermal silicon nitride film being too high. I am trying. Therefore, the groove 73 of the present embodiment
As described above, it is necessary that the shape of the groove be in conformity with the growth rate of the material to be embedded, and the depth d of the groove is empirically about 5 μm or less in order to embed by the low pressure CVD up to about 5 mm from the substrate edge. preferable.

【0021】実施例3 図5は他の実施例を示す。図1と同一符号は同一部品を
示す。本実施例と図1の実施例との相違点は、誘電体分
離用SiO2膜3の位置である。図1の場合は素子形成
用基板1側に誘電体分離用SiO2膜3を形成したのに
対して、本実施例では支持用基板2側に誘電体分離用S
iO2膜3を形成し、その後素子形成用基板1に貼りあ
わせてから多結晶シリコン4で充填した。この方法によ
ると全ての能動素子形成と素子間の配線工程が終了後に
分断された半導体装置の内、半導体装置基体10の周辺
に位置した半導体装置群81は素子形成用基板の底面部
に多結晶シリコン4が存在することと成る。
Embodiment 3 FIG. 5 shows another embodiment. The same reference numerals as those in FIG. 1 indicate the same parts. The difference between this embodiment and the embodiment of FIG. 1 is the position of the dielectric isolation SiO 2 film 3. In the case of FIG. 1, the dielectric separating SiO 2 film 3 is formed on the element forming substrate 1 side, whereas in the present embodiment, the dielectric separating S 2 is formed on the supporting substrate 2 side.
An io 2 film 3 was formed, and then bonded to the element forming substrate 1 and then filled with polycrystalline silicon 4. According to this method, among the semiconductor devices divided after the completion of all active element formation and wiring steps between elements, the semiconductor device group 81 located around the semiconductor device substrate 10 is polycrystalline on the bottom surface of the element formation substrate. Silicon 4 will be present.

【0022】実施例4 図6は他の実施例を示す。図4と同一符号は同一部品を
示す。本実施例と図4の実施例との相違点は、溝73の
形である。図4の場合は溝の形はテ−パ状としているの
に対して、本実施例では支持用基板2側に形成した溝の
形は略直角のステップ状とした。その後素子形成用基板
1に貼りあわせてから多結晶シリコン4で充填した。
Embodiment 4 FIG. 6 shows another embodiment. 4 that are the same as those in FIG. 4 indicate the same parts. The difference between this embodiment and the embodiment of FIG. 4 is the shape of the groove 73. In the case of FIG. 4, the shape of the groove is a taper shape, whereas in the present embodiment, the shape of the groove formed on the supporting substrate 2 side is a substantially right angle step shape. After that, it was attached to the element forming substrate 1 and then filled with polycrystalline silicon 4.

【0023】実施例5 図7は他の実施例を示す。図4と同一符号は同一部品を
示す。本実施例と図4の実施例との相違点も溝73の形
であり、図6の場合と同様溝の形は略直角のステップ状
とした。また図6との相違点は、支持用基板2側に溝を
形成した後、誘電体分離用SiO2膜3を形成し、その
後素子形成用基板1に貼りあわせてから多結晶シリコン
4で充填した。
Embodiment 5 FIG. 7 shows another embodiment. 4 that are the same as those in FIG. 4 indicate the same parts. The difference between this embodiment and the embodiment of FIG. 4 is also the shape of the groove 73, and like the case of FIG. 6, the shape of the groove is a substantially right angle step. 6 is different from FIG. 6 in that after a groove is formed on the supporting substrate 2 side, a dielectric isolation SiO 2 film 3 is formed, and then the device forming substrate 1 is bonded and then filled with polycrystalline silicon 4. did.

【0024】以上の実施例における溝の形状はテ−パ状
若しくは略直角のステップ状としたが、これらの形に限
定されることなく逆テ−パ状となっても同一の目的は達
せられる。またこれまで溝または隙間の埋め込み材料と
して多結晶シリコンで充填した例で説明してきたが、H
LD(High Temperature Low Pressure Deposition)法
によるSiO2膜若しくはSiN膜によっても同様の効
果が達せられた。さらに溶剤中にシラノ−ル基を含ませ
た材料によっても同様の効果が達せられるが、この場合
適度の熱処理により溶媒の除去と焼成による固化が必要
である。これまでの説明では、第1の基板に第2の基板
を直接貼りあわせた時に生じる面取りによる隙間が原因
で、基体周縁域の接着力が小さいことに対する対策の発
明について述べてきたが、次に別の方法により貼りあわ
せる方法について説明する。
The shape of the groove in the above embodiments is a taper shape or a step shape of a substantially right angle, but the same purpose can be achieved without being limited to these shapes even if it is a reverse taper shape. .. In the above description, an example in which polycrystalline silicon is used as the filling material for the groove or gap has been described.
A similar effect was achieved by using a SiO 2 film or a SiN film by the LD (High Temperature Low Pressure Deposition) method. Similar effects can be achieved by using a material containing a silanol group in the solvent, but in this case, it is necessary to remove the solvent by appropriate heat treatment and solidify it by baking. In the above description, the invention of the countermeasure against the small adhesive force in the peripheral region of the base due to the gap due to chamfering which occurs when the second substrate is directly bonded to the first substrate has been described. A method of laminating by another method will be described.

【0025】実施例6 図8は第2の基板2の第1の基板1と貼り合わされる面
側の周縁に面取り部が無く、基板全面にわたり平坦化さ
れている例で説明する。通常の面取り加工が為されたシ
リコン基板1の、第2の基板2と将来貼り合わされる面
側を図中A−A線で示した位置、即ち面取り部分が無く
なる位置まで研削や研磨により除去して平坦化し、その
後第2の基板に直接貼りあわせる方法である。
Embodiment 6 FIG. 8 illustrates an example in which there is no chamfered portion on the peripheral edge of the second substrate 2 on the side where it is bonded to the first substrate 1, and the entire surface of the substrate is flattened. The surface of the silicon substrate 1, which has been normally chamfered, that will be bonded to the second substrate 2 in the future is removed by grinding or polishing to the position indicated by the line AA in the figure, that is, the position where the chamfered portion disappears. Flattening and then directly bonding to the second substrate.

【0026】平坦化の方法は研削や研磨に限定されず、
例えば図9に示す如く平坦化すべき面側にホトレジス
ト、ポリイミド等の有機系樹脂や、シラノ−ル基から成
る無機系材料9等により表面を平坦にしてから通常のL
SI製造プロセスで行われているエッチバック法により
矢印でしめした方向よりイオンエッチングを行っても良
い。但しこの方法による場合、エッチバック条件として
は基板表面上に塗布した前記材料のエッチング速度と基
板のエッチング速度ができるだけ近くなる条件を選ぶ必
要がある。またイオンエッチングの手段としてはイオン
ミリング、スパッタエッチング等がある。
The method of flattening is not limited to grinding and polishing,
For example, as shown in FIG. 9, the surface to be flattened is flattened with a photoresist, an organic resin such as polyimide, or an inorganic material 9 composed of a silanol group, and then the ordinary L
Ion etching may be performed from the direction indicated by the arrow by the etch back method used in the SI manufacturing process. However, in the case of this method, it is necessary to select, as the etchback condition, a condition that the etching rate of the material coated on the substrate surface and the etching rate of the substrate are as close as possible. Further, as the means for ion etching, there are ion milling, sputter etching and the like.

【0027】ここで第2の基板2の周縁域にも面取り加
工が施されている場合もありうるが、この場合も前述の
平坦化と同様、研削や研磨により除去するか若しくはエ
ッチバック法により平坦化した後に、やはり平坦化した
第1の基板と直接貼りあわせれば良い。
Here, the peripheral region of the second substrate 2 may be chamfered in some cases. In this case as well, as in the case of the above-described flattening, the second substrate 2 is removed by grinding or polishing, or is etched back. After planarization, it may be directly attached to the planarized first substrate.

【0028】実施例7 図10は面取り加工の施された第1の基板1と第2の基
板2とを高温加熱により流動性を持つ接着材料91によ
って間接的に貼り合わせた貼りあわせ基体である。この
場合、接着材料91を第1の基板1若しくは第2の基板
2に形成後、両基板間に一様な所定圧力をかけながら高
温加熱することにより、両基板間の中央付近にある接着
材料が押し流されるので、基板周縁域の面取りによって
できている隙間部分に埋め込まれることとなる。従っ
て、第1の基板1若しくは第2の基板2に形成する接着
材料91の厚さは、前記面取りによってできる隙間の深
さによって決められる。
Embodiment 7 FIG. 10 shows a bonded base in which a chamfered first substrate 1 and a second substrate 2 are indirectly bonded together by an adhesive material 91 having fluidity by heating at a high temperature. .. In this case, after the adhesive material 91 is formed on the first substrate 1 or the second substrate 2, it is heated at a high temperature while applying a uniform predetermined pressure between both substrates, so that the adhesive material in the vicinity of the center between both substrates is formed. Since they are washed away, they will be buried in the gaps formed by chamfering the peripheral area of the substrate. Therefore, the thickness of the adhesive material 91 formed on the first substrate 1 or the second substrate 2 is determined by the depth of the gap formed by the chamfering.

【0029】例えば直径125mm、面取り深さ100
μm、面取り幅を100μmとした場合、面取りにより
できる隙間の容積は約20×108μm3である。一方、
上記基板上に形成する接着材料の流動によって、前記2
0×108μm3の隙間を完全に埋め込むことのできる接
着材料の厚さは、直径125mmの基板において高々
0.02μm程度である。このことより第1の基板1若
しくは第2の基板2に形成する接着材料の厚さは、
(0.02μm+接着層)で求められる。但し、所望の
貼りあわせ基体を形成後は半導体素子を形成するために
公知の熱処理やホトリソグラフィ工程を経るので、これ
までに説明した接着材料は、ほぼ1000℃程度の温度
に耐えられる材料であることが必要であり、さらにホト
リソグラフィ工程時に使用する有機溶剤等にも耐えられ
る材料でなければならないことは言うまでもない。一
方、基板1及び基板2はそれぞれシリコンに限定して説
明してきたが、シリコンに限定されること無く、一般ガ
ラス、サファイヤ、ダイヤモンド、アルミナ等の材料で
も同様の効果が達せられる。
For example, the diameter is 125 mm and the chamfering depth is 100.
If the chamfering width is 100 μm and the chamfering width is 100 μm, the volume of the gap formed by chamfering is about 20 × 10 8 μm 3 . on the other hand,
According to the flow of the adhesive material formed on the substrate,
The thickness of the adhesive material that can completely fill the gap of 0 × 10 8 μm 3 is about 0.02 μm at the maximum in a substrate having a diameter of 125 mm. Therefore, the thickness of the adhesive material formed on the first substrate 1 or the second substrate 2 is
(0.02 μm + adhesive layer). However, since a known heat treatment or photolithography process is performed to form a semiconductor element after forming a desired bonded substrate, the adhesive materials described so far are materials that can withstand a temperature of about 1000 ° C. Needless to say, it must be a material that can withstand the organic solvent used in the photolithography process. On the other hand, although the substrate 1 and the substrate 2 have been described as being limited to silicon, the same effects can be achieved by using materials such as general glass, sapphire, diamond, and alumina, without being limited to silicon.

【0030】実施例8 図11は上記方法によって形成した基体10を使って作
った半導体集積回路装置を示す。図1と同一符号は同一
部材を示す。この装置は、基体10の表面から公知のホ
トリソグラフィ工程とドライエッチング工程により、基
体10表面に対して垂直方向に前記誘電体分離用SiO
2膜3に達する深さにトレンチ状の溝を形成した後、単
結晶島間分離用SiO2膜5により前記溝を埋め込み、
表面を平坦化した後ホトリソグラフィ工程とドライエッ
チング工程、イオン打ち込み工程、熱処理工程、等によ
り各単結晶島内にサイリスタ素子、トランジスタ素子、
抵抗素子、ダイオード素子、容量素子を形成し、その後
各素子間を図示していないAI配線により接続し、基体
10内に複数個の集積回路装置を作り、ダイシングして
個別の半導体集積回路装置チップを作った。
Embodiment 8 FIG. 11 shows a semiconductor integrated circuit device manufactured by using the substrate 10 formed by the above method. The same reference numerals as those in FIG. 1 indicate the same members. This apparatus uses the above-mentioned SiO for dielectric isolation in a direction perpendicular to the surface of the substrate 10 by a known photolithography process and a dry etching process from the surface of the substrate 10.
2 After forming a trench-shaped groove to a depth reaching the film 3, the groove is filled with the SiO 2 film 5 for separating single crystal islands,
After flattening the surface, a thyristor element, a transistor element, and a thyristor element are formed in each single crystal island by a photolithography step, a dry etching step, an ion implantation step, a heat treatment step, and the like.
A resistance element, a diode element, and a capacitance element are formed, and then each element is connected by an AI wiring (not shown) to form a plurality of integrated circuit devices in the substrate 10, and dicing is performed to obtain individual semiconductor integrated circuit device chips. made.

【0031】実施例9 図12は上記の方法により形成した基体10を使って作
った個別半導体装置100を示す。図1と同一符号は同
一部品を示す。図11の実施例との相違点は、基体10
の全面を使って1個の半導体装置を作る点である。この
個別半導体装置100は例えば数1000V、数100
A級の大電力半導体装置である。
Embodiment 9 FIG. 12 shows an individual semiconductor device 100 made by using the substrate 10 formed by the above method. The same reference numerals as those in FIG. 1 indicate the same parts. The difference from the embodiment of FIG.
The point is to make one semiconductor device using the entire surface of. This individual semiconductor device 100 is, for example, several thousand volts, several hundreds
It is a class A high-power semiconductor device.

【0032】[0032]

【発明の効果】本発明によれば、直径5インチの半導体
装置基体10から10mm×10mmの半導体装置が約
94個取得できた。この取得数は従来の取得数に比べ2
5%の向上となり結局、半導体装置の製造コストの低減
に大幅な効果が達成された。
According to the present invention, approximately 94 semiconductor devices of 10 mm × 10 mm can be obtained from the semiconductor device substrate 10 having a diameter of 5 inches. This acquisition number is 2 compared to the conventional acquisition number
This is an improvement of 5%, and in the end, a large effect was achieved in reducing the manufacturing cost of the semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の基体の周辺部に位置する半導体装置群の
中の一部分を示す断面図である。
FIG. 2 is a cross-sectional view showing a part of a semiconductor device group located in the peripheral portion of the base body of FIG.

【図3】(a)乃至(d)は本発明を具体化するための
製造工程を示す断面図である。
3A to 3D are cross-sectional views showing a manufacturing process for embodying the present invention.

【図4】本発明の他の実施例を示す断面図である。FIG. 4 is a sectional view showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す断面図である。FIG. 5 is a sectional view showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す断面図である。FIG. 6 is a sectional view showing another embodiment of the present invention.

【図7】本発明の他の実施例を示す断面図である。FIG. 7 is a sectional view showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す断面図である。FIG. 8 is a sectional view showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す断面図である。FIG. 9 is a sectional view showing another embodiment of the present invention.

【図10】本発明の他の実施例を示す断面図である。FIG. 10 is a sectional view showing another embodiment of the present invention.

【図11】本発明の他の実施例を示す断面図である。FIG. 11 is a sectional view showing another embodiment of the present invention.

【図12】本発明の他の実施例を示す断面図である。FIG. 12 is a sectional view showing another embodiment of the present invention.

【図13】従来技術を説明するための断面概略図であ
る。
FIG. 13 is a schematic cross-sectional view for explaining a conventional technique.

【図14】従来技術を説明するための断面概略図であ
る。
FIG. 14 is a schematic cross-sectional view for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 素子形成用シリコン基板 2 支持用シリコン基板 3 誘電体分離用SiO2膜 4 接着材埋め込み層 5 単結晶島間分離用SiO2膜 6 半導体単結晶島 7 面取りによりできる隙間 8 周辺部に位置する半導体装置群 10 半導体基体 11、12 素子形成用基板 21、22 支持用シリコン基板 31 誘電体分離用SiO2膜 32 埋め込み材料 51 単結晶島間分離用SiO2膜 61 半導体単結晶島 71 基体周辺の角部の研磨によるテ−パ部 72 間隙部 73 溝部 81 周辺部に位置する半導体装置の一例 91 高温により流動性を持つ接着材料1 Silicon substrate for element formation 2 Silicon substrate for support 3 SiO 2 film for dielectric isolation 4 Adhesive embedding layer 5 SiO 2 film for isolation between single crystal islands 6 Semiconductor single crystal island 7 Gap created by chamfering 8 Semiconductor located in peripheral area Device group 10 Semiconductor substrate 11, 12 Element forming substrate 21, 22 Supporting silicon substrate 31 Dielectric separation SiO 2 film 32 Embedding material 51 Single crystal island separation SiO 2 film 61 Semiconductor single crystal island 71 Corner around substrate Of the taper portion by the polishing of 72 The gap portion 73 The groove portion 81 An example of the semiconductor device located in the peripheral portion 91 Adhesive material having fluidity at high temperature

フロントページの続き (72)発明者 菅原 良孝 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Front page continuation (72) Inventor Yoshitaka Sugawara 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 基板の周縁部が他部より薄く形成されて
いる基板同士の接合面周縁部に形成される隙間に無機接
着材料が充填されている貼りあわせ基体。
1. A bonded base body in which an inorganic adhesive material is filled in a gap formed in a peripheral portion of a bonding surface between substrates in which the peripheral portion of the substrate is formed thinner than other portions.
【請求項2】 周縁が面取りされた第1の半導体基板
と、前記第1の半導体基板の面取りされた側の面に接合
された第2の基板と、前記第1の半導体基板と第2の基
板との接合面周縁であって前記面取りによって形成され
た隙間に充填された無機接着材料と、を備えた貼りあわ
せ基体。
2. A first semiconductor substrate having a chamfered peripheral edge, a second substrate bonded to a chamfered side surface of the first semiconductor substrate, the first semiconductor substrate and the second semiconductor substrate. A bonded base body, comprising: an inorganic adhesive material, which is filled in a gap formed by the chamfering at a peripheral edge of a bonding surface with a substrate.
【請求項3】 請求項2において、第1の半導体基板は
シリコン系材料から成る基板である貼りあわせ基体。
3. The bonded base according to claim 2, wherein the first semiconductor substrate is a substrate made of a silicon material.
【請求項4】 請求項2において、第2の基板はシリコ
ン(Si)系材料、カ−ボン(C)系材料、アルミニウ
ム(Al)系材料、ガラス系材料及び前記各材料の酸化
物又は窒化物の中から選ばれる材料である貼りあわせ基
体。
4. The silicon substrate according to claim 2, wherein the second substrate is a silicon (Si) -based material, a carbon (C) -based material, an aluminum (Al) -based material, a glass-based material, and an oxide or a nitride of each of the above materials. A bonded base material that is a material selected from among materials.
【請求項5】 請求項1又は2において、無機接着材料
は、酸化シリコン、窒化シリコン、多結晶シリコン、無
機系シラノ−ル基からなる材料、燐系ガラス、硼素系ガ
ラス、鉛系ガラスの群から選ばれる材料である貼りあわ
せ基体。
5. The group of inorganic adhesive materials according to claim 1 or 2, wherein silicon oxide, silicon nitride, polycrystalline silicon, a material comprising an inorganic silanol group, phosphorous glass, boron glass, and lead glass. A bonded substrate which is a material selected from
【請求項6】 周縁が面取りされた第1の半導体基板
と、前記第1の半導体基板の面取りされた側の面に接合
された第2の基板と、前記第2の基板の周縁域で且つ第
1の半導体基板と接する面側に形成された溝と、前記溝
内に充填された無機接着材料と、を備えた貼りあわせ基
体。
6. A first semiconductor substrate having a chamfered peripheral edge, a second substrate bonded to a chamfered side surface of the first semiconductor substrate, and a peripheral region of the second substrate, A bonded base comprising a groove formed on the surface side in contact with the first semiconductor substrate and an inorganic adhesive material filled in the groove.
【請求項7】 請求項6において、溝の深さは5μm以
下である貼りあわせ基体。
7. The bonded base according to claim 6, wherein the depth of the groove is 5 μm or less.
【請求項8】 周縁が面取りされた第1の半導体基板
と、前記第1の半導体基板の面取りされた側の面に接合
された第2の基板と、前記第1の半導体基板と第2の基
板との接合面の周縁部及び他部を接着する、熱エネルギ
−により流動性を有する接着材料と、を備えた貼りあわ
せ基体。
8. A first semiconductor substrate having a chamfered peripheral edge, a second substrate bonded to a chamfered surface of the first semiconductor substrate, the first semiconductor substrate and the second semiconductor substrate. A bonded base body, comprising: an adhesive material having fluidity by heat energy, which adheres a peripheral edge portion and another portion of a bonding surface with a substrate.
【請求項9】 請求項8において、接着材料は、無機系
シラノ−ル基からなる材料、燐系ガラス、硼素系ガラス
及び鉛系ガラスの群から選ばれる材料である貼りあわせ
基体。
9. The bonded substrate according to claim 8, wherein the adhesive material is a material selected from the group consisting of inorganic silanol-based materials, phosphorous glass, boron glass and lead glass.
【請求項10】 周縁が面取りされた第1の半導体基板
の表面に絶縁膜を形成する工程と、電気的導体材料から
成る第2の基板を前記第1の半導体基板に重ねあわせる
工程と、重ねあわせた両基板の周縁側壁にできる隙間に
充填材料を充填する工程と、その後の熱処理工程とを含
む貼りあわせ基体の製造方法。
10. A step of forming an insulating film on a surface of a first semiconductor substrate having a chamfered peripheral edge, a step of overlaying a second substrate made of an electrically conductive material on the first semiconductor substrate, and an overlaying step. A method for manufacturing a bonded base body, which includes a step of filling a filling material into a gap formed on the peripheral side walls of both substrates, and a subsequent heat treatment step.
【請求項11】 周縁が面取りされた第1の半導体基板
と電気的導体材料から成る第2の基板とを重ねあわせる
工程と、重ねあわせた両基板の周縁側壁にできる隙間に
充填材料を充填する工程と、その後の熱処理工程とを含
む貼りあわせ基体の製造方法。
11. A step of superimposing a first semiconductor substrate having a chamfered peripheral edge and a second substrate made of an electrically conductive material, and filling a gap formed in the peripheral side walls of the superposed substrates with a filler material. A method for manufacturing a bonded substrate, which includes a step and a subsequent heat treatment step.
【請求項12】 周縁が面取りされた第1の半導体基板
の面取り部分を除去して平坦化する工程と、平坦化され
た前記第1の半導体基板に第2の基板を貼りあわせる工
程と、を含む貼りあわせ基体の製造方法。
12. A step of removing a chamfered portion of a first semiconductor substrate having a chamfered peripheral edge to planarize it, and a step of bonding a second substrate to the planarized first semiconductor substrate. A method for manufacturing a bonded substrate including.
【請求項13】 請求項12において、面取り部分を除
去する方法は研磨材料等による機械的平坦化方法である
貼りあわせ基体の製造方法。
13. The method for manufacturing a bonded base according to claim 12, wherein the chamfered portion is removed by a mechanical flattening method using a polishing material or the like.
【請求項14】 請求項12において、面取り部分を除
去する方法はイオン化されたガス等によるエッチングで
平坦化する方法である貼りあわせ基体の製造方法。
14. The method for manufacturing a bonded substrate according to claim 12, wherein the method of removing the chamfered portion is a method of flattening by etching with an ionized gas or the like.
【請求項15】 支持用シリコン基板と、この支持用シ
リコン基板に接合された素子形成用シリコン基板と、こ
の素子形成用シリコン基板に形成され隣合う半導体単結
晶島を電気的に絶縁分離する分離用SiO2膜と、各半
導体単結晶島に設けられた素子と、を備えた半導体装置
において、前記支持用シリコン基板と素子形成用シリコ
ン基板との接合構造は請求項1〜9のいずれかに記載の
貼りあわせ基体の構造であることを特徴とする半導体装
置。
15. A separation for electrically insulating and separating a supporting silicon substrate, a device-forming silicon substrate bonded to the supporting silicon substrate, and an adjacent semiconductor single crystal island formed on the device-forming silicon substrate. In a semiconductor device comprising an SiO 2 film for use in a semiconductor and an element provided on each semiconductor single crystal island, the bonding structure between the supporting silicon substrate and the element forming silicon substrate is defined in any one of claims 1 to 9. A semiconductor device having the structure of the bonded base as described above.
JP19797791A 1991-08-07 1991-08-07 Bonded substrate and manufacturing method thereof Expired - Lifetime JP2678218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19797791A JP2678218B2 (en) 1991-08-07 1991-08-07 Bonded substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19797791A JP2678218B2 (en) 1991-08-07 1991-08-07 Bonded substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0547617A true JPH0547617A (en) 1993-02-26
JP2678218B2 JP2678218B2 (en) 1997-11-17

Family

ID=16383468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19797791A Expired - Lifetime JP2678218B2 (en) 1991-08-07 1991-08-07 Bonded substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2678218B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046994A1 (en) * 2001-11-27 2003-06-05 Shin-Etsu Handotai Co., Ltd. Method for producing cemented wafer
CN112530881A (en) * 2019-09-19 2021-03-19 铠侠股份有限公司 Semiconductor device and method for manufacturing the same
WO2023032552A1 (en) * 2021-09-01 2023-03-09 株式会社荏原製作所 Substrate processing method
WO2023189176A1 (en) * 2022-03-31 2023-10-05 日本碍子株式会社 Temporary fixed substrate, method of manufacturing temporary fixed substrate, and temporary fixing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046994A1 (en) * 2001-11-27 2003-06-05 Shin-Etsu Handotai Co., Ltd. Method for producing cemented wafer
US7531425B2 (en) 2001-11-27 2009-05-12 Shin-Etsu Handotai Co., Ltd. Method of fabricating bonded wafer
CN112530881A (en) * 2019-09-19 2021-03-19 铠侠股份有限公司 Semiconductor device and method for manufacturing the same
US11621239B2 (en) 2019-09-19 2023-04-04 Kioxia Corporation Semiconductor device and method for manufacturing the same
CN112530881B (en) * 2019-09-19 2024-02-27 铠侠股份有限公司 Semiconductor device and method for manufacturing the same
US12068267B2 (en) 2019-09-19 2024-08-20 Kioxia Corporation Semiconductor device and method for manufacturing the same
WO2023032552A1 (en) * 2021-09-01 2023-03-09 株式会社荏原製作所 Substrate processing method
WO2023189176A1 (en) * 2022-03-31 2023-10-05 日本碍子株式会社 Temporary fixed substrate, method of manufacturing temporary fixed substrate, and temporary fixing method

Also Published As

Publication number Publication date
JP2678218B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JP3114643B2 (en) Semiconductor substrate structure and manufacturing method
US5382541A (en) Method for forming recessed oxide isolation containing deep and shallow trenches
US6524890B2 (en) Method for manufacturing semiconductor device having element isolation structure
US7348252B2 (en) Method of forming silicon-on-insulator wafer having reentrant shape dielectric trenches
JPH06132184A (en) Bonded wafer structure provided with buried insulating layer
KR20010070458A (en) Semiconductor substrate, Semiconductor device, and Processes of production of same
US5585661A (en) Sub-micron bonded SOI by trench planarization
JP2000183157A (en) Manufacture of soi wafer
JP2579418B2 (en) Method of forming silicon mesa region
JPH07263541A (en) Dielectric separation substrate and manufacture thereof
JP3006387B2 (en) Semiconductor device and manufacturing method thereof
US5449638A (en) Process on thickness control for silicon-on-insulator technology
JP3480480B2 (en) Method for manufacturing SOI substrate
JP2678218B2 (en) Bonded substrate and manufacturing method thereof
JPH0682753B2 (en) Method for manufacturing semiconductor device
USH1137H (en) Wafer bonding technique for dielectric isolation processing
JPH05226305A (en) Manufacture of laminated wafer
US6156621A (en) Method for fabricating direct wafer bond Si/SiO2 /Si substrates
JPH10223870A (en) Wafer for manufacturing semiconductor device
JP3488927B2 (en) Dielectric separation substrate and method of manufacturing the same
JPH08236615A (en) Dielectrically isolated substrate and fabrication thereof
JP2002057309A (en) Method of forming soi substrate
JPH03265153A (en) Dielectric isolation substrate, manufacture thereof and semiconductor integrated circuit device using same substrate
JPH0754826B2 (en) Method for manufacturing semiconductor device
JP3165735B2 (en) Semiconductor substrate manufacturing method