JPH0547387A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH0547387A
JPH0547387A JP3208170A JP20817091A JPH0547387A JP H0547387 A JPH0547387 A JP H0547387A JP 3208170 A JP3208170 A JP 3208170A JP 20817091 A JP20817091 A JP 20817091A JP H0547387 A JPH0547387 A JP H0547387A
Authority
JP
Japan
Prior art keywords
battery
carbon
carbon material
positive electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3208170A
Other languages
Japanese (ja)
Other versions
JP3081291B2 (en
Inventor
Ikurou Nakane
育朗 中根
Seiji Yoshimura
精司 吉村
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03208170A priority Critical patent/JP3081291B2/en
Publication of JPH0547387A publication Critical patent/JPH0547387A/en
Application granted granted Critical
Publication of JP3081291B2 publication Critical patent/JP3081291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery having no bulging and no leak of the battery and having no deterioration of the cycle characteristic after the overdischarge state, in particular, by removing the effect of the functional group of carbon powder serving as a conducting material, and suppressing the reaction between the conducting material and an electrolyte. CONSTITUTION:A carbon material removed with the effect of the functional group in carbon by neutralization treatment, alkali treatment, or esterification treatment is used for the positive electrode conducting material of a nonaqueous electrolyte battery using lithium, lithium alloy or a compound of lithium and carbon for a negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを活物質とす
る非水電解質電池に係り、特に正極の導電材としての炭
素材料の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery using lithium as an active material, and more particularly to improvement of a carbon material as a conductive material for a positive electrode.

【0002】[0002]

【従来の技術】この種、非水電解質電池では正極を作製
する場合、正極材料としての二酸化マンガンと導電材と
しての炭素材料とを混合、加圧成形してペレット状や帯
状の正極としている。ところで、この種電池を過放電さ
せた場合、導電材が電解液と反応して電解液が分解さ
れ、ガス発生などを生じる。そして、電池の膨れや、漏
液が生じたり、特に二次電池では過放電状態になるの
で、その後のサイクル特性が劣化するなどの弊害が生じ
る。
2. Description of the Related Art In this type of non-aqueous electrolyte battery, when a positive electrode is manufactured, manganese dioxide as a positive electrode material and a carbon material as a conductive material are mixed and pressure-molded to obtain a pellet-shaped or strip-shaped positive electrode. By the way, when this type of battery is over-discharged, the conductive material reacts with the electrolytic solution to decompose the electrolytic solution, and gas is generated. Then, the battery swells or leaks, and particularly the secondary battery is in an over-discharged state, so that the following cycle characteristics are deteriorated.

【0003】この理由は、炭素材料は、一般的に炭素原
子が主に六角形に結合した結晶構造を有するが、その結
合の端部においてはその六角構造を保つことが出来ず、
端部の炭素原子は空気中の酸素や水分と容易に結合し、
水酸基(OH)やカルボキシル基(COOH)となって
いる。これらの官能基は活性度が高いため、過放電時の
ように正極の電位が下がった場合には、電解液が官能基
の影響を受けやすいことに起因している。
The reason for this is that a carbon material generally has a crystal structure in which carbon atoms are mainly bonded in a hexagonal shape, but the hexagonal structure cannot be maintained at the end of the bond,
The carbon atoms at the ends easily bond with oxygen and moisture in the air,
It is a hydroxyl group (OH) or a carboxyl group (COOH). Since these functional groups have high activity, the electrolytic solution is easily affected by the functional groups when the potential of the positive electrode is lowered as in the case of overdischarge.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記問題点に
鑑みて成されたものであって、導電材料として添加した
炭素粉末の官能基の影響を除去して、導電材と電解液の
反応を抑制するものである。この結果、電池の膨れや、
漏液が発生せず、特に、二次電池では過放電状態になっ
たとしても、その後のサイクル特性が劣化しないものを
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and removes the influence of the functional group of carbon powder added as a conductive material to allow the reaction between the conductive material and the electrolytic solution. Is to suppress. As a result, swelling of the battery,
It is an object of the present invention to provide a battery that does not cause liquid leakage, and in particular, does not deteriorate cycle characteristics thereafter even when the secondary battery is in an overdischarged state.

【0005】[0005]

【課題を解決するための手段】本発明は、正極と、非水
電解液と、リチウム、リチウム合金、あるいはリチウム
と炭素との化合物を負極とする非水電解質電池におい
て、前記正極の導電材として、官能基の影響を除去した
炭素材料を用いることを特徴とするものである。
The present invention provides a non-aqueous electrolyte battery having a positive electrode, a non-aqueous electrolyte solution, lithium, a lithium alloy, or a compound of lithium and carbon as a negative electrode, as a conductive material for the positive electrode. It is characterized by using a carbon material from which the influence of functional groups is removed.

【0006】また、前記炭素材料としては、炭素の中和
処理、アルカリ処理あるいはエステル化処理により官能
基の影響を除去したものを使用することが好ましい。
As the carbon material, it is preferable to use a carbon material from which the influence of functional groups has been removed by neutralization treatment, alkali treatment or esterification treatment.

【0007】[0007]

【作用】本発明によれば、正極の導電材として炭素材料
中の官能基を化学処理により除去して得た炭素材料を使
用すれば、過放電に強く、信頼性の高い電池を提供しう
る。この理由は、炭素材料であるカーボンは、一般的に
炭素原子が主に六角形に結合した結晶構造を有するが、
その結合の端部においてはその六角構造を保つことが出
来ず、端部の炭素原子は空気中の酸素や水分と容易に結
合し、水酸基(OH)やカルボキシル基(COOH)と
なっている。これらの官能基は活性度が高いため、過放
電時のように正極の電位が下がった場合、電解液と反応
して電解液を分解し、ガス発生などを生じる。その結
果、電池の膨れや、漏液が生じたり、特に二次電池では
過放電状態になるのでその後のサイクル特性が劣化する
などの弊害が生じる。従って、予めこれらの官能基の活
性度を低下させて正極の導電材として使用することが必
要である。即ち、本発明によれば、上記官能基の影響を
エステル化や中和処理あるいはアルカリ処理などの化学
処理を行って除去することにより、炭素材料による過放
電時の電解液分解を抑制することができ、過放電時のガ
ス発生による電池膨れや、漏液、過放電状態になった二
次電池のサイクル特性劣化を抑制することが出来る。
According to the present invention, when a carbon material obtained by removing a functional group in a carbon material by a chemical treatment is used as a conductive material of a positive electrode, a battery which is resistant to overdischarge and has high reliability can be provided. .. The reason is that carbon, which is a carbon material, generally has a crystal structure in which carbon atoms are mainly bonded in a hexagonal shape,
The hexagonal structure cannot be maintained at the ends of the bonds, and the carbon atoms at the ends easily bond with oxygen and moisture in the air to form hydroxyl groups (OH) and carboxyl groups (COOH). Since these functional groups have high activity, when the potential of the positive electrode is lowered as in the case of over-discharging, they react with the electrolytic solution to decompose the electrolytic solution and generate gas or the like. As a result, problems such as swelling of the battery, leakage of liquid, and over-discharge of the secondary battery in particular, resulting in deterioration of cycle characteristics thereafter, occur. Therefore, it is necessary to reduce the activity of these functional groups in advance and use them as the conductive material of the positive electrode. That is, according to the present invention, the effect of the functional group is removed by performing a chemical treatment such as esterification, neutralization treatment, or alkali treatment, thereby suppressing the decomposition of the electrolytic solution by the carbon material during overdischarge. Therefore, it is possible to suppress battery swelling due to gas generation during over-discharging, liquid leakage, and deterioration of cycle characteristics of the secondary battery in an over-discharged state.

【0008】[0008]

【実施例】図1に、本発明実施例による電池の縦断面図
を示す。ここで、1はリチウム−アルミニウム合金より
なるの負極であって、負極缶2の内底面に固着せる負極
集電体3に圧着されている。4は正極であって活物質と
してのマンガン酸化物に本発明の要旨である炭素材料の
導電材(具体的な作製方法は後述する)とフッ素樹脂結
着剤とを80:10:10(重量比)の割合で混合した
合剤を成型したものであり、正極缶5の内底面に正極集
電体6を介して圧接されている。
EXAMPLE FIG. 1 is a vertical sectional view of a battery according to an example of the present invention. Here, 1 is a negative electrode made of a lithium-aluminum alloy, which is pressure-bonded to a negative electrode current collector 3 fixed to the inner bottom surface of the negative electrode can 2. Reference numeral 4 denotes a positive electrode, which contains manganese oxide as an active material, a conductive material of a carbon material which is the gist of the present invention (a specific manufacturing method will be described later), and a fluororesin binder at 80:10:10 (weight). It is formed by molding a mixture mixed at a ratio of (ratio), and is pressed against the inner bottom surface of the positive electrode can 5 via the positive electrode current collector 6.

【0009】7はポリプロピレン不織布よりなるセパレ
ータであって、このセパレータ7にはプロピレンカーボ
ネートと1,2ジメトキシエタンとの等体積混合溶媒に
過塩素酸リチウムを1モル/リットル溶解した非水電解
液が含浸されている。8は正極缶、負極缶を電気絶縁す
る絶縁パッキング、電池寸法は直径25mm、厚み3.
0mmである。
Reference numeral 7 is a separator made of polypropylene non-woven fabric. The separator 7 is a non-aqueous electrolytic solution in which 1 mol / liter of lithium perchlorate is dissolved in an equal volume mixed solvent of propylene carbonate and 1,2-dimethoxyethane. It is impregnated. 8 is an insulating packing for electrically insulating the positive electrode can and the negative electrode can. The battery has a diameter of 25 mm and a thickness of 3.
It is 0 mm.

【0010】次に、正極の導電材である炭素材料の作製
例について詳述する。 [作製例−1]炭素材料として黒鉛粉末300gを、エ
チルアルコール1リットル中に濃硫酸300gを添加し
た液中に分散させ、充分混合し、3日間室温で放置し
た。そして、この炭素材料をアセトンで洗浄し、充分乾
燥させた後、酢酸50gを溶解したアセトン1リットル
中に濃硫酸300gを添加した液中に分散させ、充分に
混合し、3日間室温で放置し、官能基を除去する処理を
行った。その後、アセトンで洗浄、乾燥した。
Next, a detailed description will be given of a production example of a carbon material which is a conductive material for the positive electrode. [Preparation Example-1] As a carbon material, 300 g of graphite powder was dispersed in a liquid obtained by adding 300 g of concentrated sulfuric acid to 1 liter of ethyl alcohol, mixed well, and allowed to stand at room temperature for 3 days. Then, this carbon material was washed with acetone and sufficiently dried, then dispersed in a solution prepared by adding 300 g of concentrated sulfuric acid to 1 liter of acetone in which 50 g of acetic acid was dissolved, thoroughly mixed, and allowed to stand at room temperature for 3 days. , The functional group was removed. Then, it was washed with acetone and dried.

【0011】このようにして得られた炭素材料を赤外線
分光分析により測定した結果、炭素材料中の水酸基、カ
ルボキシル基が消失していることが分かった。これは上
記処理により、炭素材料中の水酸基やカルボキシル基が
エステル化したためであると考えられる。
As a result of infrared spectroscopic analysis of the carbon material thus obtained, it was found that hydroxyl groups and carboxyl groups in the carbon material had disappeared. It is considered that this is because the hydroxyl group or carboxyl group in the carbon material was esterified by the above treatment.

【0012】このような処理を行った炭素材料を、正極
の導電材として用いて電池を作製し、本発明電池Aとし
た。 [作製例−2]前記作製例1のエチルアルコールの代わ
りにメチルアルコールを、酢酸の代わりにプロピオン酸
を用いる他は、前記作製例1と同様にして炭素材料を処
理した。このようにして得られた炭素材料を、正極の導
電材として使用した電池を、本発明電池Bとした。 [作製例−3]前記作製例1のエチルアルコールの代わ
りにプロピルアルコールを、酢酸の代わりに安息香酸を
用いる他は、前記作製例1と同様にして炭素材料を処理
した。このようにして得られた炭素材料を、正極の導電
材として用い、本発明電池Cとした。 [作製例−4]炭素材料としてアセチレンブラック30
0gを、100gのフェノールを溶解したベンゼン1リ
ットル中にモレキュラーシーブ5Aを200gを添加し
た処理液中に分散させ、充分混合し1週間室温で放置し
たのちアセトンで洗浄し、乾燥させた。このようにして
得られた炭素材料をさらに安息香酸50gを溶解したベ
ンゼン1リットル中にモレキュラーシーブ5Aを200
gを添加した処理液中に分散させ、充分混合し1週間室
温で放置した後、アセトンで洗浄し、乾燥させた。この
ようにして得られた炭素材料についても赤外線分光分析
により測定した結果、炭素材料中の水酸基、カルボキシ
ル基が消失していることが分かった。これは、前記処理
により炭素材料中の水酸基やカルボキシル基がエステル
化したためと考えられる。このようにして得られた炭素
材料を正極の導電材として用いた電池を、本発明電池D
とした。 [作製例−5]水酸化リチウムとアセチレンブラックを
重量比で2:98となるように混合し、これを800℃
で焼成させて、炭素とリチウム塩との複合体の粉末を作
製した。このように作製した炭素材料粉末を、赤外線分
光分析により測定した結果、炭素中の水酸基、カルボキ
シル基の水素がリチウムと置換されていることが分かっ
た。また、これらの炭素材料中の炭素と水素とリチウム
の比を測定したところ、炭素中の水素のほとんどがリチ
ウムに置換されていることが分かった。このように作製
された炭素材料を、正極の導電材として用い、本発明電
池Eを作製した。 [作製例−6]黒鉛粉末を水中に分散させ、これを水酸
化リチウムでpH9となるまで処理し、濾過した後、充
分乾燥して、水酸基やカルボキシル基の水素をリチウム
で置換した炭素材料を得た。このように作製された炭素
材料を、正極の導電材として用い、本発明電池Fを作製
した。 [作製例−7]黒鉛粉末を水中に分散させ、これを水酸
化カリウムでpH9となるまで処理し、濾過した後、充
分乾燥して水酸基やカルボキシル基の水素をカリウムで
置換した炭素材料を得た。このようにして得られた炭素
材料を正極の導電材として用い、本発明電池Gを作製し
た。 [比較例−1]未処理の黒鉛粉末を、そのまま正極の導
電材として用いて電池を作製し、比較電池Xを得た。 [比較例−2]未処理のアセチレンブラック粉末を、そ
のまま正極の導電材として用いて電池を作製し、比較電
池Yを得た。
A battery was produced using the carbon material thus treated as a positive electrode conductive material to obtain Battery A of the present invention. [Preparation Example-2] A carbon material was treated in the same manner as in Preparation Example 1 except that methyl alcohol was used instead of ethyl alcohol and propionic acid was used instead of acetic acid in Preparation Example 1. A battery using the carbon material thus obtained as a positive electrode conductive material was designated as Battery B of the present invention. [Preparation Example-3] A carbon material was treated in the same manner as in Preparation Example 1 except that propyl alcohol was used in place of ethyl alcohol and benzoic acid was used in place of acetic acid in Preparation Example 1. The carbon material thus obtained was used as a positive electrode conductive material to obtain Battery C of the invention. [Production Example-4] Acetylene black 30 as a carbon material
0 g was dispersed in a treatment liquid prepared by adding 200 g of molecular sieve 5A to 1 liter of benzene in which 100 g of phenol was dissolved, thoroughly mixed, left to stand at room temperature for 1 week, washed with acetone, and dried. The carbon material thus obtained was further mixed with 200 g of molecular sieve 5A in 1 liter of benzene in which 50 g of benzoic acid was dissolved.
After being dispersed in the treatment liquid containing g, thoroughly mixed and allowed to stand at room temperature for 1 week, it was washed with acetone and dried. The carbon material thus obtained was also measured by infrared spectroscopy, and as a result, it was found that hydroxyl groups and carboxyl groups in the carbon material had disappeared. It is considered that this is because the hydroxyl groups and carboxyl groups in the carbon material were esterified by the above treatment. A battery using the carbon material thus obtained as a positive electrode conductive material is referred to as Battery D of the present invention.
And [Production Example-5] Lithium hydroxide and acetylene black were mixed at a weight ratio of 2:98, and this was mixed at 800 ° C.
Then, the powder was fired to prepare a powder of a composite of carbon and a lithium salt. As a result of measuring the carbon material powder thus produced by infrared spectroscopic analysis, it was found that hydrogen of a hydroxyl group and a carboxyl group in carbon was replaced with lithium. Further, when the ratio of carbon, hydrogen and lithium in these carbon materials was measured, it was found that most of the hydrogen in carbon was replaced with lithium. The carbon material produced in this manner was used as a conductive material for the positive electrode to produce a battery E of the invention. [Production Example-6] Graphite powder was dispersed in water, treated with lithium hydroxide until pH was adjusted to 9, filtered, and dried sufficiently to obtain a carbon material in which hydrogen of a hydroxyl group or a carboxyl group was replaced with lithium. Obtained. The carbon material produced in this manner was used as a conductive material for the positive electrode to produce a battery F of the present invention. [Preparation Example-7] Graphite powder was dispersed in water, treated with potassium hydroxide until pH 9 was reached, filtered, and then dried sufficiently to obtain a carbon material in which hydrogen of a hydroxyl group or a carboxyl group was replaced with potassium. It was The carbon material thus obtained was used as a conductive material for the positive electrode to prepare a battery G of the invention. [Comparative Example-1] A battery was prepared by using untreated graphite powder as it was as a conductive material of a positive electrode, and a comparative battery X was obtained. [Comparative Example-2] An untreated acetylene black powder was used as it was as a positive electrode conductive material to fabricate a battery, and a comparative battery Y was obtained.

【0013】これら電池A〜G、X、Yとを用い、電池
の漏液の発生率を調べた。この時の実験条件は、各条件
の電池を各々100個準備し、これを0Vになるまで放
電させ、その後、電池電圧を0Vに保持して1ヶ月間放
置した後の漏液の発生個数を調べ、漏液発生率とした。
この結果を、表1に示す。
Using these batteries A to G, X and Y, the generation rate of liquid leakage of the batteries was examined. The experimental condition at this time was to prepare 100 batteries under each condition, discharge them to 0V, and then keep the battery voltage at 0V and leave them for 1 month to determine the number of leaked liquids. The rate of liquid leakage was examined.
The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】これより本発明電池A〜Gは、比較電池
X、Yと比べて、漏液発生数が少なく、漏液発生率が小
さいことが理解される。
From the above, it is understood that the batteries A to G of the present invention have a smaller number of leaks and a lower leak rate than the comparative batteries X and Y.

【0016】次に、電池A〜G、X、Yの過放電後のサ
イクル特性を比較した。この時の実験条件は、各電池を
0Vになるまで放電し、その後0Vで1週間保持した
後、充電して、サイクル寿命を測定するものであり、サ
イクル試験条件は放電容量を12mAhとし、充電電流
3mAで3.2V終止とした。この結果を、図2に示
す。尚、図2の横軸はサイクル数を、縦軸は各電池の各
サイクルにおける放電終止電圧を示している。
Next, the cycle characteristics of the batteries A to G, X and Y after overdischarge were compared. The experimental conditions at this time were to discharge each battery to 0 V, then hold it at 0 V for 1 week, and then charge it to measure the cycle life. The cycle test condition was to set the discharge capacity to 12 mAh and charge the battery. It was set to 3.2V with a current of 3 mA. The result is shown in FIG. The horizontal axis of FIG. 2 represents the number of cycles, and the vertical axis represents the discharge end voltage in each cycle of each battery.

【0017】これより、本発明電池A〜Gは、比較電池
X、Yと比べて、過放電後であってもサイクル寿命が永
く、サイクル特性において優れたものであることが理解
される。
From the above, it is understood that the batteries A to G of the present invention have a longer cycle life even after the over-discharge and are excellent in the cycle characteristics as compared with the comparative batteries X and Y.

【0018】次に、ここでは、前記本発明電池Fや、本
発明電池Gのように、炭素材料をアルカリ処理した場合
の、pH値の影響について検討した。
Next, the influence of the pH value in the case where the carbon material is treated with alkali like the battery F of the present invention and the battery G of the present invention was examined.

【0019】ここでは、炭素材料としての黒鉛を水中に
分散させ、これを水酸化リチウムで処理して各pH値に
調節して、ろ過し十分に乾燥後、炭素中の水酸基やカル
ボキシル基の一部をリチウムで置換した。このようにし
て官能基の影響を除去した炭素材料を得、これを導電材
として使用した電池を、各100個準備した。そして各
電池を0Vになるまで放電させた後、電池電圧を0Vに
保持させて1ケ月放置し、これら電池の漏液発生個数を
各電池の漏液発生率(%)とした。この結果を、表2に
示す。
Here, graphite as a carbon material is dispersed in water, treated with lithium hydroxide to adjust each pH value, filtered, and sufficiently dried, and then one of the hydroxyl groups and carboxyl groups in carbon is removed. Parts were replaced with lithium. In this way, a carbon material from which the influence of the functional group was removed was obtained, and 100 batteries each using this as a conductive material were prepared. Then, after discharging each battery to 0 V, the battery voltage was kept at 0 V and left for 1 month, and the number of leaked liquids generated from these batteries was defined as the liquid leaked ratio (%) of each battery. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】この結果より、pH値が7以上で漏液発生
率が著しく小さくなっていることが理解される。この理
由は、炭素材料中の水酸基やカルボキシル基中の多くの
水素(H)がリチウム(Li)で置換され、これら官能
基の活性度が低下してその影響がなくなったことによる
と推定される。
From these results, it is understood that the liquid leakage rate is remarkably reduced when the pH value is 7 or more. It is presumed that the reason for this is that a large amount of hydrogen (H) in the hydroxyl group or carboxyl group in the carbon material was replaced with lithium (Li), and the activity of these functional groups decreased and their influence disappeared. ..

【0022】尚、ここで使用したようなアルカリ処理済
みの炭素材料は、水に分散させると処理液のpH値とほ
ぼ一致した値を示しているが、pH値が高くなる(pH
=10程度)と、その値は若干ずれてくる。
Incidentally, the alkali-treated carbon material used here shows a value which is almost the same as the pH value of the treatment liquid when dispersed in water, but the pH value becomes high (pH
= About 10), the value is slightly deviated.

【0023】次に、炭素材料としてのアセチレンブラッ
クを水中に分散させ、これを水酸化カリウムで処理して
各pH値に調節して、ろ過し十分に乾燥後、炭素中の水
酸基やカルボキシル基の一部をカリウムで置換した。こ
のようにして炭素中の官能基の影響を除去した炭素材料
を得、前記同様にして電池を作製し、これら電池の漏液
発生率(%)を調べた。この結果を、表3に示す。
Next, acetylene black as a carbon material is dispersed in water, treated with potassium hydroxide to adjust each pH value, filtered and sufficiently dried, and then the hydroxyl group and the carboxyl group in carbon are removed. Part was replaced with potassium. In this way, a carbon material from which the influence of the functional groups in carbon was removed was obtained, batteries were prepared in the same manner as above, and the leakage rate (%) of these batteries was examined. The results are shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】この表3の結果より、pH値が7以上で漏
液発生率が著しく小さくなっていることが理解される。
この理由は、前記同様、炭素材料中の水酸基やカルボキ
シル基中の多くの水素(H)がカリウム(K)で置換さ
れ、これら官能基の活性度が低下してその影響がなくな
ったことによると推定される。
From the results shown in Table 3, it is understood that the leakage rate is remarkably small when the pH value is 7 or more.
The reason for this is that, similar to the above, a large amount of hydrogen (H) in the hydroxyl group and carboxyl group in the carbon material was replaced with potassium (K), and the activity of these functional groups decreased and their effect disappeared. Presumed.

【0026】これら表2及び表3の結果より、pH値が
7以上で処理済みの炭素材料が、電池の導電材として特
に適していると考えられる。
From the results shown in Tables 2 and 3, it is considered that the treated carbon material having a pH value of 7 or more is particularly suitable as a conductive material for batteries.

【0027】[0027]

【発明の効果】以上、詳述した如く、本発明の非水電解
質電池によれば、正極の導電材として添加した炭素粉末
の官能基の影響を除去して、導電材と電解液の反応を抑
制しているので、電池の膨れや、漏液を抑制でき、特に
二次電池では過放電状態になったとしてもその後のサイ
クル特性が劣化しないサイクル特性に優れた電池が提供
できるので、その工業的価値は極めて大きい。
As described above in detail, according to the non-aqueous electrolyte battery of the present invention, the influence of the functional group of the carbon powder added as the conductive material of the positive electrode is removed to allow the reaction between the conductive material and the electrolytic solution. Since it suppresses, swelling of the battery and liquid leakage can be suppressed, and in particular, it is possible to provide a battery having excellent cycle characteristics in which the subsequent cycle characteristics do not deteriorate even when the secondary battery is in an overdischarged state. The target value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明電池の縦断面図である。FIG. 1 is a vertical sectional view of a battery of the present invention.

【図2】 電池のサイクル特性比較図である。FIG. 2 is a comparison diagram of battery cycle characteristics.

【符号の説明】[Explanation of symbols]

1 負極 2 負極缶 3 負極集電体 4 正極 5 正極缶 6 正極集電体 7 セパレータ 8 絶縁パッキング A、B、C、D、E、F、G 本発明電池 X、Y 比較電池 1 Negative electrode 2 Negative electrode can 3 Negative electrode current collector 4 Positive electrode 5 Positive electrode can 6 Positive electrode current collector 7 Separator 8 Insulating packing A, B, C, D, E, F, G Present battery X, Y Comparative battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、非水電解液と、リチウム、リチ
ウム合金、あるいはリチウムと炭素との化合物を負極と
する非水電解質電池において、前記正極の導電材とし
て、官能基の影響を除去した炭素材料を用いることを特
徴とする非水電解質電池。
1. In a non-aqueous electrolyte battery having a positive electrode, a non-aqueous electrolyte solution, lithium, a lithium alloy, or a compound of lithium and carbon as a negative electrode, the influence of a functional group is removed as a conductive material of the positive electrode. A non-aqueous electrolyte battery characterized by using a carbon material.
【請求項2】 前記炭素材料が、炭素の中和処理、アル
カリ処理、あるいはエステル化処理により官能基の影響
を除去したものであることを特徴とする請求項1記載の
非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein the carbon material is one in which the influence of functional groups is removed by carbon neutralization treatment, alkali treatment, or esterification treatment.
JP03208170A 1991-08-20 1991-08-20 Non-aqueous electrolyte battery Expired - Fee Related JP3081291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03208170A JP3081291B2 (en) 1991-08-20 1991-08-20 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03208170A JP3081291B2 (en) 1991-08-20 1991-08-20 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0547387A true JPH0547387A (en) 1993-02-26
JP3081291B2 JP3081291B2 (en) 2000-08-28

Family

ID=16551821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03208170A Expired - Fee Related JP3081291B2 (en) 1991-08-20 1991-08-20 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3081291B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060803A (en) * 1996-12-31 1998-10-07 손욱 Method for producing a conductive agent and a secondary battery containing the conductive agent
JP2001313035A (en) * 2000-04-28 2001-11-09 Nissan Motor Co Ltd Nonaqeuos cell
JP2014241259A (en) * 2013-06-12 2014-12-25 株式会社神戸製鋼所 Current collector, method for manufacturing current collector, electrode, and secondary battery
WO2021085344A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery and method for producing paste for secondary batteries
WO2021085343A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery, and method for producing paste for secondary batteries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060803A (en) * 1996-12-31 1998-10-07 손욱 Method for producing a conductive agent and a secondary battery containing the conductive agent
JP2001313035A (en) * 2000-04-28 2001-11-09 Nissan Motor Co Ltd Nonaqeuos cell
JP2014241259A (en) * 2013-06-12 2014-12-25 株式会社神戸製鋼所 Current collector, method for manufacturing current collector, electrode, and secondary battery
WO2021085344A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery and method for producing paste for secondary batteries
WO2021085343A1 (en) * 2019-10-31 2021-05-06 日本ゼオン株式会社 Paste for secondary batteries, slurry for secondary battery positive electrodes, positive electrode for secondary batteries, secondary battery, and method for producing paste for secondary batteries

Also Published As

Publication number Publication date
JP3081291B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
JPH0652887A (en) Lithium secondary battery
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
CN112885985B (en) Positive pole piece and preparation method thereof, electrochemical energy storage device and pre-metallization method of electrochemical energy storage device
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP2000223152A (en) Lithium ion secondary battery having extended cycle life in charge/discharge
KR100379979B1 (en) Nonaqueous electrolyte secondary battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
EP1280220B1 (en) Non-aqueous electrolyte and lithium secondary battery
JPH11273724A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
CN106159207B (en) A kind of preparation method of positive electrode active materials, positive plate and lithium ion battery
JPH0837025A (en) Nonaqueous electrolyte
WO2021104188A1 (en) Lithium-rich manganese-based lithium ion battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
CN113594547A (en) Electrolyte and lithium ion battery
JPH11329490A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JPH0547387A (en) Nonaqueous electrolyte battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
CN114520372A (en) Oxidation-resistant electrolyte, lithium ion battery and preparation method
KR20190078100A (en) Manufacturing method of a positive electrode active material for rechargeable battery, and rechargeable battery including positive electrode active material for rechargeable battery manufacture using the same
JPH05266889A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery using same material
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JPH01286262A (en) Electrolyte for lithium cell
KR100457093B1 (en) Fabrication of a polymer electrolyte for lithium/sulfur battery and room temperature lithium/sulfur battery containing the same with one flat voltage
JPH1083835A (en) Manufacture of non-aqueous electrolytic secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees