JPH0547428A - Anisotropic conductive film and connecting method for electronic parts using the same - Google Patents

Anisotropic conductive film and connecting method for electronic parts using the same

Info

Publication number
JPH0547428A
JPH0547428A JP20100091A JP20100091A JPH0547428A JP H0547428 A JPH0547428 A JP H0547428A JP 20100091 A JP20100091 A JP 20100091A JP 20100091 A JP20100091 A JP 20100091A JP H0547428 A JPH0547428 A JP H0547428A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
electrode
oxide film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20100091A
Other languages
Japanese (ja)
Inventor
Hiroshi Kobayashi
寛史 小林
Yoshihiro Yoshida
芳博 吉田
Takeshi Kozuka
武 小▲塚▼
Toshiaki Iwabuchi
寿章 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20100091A priority Critical patent/JPH0547428A/en
Publication of JPH0547428A publication Critical patent/JPH0547428A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide an anisotropic conductive film and a method for connecting electronic parts using the same by breaking a natural oxide film formed on an electrode to be connected so as to securely connect both electrodes of the electronic parts to each other with ease. CONSTITUTION:Conductor portions 3 each having a projecting electrode structure are formed in through hole portions of a porous insulating film 2. Gold (Au) is used for the conductor portion 3 as an oxidation resistant metal 4 which is difficult to be oxidized, and includes alumina (Al2O3) therein as a highly hard particle 5. The obtained anisotropic conductive film is interposed between electronic pats, followed by press-fitting. With application of an ultrasonic wave, a natural oxide film formed on an aluminum electrode is broken, thus causing alloy junction on a new surface between both the electrode metals, for securely connection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔性絶縁膜の孔に導
電部が形成され、絶縁膜の上下方向にのみ導電性を備え
る異方性導電膜およびそれを用いた電子部品の接続方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic conductive film having a conductive portion formed in a hole of a porous insulating film and having conductivity only in the vertical direction of the insulating film, and a method of connecting electronic parts using the anisotropic conductive film. Regarding

【0002】[0002]

【従来の技術】従来の異方性導電膜には、高分子接着剤
などの絶縁性樹脂中に、金属などの導電粒子を分散させ
たものが用いられてきたが、最近、多孔性絶縁膜の孔中
に導電部を形成したものが開発されている。この種の異
方性導電膜には、例えば、特開平2−239578号公
報に記載されているように、導電部を弾性体で形成し、
かつ、絶縁膜から突出させた突起電極(バンプ)構造と
することによって、熱応力等に対する接続の信頼性の向
上を図っている。
2. Description of the Related Art A conventional anisotropic conductive film has been used in which conductive particles such as metal are dispersed in an insulating resin such as a polymer adhesive. Recently, a porous insulating film has been used. A hole having a conductive portion formed in the hole has been developed. In this type of anisotropic conductive film, for example, a conductive portion is formed of an elastic body as described in JP-A-2-239578,
In addition, the protruding electrode (bump) structure protruding from the insulating film is used to improve the reliability of connection against thermal stress and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の異方性導電膜にあっては、異方性導電膜で接
続する電子部品、例えば、半導体チップの電極には、通
常アルミニウム等の金属が使われているが、その電極表
面は空気と接続して数nm厚の自然酸化膜が生成する。
このため、異方性導電膜の導電部と半導体チップの電極
との接合面には、その自然酸化膜が絶縁体となって介在
し、接続不良の原因になるという問題があった。
However, in such a conventional anisotropic conductive film, an electronic component connected by the anisotropic conductive film, such as an electrode of a semiconductor chip, is usually made of aluminum or the like. Although metal is used, its electrode surface is connected to air to form a natural oxide film with a thickness of several nm.
Therefore, there has been a problem that the natural oxide film acts as an insulator on the joint surface between the conductive portion of the anisotropic conductive film and the electrode of the semiconductor chip, which causes a connection failure.

【0004】また、上記突起電極が形成された異方性導
電膜では、自然酸化膜で覆われた半導体チップの電極に
対して、単なる圧着接続を行っただけでは自然酸化膜を
破ることができず、電気的接続の信頼性が低いという問
題があった。そこで、本発明は、異方性導電膜で接続す
べき電極表面に自然酸化膜が生じていても、異方性導電
膜と接合する際に、その表面の自然酸化を破って確実な
電気的接続を行うことができる異方性導電膜およびそれ
を用いた電子部品の接続方法を提供することを目的とす
る。
Further, in the anisotropic conductive film having the protruding electrodes formed thereon, the natural oxide film can be broken by simply performing pressure contact with the electrode of the semiconductor chip covered with the natural oxide film. However, there is a problem that the reliability of electrical connection is low. Therefore, according to the present invention, even if a natural oxide film is formed on the surfaces of the electrodes to be connected by the anisotropic conductive film, the natural oxidation of the surface is broken when joining with the anisotropic conductive film to ensure a reliable electrical conductivity. An object is to provide an anisotropic conductive film that can be connected and a method for connecting electronic components using the anisotropic conductive film.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
多数の貫通孔を有する多孔性絶縁膜の孔に導電部を形成
した異方性導電膜において、前記導電部が、酸化しにく
い耐酸化性金属中に接続すべき電極材料よりも硬度の高
い高硬度微粒子を含有し、かつ突起電極構造で形成され
たことを特徴とするものである。
The invention according to claim 1 is
In an anisotropic conductive film in which a conductive part is formed in a hole of a porous insulating film having a large number of through holes, the conductive part has a hardness higher than that of an electrode material to be connected in an oxidation resistant metal that is hard to oxidize. It is characterized by containing fine particles of hardness and having a protruding electrode structure.

【0006】請求項2記載の発明は、前記多孔性絶縁膜
がアルミニウム陽極酸化膜であることを特徴とするもの
である。請求項3記載の発明は、電子部品間に請求項1
記載の異方性導電膜を挟み、超音波を印加することによ
って、両電子部品間を電気的に接続することを特徴とす
るものである。
According to a second aspect of the invention, the porous insulating film is an aluminum anodic oxide film. A third aspect of the present invention is that between the electronic components is the first aspect.
It is characterized in that both the electronic components are electrically connected by sandwiching the described anisotropic conductive film and applying an ultrasonic wave.

【0007】[0007]

【作用】請求項1記載の発明では、多孔性絶縁膜の孔中
に形成された導電部が突起電極構造をとり、導電部自体
の材料に耐酸化性金属が用いられている。このため、導
電部の表面が酸化膜で覆われることなく、良好な接続を
行うことができる。また、その耐酸化性金属中には、接
続すべき電極材料よりも硬い微粒子が含有されている。
例えば、アルミニウム電極に対しては、アルミナ(Al
2 3 )等の微粒子が用いられる。これにより、アルミ
ニウム電極と異方性導電膜の導電部との接続時に、上記
微粒子が電極の表面に生成された自然酸化膜を破って、
信頼性の高い電気的接続が行える。
According to the first aspect of the invention, the conductive portion formed in the hole of the porous insulating film has a protruding electrode structure, and the oxidation resistant metal is used as the material of the conductive portion itself. Therefore, the surface of the conductive portion is not covered with the oxide film, and good connection can be achieved. Further, the oxidation resistant metal contains fine particles harder than the electrode material to be connected.
For example, for aluminum electrodes, alumina (Al
Fine particles such as 2 O 3 ) are used. Thereby, when the aluminum electrode and the conductive portion of the anisotropic conductive film are connected, the fine particles break the natural oxide film generated on the surface of the electrode,
Highly reliable electrical connection is possible.

【0008】請求項2記載の発明では、アルミニウム陽
極酸化膜を異方性導電膜の多孔性絶縁膜に用いたことに
より、微細な貫通孔が形成されていることから、微細ピ
ッチの電極接続に対応することができると共に、熱伝導
性があるため、熱応力に対する信頼性が良好である。請
求項3記載の発明では、請求項1記載の発明の異方性導
電膜を電子部品間に介在させて、超音波を印加しながら
電子部品を接続させる。こうすることにより、アルミニ
ウム電極上に生成された自然酸化膜が導電部に含まれる
アルミナ(Al2 3 )等の高硬度微粒子によって破壊
され、接続を行う金属の新生面同士が接触して、相互拡
散により合金接続が行われる。
According to the second aspect of the invention, since the aluminum anodic oxide film is used as the porous insulating film of the anisotropic conductive film, fine through holes are formed. In addition to being able to deal with it, it has good thermal conductivity and therefore has good reliability against thermal stress. According to the invention of claim 3, the anisotropic conductive film of the invention of claim 1 is interposed between electronic components to connect the electronic components while applying ultrasonic waves. By doing so, the natural oxide film formed on the aluminum electrode is destroyed by the high hardness fine particles such as alumina (Al 2 O 3 ) contained in the conductive portion, and the new surfaces of the metal to be connected come into contact with each other, and The alloy connection is made by diffusion.

【0009】[0009]

【実施例】以下、本発明を図面に基づいて説明する。図
1各図は請求項1記載の発明に係る異方性導電膜の一実
施例を示す図であり、(a)は全体構成図であり、
(b)は導電部の内部構成図である。まず、構成を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. 1 is a diagram showing an embodiment of an anisotropic conductive film according to the invention described in claim 1, (a) is an overall configuration diagram,
(B) is an internal configuration diagram of the conductive portion. First, the configuration will be described.

【0010】図1(a)に示されるように、本実施例の
異方性導電膜1は、多孔性絶縁膜2の孔中に導電部3が
突起電極構造で形成されたものである。このため、多孔
性絶縁膜2を挟んで上下方向にのみ導電性を有する。ま
た、図1(b)に示されるように、本実施例の導電部3
の構成は、酸化しにくい耐酸化性金属4として、例えば
金(Au)やニッケル(Ni)等を用いることができ
る。そして、この耐酸化性金属4中には、高硬度微粒子
5が含有されており、ここでは、粒径が 0.5〜20μm程
度のアルミナ(Al2 3 )や炭化ケイ素(SiC)等
を用いることができる。
As shown in FIG. 1A, in the anisotropic conductive film 1 of this embodiment, the conductive portion 3 is formed in the pores of the porous insulating film 2 in a protruding electrode structure. Therefore, it has conductivity only in the vertical direction with the porous insulating film 2 interposed therebetween. In addition, as shown in FIG. 1B, the conductive portion 3 of the present embodiment.
In this configuration, for example, gold (Au), nickel (Ni), or the like can be used as the oxidation resistant metal 4 that is difficult to oxidize. The oxidation-resistant metal 4 contains fine particles 5 of high hardness. Here, alumina (Al 2 O 3 ) or silicon carbide (SiC) having a particle size of 0.5 to 20 μm is used. You can

【0011】このように構成された導電部3は、例えば
以下に示すような条件で形成することができる。すなわ
ち、耐酸化性金属4の金やニッケル等と、高硬度微粒子
5のアルミナや炭化ケイ素等を複合電着によって、図1
(a)の多孔性絶縁膜2の孔中に形成するものである。
また、導電部3の突起電極(パンプ)構造は、多孔性絶
縁膜2の表面にパターン状にレジストを塗布してから電
着処理することによって形成することができる。なお、
電着処理後はレジストを除去する。
The conductive portion 3 thus constructed can be formed, for example, under the following conditions. That is, the oxidation-resistant metal 4 such as gold or nickel and the high-hardness fine particles 5 such as alumina or silicon carbide are subjected to composite electrodeposition to form a composite electrode shown in FIG.
It is formed in the pores of the porous insulating film 2 of (a).
The protruding electrode (pump) structure of the conductive portion 3 can be formed by applying a resist in a pattern on the surface of the porous insulating film 2 and then performing electrodeposition treatment. In addition,
The resist is removed after the electrodeposition process.

【0012】より詳しく説明すると、例えばニッケル中
にアルミナの微粒子を含有させた導電部3を形成する場
合は、20〜80℃の硫酸ニッケル、硫酸マグネシウム及び
蟻酸を適宜混合させたpH=0.5 〜3.0 の電解溶液中で
溶液中のアルミナ濃度を10〜100〓/m3 とし、電流密
度を5〜 100A/dm2 として電着処理を行う。これに
より、ニッケル中に粒径が0.5 〜3.0 μmのアルミナ微
粒子が含まれた導電部を多孔性絶縁膜2の孔中に形成す
ることができる。
More specifically, for example, in the case of forming the conductive portion 3 in which the fine particles of alumina are contained in nickel, pH = 0.5 to 3.0 obtained by appropriately mixing nickel sulfate, magnesium sulfate and formic acid at 20 to 80 ° C. In the electrolytic solution, the concentration of alumina in the solution is set to 10 to 100 〓 / m 3 and the current density is set to 5 to 100 A / dm 2 , and the electrodeposition treatment is performed. As a result, it is possible to form, in the pores of the porous insulating film 2, a conductive portion containing nickel fine particles having a particle diameter of 0.5 to 3.0 μm in nickel.

【0013】また、上記電着処理の他、金や銀のペース
ト中にアルミナを5〜50%含有させたものを多孔性絶縁
膜2の孔中に封入後、硬化させて導電部を形成すること
もできる。次に、作用について説明する。図2はLSI
チップ6と配線基板7とを異方性導電膜1を介して電気
的に接続させた電子部品の接続状態図である。図2に示
されるように、上記のようにして構成した導電部3をL
SIチップ6の電極8a、8bと、配線基板7の電極9
a、9bとの間に挟んで圧着し、接続する。
In addition to the above electrodeposition treatment, a paste of gold or silver containing 5 to 50% of alumina is enclosed in the pores of the porous insulating film 2 and then cured to form a conductive portion. You can also Next, the operation will be described. Figure 2 shows the LSI
4 is a connection state diagram of an electronic component in which the chip 6 and the wiring board 7 are electrically connected via the anisotropic conductive film 1. FIG. As shown in FIG. 2, the conductive portion 3 configured as described above is connected to L
Electrodes 8a and 8b of SI chip 6 and electrodes 9 of wiring board 7
It is sandwiched between a and 9b and crimped to connect.

【0014】また、図3(a)は、導電部3と電極9b
の圧着時の界面部分の拡大図である。同図(a)に示さ
れるように、電極9bと導電部3との間には、アルミニ
ウムの自然酸化膜10が介在しているので、そのままでは
接続不良となる。そこで、本実施例では、この圧着時に
例えば図2に示す配線基板7側に超音波を印加する。図
3(b)は(a)の状態から超音波を印加した状態図で
あり、高硬度微粒子5が耐酸化性金属4中で振動してア
ルミニウム電極上の自然酸化膜10を削って破壊する。こ
のため、破壊された自然酸化膜10部分は、図中Aで示さ
れるように、アルミニウムの電極9bと金を主体とする
導電部3との両金属の新生面での接触が生じ、さらに相
互拡散によって金とアルミニウムとが合金接合する。こ
のため、電極表面が自然酸化膜等で覆われていても、電
子部品間の電気的接続を確実に行うことができる。
Further, FIG. 3A shows the conductive portion 3 and the electrode 9b.
FIG. 4 is an enlarged view of an interface portion during the pressure bonding. As shown in FIG. 3A, since the aluminum native oxide film 10 is interposed between the electrode 9b and the conductive portion 3, the connection is poor as it is. Therefore, in this embodiment, ultrasonic waves are applied to the wiring board 7 side shown in FIG. FIG. 3B is a state diagram in which ultrasonic waves are applied from the state of FIG. 3A, and the high hardness fine particles 5 vibrate in the oxidation resistant metal 4 to scrape and destroy the natural oxide film 10 on the aluminum electrode. .. Therefore, as shown by A in the figure, the destroyed natural oxide film 10 comes into contact with the aluminum electrode 9b and the conductive portion 3 mainly composed of gold on the new surface of both metals, and further the mutual diffusion occurs. Causes gold and aluminum to be alloy-bonded. Therefore, even if the surface of the electrode is covered with the natural oxide film or the like, the electrical connection between the electronic components can be surely made.

【0015】図4は異方性導電膜の多孔性絶縁膜にアル
ミニウム陽極酸化膜を用いた場合の構成図である。上記
図1で示したように、孔パターンが電極に対応するよう
に形成することもできるが、図4のように、異方性導電
膜1の多孔性絶縁膜2の孔パターンが電極よりもピッ
チ、面積ともにはるかに小さい、アルミニウム陽極酸化
膜12を用いて構成することもできる。このアルミニウム
陽極酸化膜12は、アルミニウムを硫酸やリン酸などの溶
液中で陽極酸化することによって、その表面に微細な孔
を形成するものである。そして、この多孔性のアルミナ
(Al2 3 )をアルミニウム基板から分離させて、図
4に示すようなアルミニウム陽極酸化膜12とする。その
形状は、本実施例では図4に示すように、厚さaが10〜
100 μmであって、孔径bが0.01〜0.3 μmであり、孔
ピッチcが0.03〜1μm程度のものである。なお、本実
施例におけるアルミニウム陽極酸化膜12は、この形状に
限定されるものではない。
FIG. 4 is a constitutional view when an aluminum anodic oxide film is used as the porous insulating film of the anisotropic conductive film. As shown in FIG. 1 above, the hole pattern may be formed so as to correspond to the electrode, but as shown in FIG. 4, the hole pattern of the porous insulating film 2 of the anisotropic conductive film 1 is larger than that of the electrode. The aluminum anodic oxide film 12 having a much smaller pitch and area can be used. The aluminum anodic oxide film 12 forms fine pores on its surface by anodizing aluminum in a solution of sulfuric acid, phosphoric acid or the like. Then, this porous alumina (Al 2 O 3 ) is separated from the aluminum substrate to form an aluminum anodic oxide film 12 as shown in FIG. In this embodiment, as shown in FIG. 4, the shape is such that the thickness a is 10 to
The diameter is 100 μm, the hole diameter b is 0.01 to 0.3 μm, and the hole pitch c is about 0.03 to 1 μm. The aluminum anodic oxide film 12 in the present embodiment is not limited to this shape.

【0016】導電部3は、全部の孔にそれぞれ形成する
ことも可能であるが、ここでは、図4に示すように、接
続する電極位置に対応させて一部の孔に形成するように
したものである。そこで、アルミニウム陽極酸化膜12の
一部に導電部3を形成する場合は、アルミニウム陽極酸
化膜12の表面にレジストをフォトプロセスにより選択的
に塗布し、所望の位置に正確に開口部を形成する。そし
て、その開口部分に上記と同様の電着処理を行うことに
より、図4の一点鎖線で示す位置に突起電極構造の導電
部3を形成することができる。
The conductive portion 3 can be formed in all the holes, but here, as shown in FIG. 4, it is formed in a part of the holes corresponding to the positions of the electrodes to be connected. It is a thing. Therefore, when the conductive portion 3 is formed on a part of the aluminum anodic oxide film 12, a resist is selectively applied to the surface of the aluminum anodic oxide film 12 by a photo process to form an opening accurately at a desired position. .. Then, by performing the same electrodeposition process as that described above on the opening, the conductive portion 3 of the protruding electrode structure can be formed at the position shown by the alternate long and short dash line in FIG.

【0017】このように、多孔性絶縁膜2にアルミニウ
ム陽極酸化膜12を用いた場合は、フォトプロセスによっ
て所望の位置に所望のピッチ及び面積を持った導電部3
を形成することができるため、微細パターンの電子部品
間の電極接続に容易に対応することができると共に、確
実な接続を行うことができる。
As described above, when the aluminum anodic oxide film 12 is used as the porous insulating film 2, the conductive portion 3 having a desired pitch and area at a desired position is formed by a photo process.
Since it is possible to form the electrodes, it is possible to easily cope with the electrode connection between the electronic components having the fine pattern, and it is possible to make a reliable connection.

【0018】[0018]

【発明の効果】請求項1記載の発明によれば、異方性導
電膜の導電部が突起電極構造で、耐酸化性金属中に接続
すべき電極よりも硬い微粒子を含有しているので、電極
表面の自然酸化膜が破り易くなり、信頼性の高い電気的
接続を行うことができる。さらに、半導体チップや配線
基板等の電子部品側に突起電極を形成する必要がなくな
るため、電子部品の歩留りが向上して、コストを低減化
することができる。
According to the first aspect of the invention, since the conductive portion of the anisotropic conductive film has a protruding electrode structure and contains fine particles harder than the electrodes to be connected in the oxidation resistant metal, The natural oxide film on the electrode surface is easily broken, and highly reliable electrical connection can be performed. Further, since it is not necessary to form the protruding electrode on the side of the electronic component such as the semiconductor chip or the wiring board, the yield of the electronic component can be improved and the cost can be reduced.

【0019】請求項2記載の発明によれば、微細な貫通
孔を有するアルミニウム陽極酸化膜を多孔性絶縁膜に用
いて異方性導電膜を形成したので、微細ピッチの電極間
の接続にも対応することが可能であって、かつ良好な熱
伝導性により、熱応力に対して高い信頼性を得ることが
できる。請求項3記載の発明によれば、請求項1記載の
構造の導電部を用いた異方性導電膜を電子部品間に介在
させて、超音波を印加して接合することにより、簡単で
信頼性の高い接続が得られる。また、低温での接続が行
えるので、電子部品等への熱応力が少なく、接続の信頼
性を一層向上させることができる。
According to the second aspect of the invention, since the anisotropic conductive film is formed by using the aluminum anodic oxide film having fine through holes as the porous insulating film, it is also possible to connect electrodes with a fine pitch. It is possible to deal with it, and due to good thermal conductivity, high reliability against thermal stress can be obtained. According to the third aspect of the invention, the anisotropic conductive film using the conductive portion having the structure of the first aspect is interposed between the electronic components, and ultrasonic waves are applied to bond the components. Highly reliable connection. Further, since the connection can be performed at a low temperature, the thermal stress on the electronic components and the like is small, and the reliability of the connection can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明に係る異方性導電膜の一実
施例を示す図であって、(a)は全体構成図であり、
(b)は導電部の内部構成図である。
FIG. 1 is a diagram showing an embodiment of an anisotropic conductive film according to the invention of claim 1, wherein (a) is an overall configuration diagram,
(B) is an internal configuration diagram of the conductive portion.

【図2】本発明の異方性導電膜を介在させて電子部品同
士を接続する接続状態図である。
FIG. 2 is a connection state diagram for connecting electronic components to each other with an anisotropic conductive film of the present invention interposed therebetween.

【図3】導電部と電極との接触界面の状態を示す拡大図
であって、(a)は圧着時の図であり、(b)は超音波
印加時の図である。
3A and 3B are enlarged views showing a state of a contact interface between a conductive portion and an electrode, wherein FIG. 3A is a view at the time of pressure bonding, and FIG. 3B is a view at the time of applying an ultrasonic wave.

【図4】請求項2記載の発明に係る異方性導電膜の一実
施例を示す図である。
FIG. 4 is a diagram showing an embodiment of an anisotropic conductive film according to the invention of claim 2;

【符号の説明】 1 異方性導電膜 2 多孔性絶縁膜 3 導電部 4 耐酸化性金属 5 高硬度微粒子 6 LSIチップ 7 配線基板 8a、8b 電極 9a、9b 電極 12 アルミニウム陽極酸化膜[Explanation of reference numerals] 1 anisotropic conductive film 2 porous insulating film 3 conductive part 4 oxidation resistant metal 5 high hardness fine particles 6 LSI chip 7 wiring board 8a, 8b electrodes 9a, 9b electrode 12 aluminum anodic oxide film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩渕 寿章 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Iwabuchi 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多数の貫通孔を有する多孔性絶縁膜の孔に
導電部を形成した異方性導電膜において、 前記導電部が、 酸化しにくい耐酸化性金属中に接続すべき電極材料より
も硬度の高い高硬度微粒子を含有し、かつ突起電極構造
で形成されたことを特徴とする異方性導電膜。
1. An anisotropic conductive film in which a conductive part is formed in a hole of a porous insulating film having a large number of through holes, wherein the conductive part is formed of an electrode material to be connected in an oxidation resistant metal that is hard to oxidize. An anisotropic conductive film containing high-hardness fine particles having a high hardness and having a protruding electrode structure.
【請求項2】前記多孔性絶縁膜がアルミニウム陽極酸化
膜であることを特徴とする請求項1記載の異方性導電
膜。
2. The anisotropic conductive film according to claim 1, wherein the porous insulating film is an aluminum anodic oxide film.
【請求項3】電子部品間に請求項1記載の異方性導電膜
を挟み、超音波を印加することによって、両電子部品間
を電気的に接続することを特徴とする電子部品の接続方
法。
3. A method of connecting electronic components, wherein the anisotropic conductive film according to claim 1 is sandwiched between electronic components and ultrasonic waves are applied to electrically connect the electronic components. ..
JP20100091A 1991-08-12 1991-08-12 Anisotropic conductive film and connecting method for electronic parts using the same Pending JPH0547428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20100091A JPH0547428A (en) 1991-08-12 1991-08-12 Anisotropic conductive film and connecting method for electronic parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20100091A JPH0547428A (en) 1991-08-12 1991-08-12 Anisotropic conductive film and connecting method for electronic parts using the same

Publications (1)

Publication Number Publication Date
JPH0547428A true JPH0547428A (en) 1993-02-26

Family

ID=16433843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20100091A Pending JPH0547428A (en) 1991-08-12 1991-08-12 Anisotropic conductive film and connecting method for electronic parts using the same

Country Status (1)

Country Link
JP (1) JPH0547428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209155A (en) * 1992-09-30 1994-07-26 American Teleph & Telegr Co <Att> Connection using anisotropic conductive member of electronic component
WO2015012234A1 (en) * 2013-07-22 2015-01-29 富士フイルム株式会社 Method for fabrication of anisotropic conductive member and method for fabrication of anisotropic conductive bonding package
WO2016071230A1 (en) * 2014-11-07 2016-05-12 Danfoss Silicon Power Gmbh Sintering paste and method for bonding joining partners
JP2019153415A (en) * 2018-03-01 2019-09-12 富士フイルム株式会社 Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209155A (en) * 1992-09-30 1994-07-26 American Teleph & Telegr Co <Att> Connection using anisotropic conductive member of electronic component
WO2015012234A1 (en) * 2013-07-22 2015-01-29 富士フイルム株式会社 Method for fabrication of anisotropic conductive member and method for fabrication of anisotropic conductive bonding package
WO2016071230A1 (en) * 2014-11-07 2016-05-12 Danfoss Silicon Power Gmbh Sintering paste and method for bonding joining partners
JP2019153415A (en) * 2018-03-01 2019-09-12 富士フイルム株式会社 Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body

Similar Documents

Publication Publication Date Title
TW200537627A (en) Semiconductor device and method of manufacturing the semiconductor device
KR950015856A (en) Anisotropic conductive film, manufacturing method thereof, and connector using the same
JP2001267359A (en) Method for manufacturing semiconductor device and semiconductor device
TW200302530A (en) Semiconductor device and manufacturing method therefor II
JPH0547428A (en) Anisotropic conductive film and connecting method for electronic parts using the same
JP2003051665A (en) Method for mounting electronic component
JPH09162230A (en) Electronic circuit device and its manufacturing method
JPH03289010A (en) Manufacture of aeolotropic conductive film
JP2001223287A (en) Method for manufacturing interposer
JP3397181B2 (en) Semiconductor device and manufacturing method thereof
JPH03285211A (en) Anisotropic conductive film and manufacture thereof
JP2002141121A (en) Anisotropic conductive film, semiconductor device using the film, and its manufacturing method
JP2003152023A (en) Connecting structure for semiconductor device and method for manufacturing the same
JP3468103B2 (en) Electronic component mounting method
JPH11195666A (en) Semiconductor device
JPH09129675A (en) Packaging structure and method of packaging element
JP3870013B2 (en) Wafer level CSP terminal forming method
JPH03285213A (en) Manufacture of anisotropic conductive film
JPS6234142B2 (en)
JP2001237365A (en) Bonding method for connection terminal, semiconductor device and method of manufacturing the same
JPH06203640A (en) Anisotropic electric conductive bonding agent and electric conductive connection structure
JPH0870019A (en) Connector structure of electronic parts and connection thereof
JP3401891B2 (en) Lead frame manufacturing method
JPH05175408A (en) Material and method for mounting semiconductor element
JPH0338952Y2 (en)