JPH05463B2 - - Google Patents

Info

Publication number
JPH05463B2
JPH05463B2 JP61304850A JP30485086A JPH05463B2 JP H05463 B2 JPH05463 B2 JP H05463B2 JP 61304850 A JP61304850 A JP 61304850A JP 30485086 A JP30485086 A JP 30485086A JP H05463 B2 JPH05463 B2 JP H05463B2
Authority
JP
Japan
Prior art keywords
heat
hearth
alloy
temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61304850A
Other languages
Japanese (ja)
Other versions
JPS63157827A (en
Inventor
Manabu Seguchi
Kazuo Okamura
Yoshiatsu Sawaragi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30485086A priority Critical patent/JPS63157827A/en
Publication of JPS63157827A publication Critical patent/JPS63157827A/en
Publication of JPH05463B2 publication Critical patent/JPH05463B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、鋼材加熱炉等において炉床として
設けられたスキツドパイプ上面に取付けて被加熱
材を直接支持するためのスキツドレールやスキツ
ドボタン等に好適で、これらに適用した場合に優
れた性能を発揮するところの耐酸化性及び耐衝撃
亀裂性に優れた炉床部材用耐熱合金に関するもの
である。 <従来技術とその問題点> 現在、重量の大きい材料を比較的高温度(1100
〜1250℃程度)にまで連続加熱することが要求さ
れる鋼材の加熱炉としては、炉床上をスライド進
行させながら被加熱材を加熱するスキツドタイプ
のものが主流を占めているが、一般にその炉床部
には第1図や第2図で例示されるような支持構造
が採用されている。 即ち、第1図は、炉内温度からの悪影響を防止
するため断熱材1でシールされた水冷パイプ2の
上面に、台座3を介してスキツドボタン4を取り
つけたものを、そして第2図は断熱材1でシール
された水冷パイプ2の上面に支持台5を介してス
キツドレール6を取り付けたものをそれぞれ示し
ている。ここで、何れの図面においても、符号7
はスラブ等の被加熱材を示している。なお、上記
水冷パイプ2は、スキツドボタン4或いはスキツ
ドレール6を高温雰囲気から保護するためのもの
であることは言うまでもない。 これらの図面からも明らかなように、加熱炉の
炉床材としてのスキツドボタンやスキツドレール
は高温雰囲気中で被加熱材の重量を支持しなけれ
ばならない上、被加熱材の移動に伴う衝撃を受け
る状況下にも置かれているので、高温における十
分な強度や耐酸化性を備えることが要求されるも
のである。そのため、従来、前記炉床材には
HS21(米国規格)材やUMCO50(ベルギー規格)
材等のCo基耐熱合金、或いはSCH13(JIS規格材
で加熱炉の炉床材として一般的なもの)材等の耐
熱鋳鋼が使用されていた。 しかしながら、炉床支持部材用としてのこれら
従来の耐熱合金は、温度変動による熱衝撃や荷重
変動による機械的衝撃によつて亀裂や割れが発生
し易いとの指摘がなされており、また強度的にみ
て1150℃程度までが使用限界温度であつて、それ
以上の高温雰囲気で使用する場合には水冷等の手
段による部材の冷却を欠くことができなかつた。
そのため、現在の鋼材加熱用炉等では下部から炉
床部材を冷却する構造がとられているが、この
“炉床部材の冷却”は一方で被加熱材にスキツド
マークを発生させる原因となるものであり、スキ
ツドマーク防止のために余分な手段を講じる必要
が生じていた。 その上、炉床部材は、下部からの冷却がなされ
ていたとしてもどうしても上部の温度が高くなつ
てしまい、従来の耐熱合金製炉床部材では上部に
おける“割れ”や“へたり”が防止できないとの
問題も解決されていなかつた。 このようなことから、本発明者等は、先に炉床
部材の“衝撃割れ”や“へたり”を防止し、かつ
被加熱材のスキツドマークを防止する対策として
「素地(ストリツクス)金属又は合金中にセラミ
ツク粒子を分散させた炉床部材用複合材」を提案
した(特開昭60−200948号、特開昭61−41734
号)。 本発明者等の提案になる上記複合材料は、高温
強度や耐衝撃割れに優れることは勿論、断熱効果
も非常に高くてマトリツクス(素地)材料単体の
場合の1/3程度の低熱伝導率であるため、被加熱
材が鋼材であるような高温加熱の場合であつても
被加熱材との接触部の温度を金属単体の炉床部材
を使用する時と比較して40℃程度も上昇させるこ
とが可能となるものであり、そのためスキツドマ
ークの低減には大なる効果が発揮されるものであ
つた。 ところが、最近の加熱炉の操業傾向として炉温
1250〜1300℃と言う高温加熱を実施する場合が多
くなつており、炉床部材(被加熱材の支持部材)
の温度が1200℃以上に達することも珍しくなく、
このような高温では上記提案になるセラミツク粒
子分散複合材を用いたとしても強度低下が起こつ
て変形を生じることが懸念される上、耐衝撃割れ
性の点でも今一歩の改善が望まれる状況となつて
きたのである。更に、セラミツク粒子分散複合材
を用いる場合でもマトリツクス(素地)材料の成
分としてのCo量が多い程一般に耐圧縮クリープ
性に優れているが、Coは高価な元素であるため、
出来るだけCo量の少ない安価なマトリツクス
(素地)材料が望まれていた。従つて、炉温が
1250〜1300℃となる苛酷な操業下においても高強
度並びに優れた耐衝撃割れ性を保持し、しかも過
度の冷却を必要としないでスキツドマーク低減が
可能となる安価な炉床部材用材料の開発が急務と
なつているのが現状であつた。 <問題点を解決するための手段> 本発明者等は、上述のような観点から、高温操
業下でも十分に満足できる優れた耐酸化性、耐衝
撃性並びに強度を示す炉床部材用耐熱材料を提供
すべく研究を続けてきたが、該研究の過程で 「加熱炉の炉床材として従来のものより顕著に
優れた特性を有するところの、本発明者等の提案
になる前記“セラミツク粒子分散複合材”の高温
強度や耐衝撃割れ性には、分散配合したセラミツ
ク粒子が大きく寄与していることは言うまでもな
いが、マトリツクス(素地)材料の特性も極めて
大きな影響を与えており、該セラミツク粒子分散
複合材における上記特性をより一層改善するため
には、高温強度、耐酸化性並びに耐衝撃割れ性が
一段と優れたマトリツクス(素地)材料の開発が
どうしても必要である」 との結論が出されることとなり、特にCo基耐熱
合金が備える比較的良好な高温強度、耐酸化性及
び耐食性に注目すると共に、高温域における該合
金の強度を更に改善しかつ熱衝撃が機械的衝撃に
起因した割れ発生を防止する手立てについて研究
を重ねた結果、以下(a)〜(d)に示される如き知見を
得るに至つたのである。即ち、 (a) 炉床部材として使用する時に特に問題となる
Co基耐熱合金の衝撃割れ発生は炭化物やσ相、
並びに金属間化合物が析出することに起因する
ところが大であり、炉床部材としてのCo基耐
熱合金の特性を改善するにはこれらの析出抑制
を図ることが欠かせないこと、 (b) ところが、Co基耐熱合金の炭化物やσ相の
析出防止には合金中のC、Si及びMn量の低減
が効果的であり、これらの元素を特定値以下に
抑えることによつて上記目的が十分に達せられ
る上、高温域における金属間化合物の析出抑制
にはSi、Cr、Mo及びMn量の低減が有効であ
ること、 (c) 特に、Co基耐熱合金の成分組成を特定の範
囲に調整した上でのC、Si及びSi及びMn量の
低減は、合金の高温強度や耐酸化性等の性質に
悪影響を与えることなく炭化物、σ相及び金属
間化合物の析出を抑制する上で極めて顕著な効
果をもたらすこと、 (d) このようにCo基耐熱合金のC、Si及びMn量
を特定値以下に低減すると共に、その他の成分
をも特定の範囲に注意深く調整すると耐酸化
性、高温耐食性、高温圧縮クリープ強度並びに
耐衝撃割れ性の良好な炉床部材用として優れた
性能を有する耐熱合金が得られる上、これをセ
ラミツクス粒子分散複合材のマトリツクス(素
地)として適用した場合には1200〜1300℃程度
の高温域においても十分に優れた耐酸化性、耐
衝撃割れ性及び高温圧縮クリープ強度を示し、
しかも断熱性が良好な高性能の炉床部材用耐熱
性が得られること。 この発明は、上記知見に基づいてなされたもの
であり、 「加熱炉の炉床部材用耐熱合金を、含有成分が
C:0.1%以下(以降、成分割合を表わす%は重
量%とする)、 Si:0.8%以下、Mn:0.8%以下、 Cr:25〜30%、Ni:20〜30%、 Mo:0.5〜2%、Fe:10〜20%、 P:0.04%以下、S:0.04%以下 であり、かつ残部を実質的にCoにて構成するこ
とによつて、優れた高温圧縮強度、耐酸化性及び
耐食性を備えることは勿論、高温域での熱衝撃や
機械的衝撃にも十分に耐え得る耐衝撃割れ性をも
兼備せしめ、セラミツク粒子分散炉床部材用複合
材のマトリツクス(素地)として適用した場合に
はその性能を一段と向上させ得るような特性を備
えしめた点」 に特徴を有するものである。 なお、この発明の炉床部材用耐熱合金におい
て、各構成成分割合を前記の如くに数値限定した
のは次の理由によるものである。 (a) C C成分には合金のクリープ強度を向上させる
作用があるが、その含有量が0.1%を越えると
炭化物を形成して合金の脆化を招き、特にマト
リツクス(素材)材としては不利になることか
ら、C含有量は0.1%以下と定めた。なお、こ
の発明に係る合金組成では、C含有量を極く微
量としても十分にクリープ強度改善効果は認め
られる。 (b) Si Si元素は合金の脱酸並びに耐酸化性付与作用
を有する成分であるが、多量に加えると金属間
化合物を形成して靭性低下を招くことから極力
低減する必要がある重要な元素である。従つ
て、高温域における衝撃割れを防止する上でど
うにか許容される量である0.8%を上限とし、
特にその値以下に規制するように定めたが、Si
含有量の低減によつて懸念される耐酸化性の低
下は合金組成をこの発明で規定する範囲に注意
深く調整することによつて効果的に回避するこ
とができる。 (c) Mn Mnは、合金の脱酸剤、脱硫剤としての観点
からは有効な成分であるが、その含有量が0.8
%を越えると高温強度に悪影響を及ぼすように
なることから、Mn含有量は0.8%以下と限定し
た。 (d) Cr Crは合金に妙酸化性を確保する上で欠かせ
ない成分であり、十分な耐熱性保持のためには
25%以上を含有させる必要があるが、30%を越
えて含有させると靭性劣化を招くようになるこ
とから、Cr含有量は25〜30%と定めた。 (e) Ni Ni成分には合金のオーステナイトを安定す
ると共に耐酸化性を確保する作用があるが、そ
の含有量が20%未満では前記作用に所望の効果
が得られず、特にSi含有量を抑えたことの発明
に係る合金系ではかなりの耐酸化性劣化を招
く。一方、30%を越えて含有させても耐酸化性
はそれ以上に向上しないことから、Ni含有量
は20〜30%と限定した。 (f) Mo Mo成分には合金の高温強度を改善する作用
があるが、その含有量が0.5%未満では前記作
用に所望の効果が得られず、一方2%を越えて
含有させると靭性に悪影響が出てくる懸念があ
り、特にセラミツクス粒子を分散複合させるマ
トリツクス(素地)材として使用する場合に靭
性低下による割れ発生が考えられることから、
Mo含有量は0.5〜2%と定めた。 (g) Fe Fe成分には合金の高温圧縮クリープ強度を
改善する作用があり、またセラミツクス粒子を
分散複合させる場合にその結合性を確保する上
で必要なものであるが、その含有量が10%未満
では上記作用に所望の効果が得られず、一方、
20%を越えて含有させても上記効果がそれ以上
に顕著な向上を見せないことから、Fe含有量
は10〜20%と定めた。 (h) P及びS これらは何れも不可避的に混入する不純物元
素であり、何れかが0.04%を越えて含有される
と合金の強度、溶接性並びに靭性に悪影響を及
ぼすことから、P及びS各々の含有量を0.04%
以下と限定した。 なお、この発明の耐熱合金は、従来のCo基耐
熱合金と同様、溶解・鋳造手段によつて製造でき
るものである。そして、該合金をマトリツクス
(素地)としたセラミツクス粒子分散複合材を製
造する場合には、次に示す方法を採用するのが望
ましい。即ち、 (i) 第3図に示されるように、アルミナ製等のる
つぼ8に本発明に係る耐熱合金粉末とセラミツ
クス粒子との混合物を投入して高周波加熱等を
行い(第3図中の符号9は高周波誘導コイルを
示す)、前記耐熱合金が融けた時点でやはりア
ルミナ製等の加圧ピストン10にて加圧するこ
とによりセラミツクス粒子の間隙を溶融合金で
十分に埋め尽くさせた後、冷却・凝固する方
法。 (ii) 第4図に示されるように、下部に開口11
を、そして上部にガス抜き用孔12を設けた隔
室13を耐火物容器14内に配置すると共に、
まず前記隔室13の中にセラミツク粒子15を
装入してから該隔室13の回りに本発明に係る
耐熱合金粉末を装入し、続いてこれらを加熱し
て前記耐熱合金粉末を溶融させて開口11から
隔室13内のセラミツク粒子間に浸透せしめ、
その後冷却・凝固する方法。 ところで、この発明に係る耐熱合金をマトリツ
クス(素地)とするセラミツクス粒子分散複合材
で加熱炉の炉床部材を構成する場合には、均一分
散させるセラミツクスとしてアルミナ(Al2O3
の高純度品が好適であるが、その他3Al2O3
2SiO2或いはZrO2等の酸化物系セラミツクス、
SiC或いはTiC等の炭化物系セラミツクス、サイ
アロン等も使用できる。そして、その粒度は平均
粒径で5mmφ以下が適当であり、マトリツクス
(素地)材料への配合量は50〜75容量%程度が望
ましい。 また、第5図は、アルミナ粒子分散複合材で構
成した加熱炉用スキツドボタンの一例を示す概略
縦断面模式図であり、符号16はアルミナ粒子
を、17はセラミツクフオームを、そして18は
この発明に係る耐熱合金製のマトリツクス(素
地)をそれぞれ示している。 続いて、この発明を実施例により具体的に説明
する。 <実施例> まず、常法により第1表に示される如き成分組
成のCo基耐熱合金を溶製すると共に、第2表に
示されるアルミナ粒子を用意した。 次に、これらの耐熱合金の一部にて直径が90mm
で長さが100mmのスキツドボタンを鋳造し、また
残りの耐熱合金には第4図で示した方法〔前記(ii)
で説明した方法〕により上記アルミナ粒子を均一
分散させた成形し、同寸法のセラミツクス(アル
ミナ)分散複合材製スキツドボタンを製造した。
なお、この複合材料のアルミナ粒子充填率は約60
%であつた。 次に、これらの各スキツドボタンについて耐酸
<Industrial Application Field> The present invention is suitable for skid rails, skid buttons, etc. that are attached to the upper surface of skid pipes provided as hearths in steel heating furnaces, etc. to directly support materials to be heated, and when applied to these. The present invention relates to a heat-resistant alloy for hearth members that exhibits excellent oxidation resistance and impact cracking resistance. <Prior art and its problems> Currently, heavy materials are processed at relatively high temperatures (1100
The mainstream heating furnaces for steel materials that require continuous heating to temperatures up to 1,250°C (approx. A support structure as illustrated in FIGS. 1 and 2 is employed in the section. That is, FIG. 1 shows a skid button 4 attached via a pedestal 3 to the top surface of a water cooling pipe 2 sealed with a heat insulating material 1 to prevent the adverse effects from the temperature inside the furnace, and FIG. A skid rail 6 is shown attached to the upper surface of a water cooling pipe 2 sealed with a material 1 via a support 5. Here, in any of the drawings, the reference numeral 7
indicates a heated material such as a slab. It goes without saying that the water cooling pipe 2 is for protecting the skid button 4 or the skid rail 6 from a high temperature atmosphere. As is clear from these drawings, the skid buttons and skid rails used as the hearth material of a heating furnace must support the weight of the material to be heated in a high-temperature atmosphere, and are subject to shocks caused by the movement of the material to be heated. Since it is also placed at the bottom, it is required to have sufficient strength and oxidation resistance at high temperatures. Therefore, conventionally, the hearth material
HS21 (American standard) material and UMCO50 (Belgian standard)
Co-based heat-resistant alloys such as steel, or heat-resistant cast steel such as SCH13 (JIS standard material, commonly used as hearth material for heating furnaces) were used. However, it has been pointed out that these conventional heat-resistant alloys used for hearth support members are susceptible to cracking and cracking due to thermal shock due to temperature fluctuations and mechanical shock due to load fluctuations, and also have poor strength. The limit temperature for use is approximately 1150°C, and when used in a higher temperature atmosphere, it is necessary to cool the member by means such as water cooling.
For this reason, current furnaces for heating steel materials have a structure in which the hearth components are cooled from the bottom, but this "cooling of the hearth components" can also cause skid marks on the heated materials. Therefore, it became necessary to take extra measures to prevent skid marks. Furthermore, even if hearth members are cooled from the bottom, the temperature at the top inevitably rises, and conventional hearth members made of heat-resistant alloys cannot prevent "cracking" or "settling" at the top. The problem with this issue also remained unresolved. For this reason, the inventors of the present invention have developed a method to first prevent "impact cracking" and "settling" of hearth members and to prevent skid marks on heated materials. We proposed a composite material for hearth parts in which ceramic particles are dispersed (Japanese Patent Application Laid-Open No. 60-200948, JP-A No. 61-41734).
issue). The above composite material proposed by the present inventors not only has excellent high-temperature strength and impact cracking resistance, but also has an extremely high heat insulation effect and has a thermal conductivity that is about 1/3 that of the matrix material alone. Therefore, even in the case of high-temperature heating when the material to be heated is steel, the temperature of the contact area with the material to be heated increases by about 40℃ compared to when using a hearth member made of a single metal. Therefore, it was highly effective in reducing skid marks. However, recent trends in the operation of heating furnaces indicate that the furnace temperature
High-temperature heating of 1250 to 1300°C is increasingly being carried out, and hearth members (supporting members for heated materials)
It is not uncommon for temperatures to reach over 1200℃,
At such high temperatures, even if the ceramic particle dispersed composite material proposed above is used, there is a concern that the strength will decrease and deformation will occur, and further improvement in impact cracking resistance is desired. I'm getting used to it. Furthermore, even when ceramic particle dispersed composites are used, the higher the amount of Co as a component of the matrix material, the better the compression creep resistance, but since Co is an expensive element,
There was a desire for an inexpensive matrix material with as little Co as possible. Therefore, the furnace temperature
Development of an inexpensive material for hearth components that maintains high strength and excellent impact cracking resistance even under severe operating temperatures of 1250 to 1300°C, and that can reduce skid marks without requiring excessive cooling. The current situation was that it was an urgent matter. <Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have developed a heat-resistant material for hearth members that exhibits excellent oxidation resistance, impact resistance, and strength that are sufficiently satisfactory even under high-temperature operation. In the course of this research, the inventors have proposed the above-mentioned ceramic particles, which have significantly superior properties than conventional materials for use as a hearth material for heating furnaces. It goes without saying that the dispersed ceramic particles greatly contribute to the high-temperature strength and impact cracking resistance of the "dispersed composite material," but the characteristics of the matrix material also have an extremely large influence, and the In order to further improve the above properties of particle-dispersed composites, it is absolutely necessary to develop matrix materials with even better high-temperature strength, oxidation resistance, and impact cracking resistance.'' Therefore, we are focusing on the relatively good high-temperature strength, oxidation resistance, and corrosion resistance of Co-based heat-resistant alloys, as well as further improving the strength of the alloys in high-temperature ranges and preventing cracking caused by thermal shock and mechanical shock. As a result of repeated research on ways to prevent this, we have come to the knowledge shown in (a) to (d) below. (a) This is a particular problem when used as a hearth component.
Impact cracking in Co-based heat-resistant alloys is caused by carbides, σ phase,
(b) However, this is largely due to the precipitation of intermetallic compounds, and it is essential to suppress these precipitations in order to improve the properties of Co-based heat-resistant alloys as hearth components. Reducing the amounts of C, Si, and Mn in the alloy is effective in preventing the precipitation of carbides and σ phase in Co-based heat-resistant alloys, and the above objectives can be fully achieved by suppressing the content of these elements below specific values. In addition, reducing the amounts of Si, Cr, Mo, and Mn is effective in suppressing the precipitation of intermetallic compounds in high-temperature ranges. Reducing the amounts of C, Si, Si, and Mn in the alloy has a very significant effect on suppressing the precipitation of carbides, σ phase, and intermetallic compounds without adversely affecting properties such as high temperature strength and oxidation resistance of the alloy. (d) By reducing the amounts of C, Si, and Mn in a Co-based heat-resistant alloy to below specific values, and carefully adjusting other components within specific ranges, oxidation resistance, high-temperature corrosion resistance, and high-temperature resistance can be improved. A heat-resistant alloy with excellent performance as a hearth member with good compressive creep strength and impact cracking resistance can be obtained, and when this is applied as a matrix (base material) of a ceramic particle dispersed composite material, it can be heated at temperatures of 1200 to 1300°C. It exhibits sufficiently excellent oxidation resistance, impact cracking resistance, and high-temperature compression creep strength even at moderately high temperatures.
Moreover, it is possible to obtain high-performance heat resistance for hearth members with good heat insulation properties. This invention was made based on the above knowledge, and it is based on the following: ``A heat-resistant alloy for a hearth member of a heating furnace, containing C: 0.1% or less (hereinafter, % representing the component ratio is % by weight); Si: 0.8% or less, Mn: 0.8% or less, Cr: 25-30%, Ni: 20-30%, Mo: 0.5-2%, Fe: 10-20%, P: 0.04% or less, S: 0.04% By having the following properties and the remainder being substantially made of Co, it not only has excellent high-temperature compressive strength, oxidation resistance, and corrosion resistance, but also has sufficient resistance to thermal shock and mechanical shock in high-temperature ranges. It also has impact cracking resistance that can withstand high temperatures, and has properties that can further improve its performance when applied as a matrix for composite materials for ceramic particle dispersion hearth components. It has the following. The reason why the proportions of each component in the heat-resistant alloy for hearth members of the present invention are numerically limited as described above is as follows. (a) C The C component has the effect of improving the creep strength of the alloy, but if its content exceeds 0.1%, it will form carbides and cause the alloy to become brittle, making it particularly disadvantageous as a matrix (material) material. Therefore, the C content was set at 0.1% or less. In addition, in the alloy composition according to the present invention, the effect of improving creep strength is sufficiently recognized even when the C content is extremely small. (b) Si Si element is a component that deoxidizes alloys and imparts oxidation resistance, but it is an important element that needs to be reduced as much as possible because if added in large amounts, it will form intermetallic compounds and cause a decrease in toughness. It is. Therefore, the upper limit is set at 0.8%, which is an acceptable amount to prevent impact cracking in high temperature ranges.
In particular, it was stipulated to be regulated below that value, but Si
The decrease in oxidation resistance that may occur due to a decrease in the content can be effectively avoided by carefully adjusting the alloy composition within the range defined in this invention. (c) Mn Mn is an effective component from the viewpoint of deoxidizing agent and desulfurizing agent for alloys, but its content is 0.8
The Mn content was limited to 0.8% or less since it would have a negative effect on high temperature strength if it exceeded 0.8%. (d) Cr Cr is an essential component to ensure good oxidation properties in the alloy, and is necessary to maintain sufficient heat resistance.
It is necessary to contain 25% or more, but since containing more than 30% will lead to deterioration of toughness, the Cr content is set at 25 to 30%. (e) Ni The Ni component has the effect of stabilizing the austenite in the alloy and ensuring oxidation resistance, but if its content is less than 20%, the desired effect cannot be obtained, especially when the Si content is However, the alloy system according to the invention causes considerable deterioration in oxidation resistance. On the other hand, the Ni content was limited to 20 to 30% because the oxidation resistance did not improve further even if the Ni content exceeded 30%. (f) Mo The Mo component has the effect of improving the high-temperature strength of the alloy, but if its content is less than 0.5%, the desired effect will not be obtained, while if it is contained in excess of 2%, the toughness will be reduced. There is a concern that this may have an adverse effect, especially when used as a matrix material for dispersing and compounding ceramic particles, as cracking may occur due to a decrease in toughness.
The Mo content was set at 0.5 to 2%. (g) Fe The Fe component has the effect of improving the high-temperature compression creep strength of the alloy, and is necessary to ensure the bonding properties when ceramic particles are dispersed and composited. If it is less than %, the desired effect cannot be obtained from the above action; on the other hand,
The Fe content was set at 10 to 20% because the above effects did not improve significantly even if the Fe content exceeded 20%. (h) P and S These are both impurity elements that are inevitably mixed in, and if any of them is contained in excess of 0.04%, it will have a negative effect on the strength, weldability, and toughness of the alloy. Each content 0.04%
Limited to the following. Note that the heat-resistant alloy of the present invention can be manufactured by melting and casting means, similar to conventional Co-based heat-resistant alloys. When producing a ceramic particle-dispersed composite material using the alloy as a matrix, it is desirable to employ the following method. That is, (i) As shown in FIG. 3, a mixture of the heat-resistant alloy powder and ceramic particles according to the present invention is put into a crucible 8 made of alumina or the like, and subjected to high frequency heating, etc. (the symbols in FIG. 3) 9 indicates a high-frequency induction coil), when the heat-resistant alloy is melted, the gap between the ceramic particles is sufficiently filled with the molten alloy by pressurizing it with a pressure piston 10 also made of alumina, and then the molten alloy is cooled. How to coagulate. (ii) An opening 11 at the bottom as shown in Figure 4.
and a compartment 13 having a gas venting hole 12 in the upper part is placed inside the refractory container 14,
First, the ceramic particles 15 are charged into the compartment 13, and then the heat-resistant alloy powder according to the present invention is charged around the compartment 13, and then these are heated to melt the heat-resistant alloy powder. to penetrate between the ceramic particles in the compartment 13 through the opening 11,
The method is then cooled and solidified. By the way, when a hearth member of a heating furnace is constructed from a ceramic particle-dispersed composite material whose matrix is the heat-resistant alloy according to the present invention, alumina (Al 2 O 3 ) is used as the ceramic to be uniformly dispersed.
High purity products are suitable, but other 3Al 2 O 3 and
Oxide ceramics such as 2SiO 2 or ZrO 2 ,
Carbide ceramics such as SiC or TiC, sialon, etc. can also be used. The average particle size of the particles is preferably 5 mmφ or less, and the amount incorporated into the matrix material is preferably about 50 to 75% by volume. Further, FIG. 5 is a schematic vertical cross-sectional view showing an example of a skid button for a heating furnace made of an alumina particle dispersed composite material, in which reference numeral 16 indicates alumina particles, 17 indicates a ceramic foam, and 18 indicates the present invention. A matrix (base material) made of such a heat-resistant alloy is shown. Next, the present invention will be specifically explained with reference to Examples. <Example> First, a Co-based heat-resistant alloy having the composition shown in Table 1 was melted by a conventional method, and alumina particles shown in Table 2 were prepared. Next, some of these heat-resistant alloys have a diameter of 90 mm.
A skid button with a length of 100 mm was cast, and the remaining heat-resistant alloy was cast using the method shown in Figure 4 [(ii) above].
Using the method described above, the alumina particles were uniformly dispersed and molded to produce skid buttons made of a ceramic (alumina) dispersed composite material of the same size.
The alumina particle filling rate of this composite material is approximately 60.
It was %. Next, each of these skid buttons should be acid resistant.

【表】【table】

【表】【table】

【表】【table】

【表】 化性を調査すると共に、スキツドボタンから切り
出した試験片によつて圧縮クリープ強度を測定し
た。なお、「耐酸化性」は、スキツドボタンを大
気中で1300℃に加熱し40時間保持したときの酸化
減量又は酸化増量を測定して評価し、一方「圧縮
クリープ強度」は1200℃、1250℃及び1300℃の各
温度下で試験片に2Kgf/mm2の応力をかけて3時
間保持した後の圧縮クリープ歪量を比較して評価
した。 なお、“酸化減量”又は“酸化増量”とは、試
験片を加熱炉中で一定時間保持してから取り出し
た後の重量変化を示すものである。即ち、試験片
が加熱炉中で酸化され、その表面にスケールが生
成すると一般に試験片の重量は増加するが、これ
を“酸化増量”と言う。一方、加熱炉中で生成し
たスケールがスケール成長時に割れて試験片表面
から剥落すると試験片の重量が減少するが、これ
を“酸化減量”と言う。 酸化増量が認められる試験片はスケールの剥落
が無かつたということであり、酸化減量が認めら
れる試験片はスケールの剥落が生じた訳である。
勿論、スケールが剥落した後で更にスケールが生
成することも有り得る。何れにしても、酸化減量
又は酸化増量の少ない耐熱合金が耐酸化性に優れ
ているということになる。 このように、酸化減量又は酸化増量は、加熱炉
中での耐熱合金の耐酸化性を極く簡単にかつ的確
に評価できる実用的な指標となり得るので、本実
施例ではこれにより耐酸化性の評価を行うことと
した。 これらの結果を、第3表に示した。 第3表に示される結果からも、この発明に係る
Co基耐熱合金は、単体で加熱炉のスキツドボタ
ンとして適用したとしても耐酸化性及び高温圧縮
クリープ強度の点で従来合金に決して引けをとら
ないばかりか、アルミナ粒子を分散させた複合ス
キツドボタンのマトリツクス(素地)として使用
した場合には、得られるスキツドボタンは耐酸化
性及び高温圧縮クリープ強度とも従来材を凌駕す
る優れた値を示すことが明らかであり、1300℃で
の高温においても十分な強度を有することが分か
る。特に本発明合金E〜Hは、従来合金Bに比べ
て耐酸化性が優れている。また、Ni量、Fe量の
増量によつてCo量の減量を図つてもなお高温強
度は損なわれておらず、そのため高価なCoの節
減によつてコスト低減が達成されている。 これに対して、化学成分組成が本発明で規定す
る条件から外れているCo基合金の場合には、ア
ルミナ粒子を分散させた複合材のマトリツクス
(素地)として使用しても、得られるスキツドボ
タンはセラミツクス複合材に期待される性能を十
分に満足しないことが確認できる。 一方、これとは別に、“本発明合金適用材f及
びj”についてして高温での機械的衝撃に対する
強度を調査した。 衝撃強度の測定は、各々50体ずつの試験体を作
り、1200℃の加熱下で5Kgの重垂を4mの高さか
ら落下させて衝撃を加える落重試験によつた。な
お、衝撃強度の評価は、1〜5回の5種類の衝撃
回数試験のそれぞれに各々10体の同一材質試験体
を供し、合計〔50体/1材質〕の落重試験結果に
基づいて行つた。 この結果、第6図に示すように、式 亀裂発生率(%)=亀裂発生試験体数/10体×100 によつて算出した「亀裂発生率」は、5回の衝撃
回数下でも20%を越えることが無かつたのに対し
て、従来合金製スキツドボタンbに同じ試験を行
つた場合には5回程度の衝撃によつても「亀裂発
生率」は50%に達してしまつた。 <発明の効果> 以上に説明した如く、この発明によれば、極め
て優れた耐熱特性を有するコストの安い炉床部材
用耐熱合金を提供することができ、更にセラミツ
クス粒子複合材のマトリツクス(素地)として使
用した場合には1300℃の高温域でも十分な強度、
耐酸化性及び耐衝撃割れ性を発揮する上、優れた
断熱性を有していてスキツドマーク抑制効果の大
きな炉床部材が実現され、加熱炉の性能及び耐久
性を一段と向上することが可能となるなど、産業
上極めて有用な効果がもたらされるのである。
[Table] In addition to investigating the chemical resistance, compressive creep strength was measured using test pieces cut from skid buttons. In addition, "oxidation resistance" is evaluated by measuring the oxidation loss or oxidation gain when the skid button is heated to 1300℃ in the air and held for 40 hours, while "compressive creep strength" is evaluated at 1200℃, 1250℃ and oxidation gain. A stress of 2 Kgf/mm 2 was applied to the test piece at each temperature of 1300°C and the amount of compressive creep strain was compared and evaluated after being held for 3 hours. Note that "oxidation weight loss" or "oxidation weight gain" refers to the weight change after a test piece is held in a heating furnace for a certain period of time and then taken out. That is, when a test piece is oxidized in a heating furnace and scale is formed on its surface, the weight of the test piece generally increases, and this is called "oxidation weight gain." On the other hand, when the scale generated in the heating furnace cracks and flakes off from the surface of the test piece during scale growth, the weight of the test piece decreases, and this is called "oxidation loss." A test piece in which an increase in weight due to oxidation was observed had no scale flaking off, and a test piece in which a weight loss due to oxidation was observed had scale flaking off.
Of course, it is possible that more scale will be generated after the scale has fallen off. In any case, a heat-resistant alloy with less oxidation loss or oxidation gain has excellent oxidation resistance. In this way, oxidation loss or weight gain can be a practical index that can very easily and accurately evaluate the oxidation resistance of a heat-resistant alloy in a heating furnace. We decided to conduct an evaluation. These results are shown in Table 3. From the results shown in Table 3, it is clear that
Co-based heat-resistant alloys are not only comparable to conventional alloys in terms of oxidation resistance and high-temperature compression creep strength even when used alone as skid buttons in heating furnaces, but also in the matrix of composite skid buttons in which alumina particles are dispersed. When used as a material (base material), it is clear that the resulting skid button exhibits superior oxidation resistance and high-temperature compression creep strength, surpassing conventional materials, and has sufficient strength even at high temperatures of 1300℃. I understand that. In particular, alloys E to H of the present invention have superior oxidation resistance compared to conventional alloy B. Furthermore, even if the amount of Co is reduced by increasing the amount of Ni and Fe, the high-temperature strength is not impaired, and therefore cost reduction is achieved by saving expensive Co. On the other hand, in the case of a Co-based alloy whose chemical composition does not meet the conditions specified in the present invention, even if it is used as a matrix of a composite material in which alumina particles are dispersed, the resulting skid button will be It can be confirmed that the performance expected of ceramic composite materials is not fully satisfied. Separately, the strength against mechanical impact at high temperatures was investigated for "materials f and j to which the alloy of the present invention was applied". The impact strength was measured using a drop weight test in which 50 specimens were prepared for each specimen and a 5 kg weight was dropped from a height of 4 meters under heating at 1200°C. In addition, the impact strength evaluation was performed based on the drop weight test results of a total of [50 specimens/1 material] by subjecting 10 specimens of the same material to each of 5 types of impact frequency tests from 1 to 5 times. Ivy. As a result, as shown in Figure 6, the "crack occurrence rate" calculated using the formula: crack occurrence rate (%) = number of cracked test specimens/10 specimens x 100 is 20% even after 5 impacts. On the other hand, when the same test was performed on the conventional alloy skid button B, the "crack occurrence rate" reached 50% even after about 5 impacts. <Effects of the Invention> As explained above, according to the present invention, it is possible to provide a low-cost heat-resistant alloy for hearth members having extremely excellent heat-resistant properties, and furthermore, it is possible to provide a ceramic particle composite matrix (base material). Sufficient strength even in the high temperature range of 1300℃ when used as a
A hearth member that exhibits oxidation resistance and impact cracking resistance, has excellent heat insulation properties, and is highly effective in suppressing skid marks has been realized, making it possible to further improve the performance and durability of heating furnaces. This brings about extremely useful industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼材加熱用加熱炉の炉床支持構造の
例を示す要部概略模式図であり、第1図aはその
正面図で、第1図bは横断面図である。第2図
は、鋼材加熱用加熱炉の炉床支持構造の別の例を
示す要部概略模式図である。第3図は、セラミツ
クス粒子複合材の製造方法例を示す概略模式図で
ある。第4図は、セラミツクス粒子複合材の製造
方法の別の例を示す概略模式図である。第5図
は、アルミナ粒子分散複合材で構成した加熱炉用
スキツドボタンの一例を示す概略縦断面模式図で
ある。第6図は、亀裂発生率に対する衝撃回数の
影響を従来材と本発明合金について調査した結果
を示すグラフである。 図面において、1……断熱材、2……水冷パイ
プ、3……台座、4……スキツドボタン、5……
支持台、6……スキツドレール、7……被加熱材
(スラブ等)、8……るつぼ、9……高周波加熱コ
イル、10……加圧ピストン、11……開口、1
2……ガス抜き用孔、13……隔室、14……耐
火物容器、15……セラミツクス粒子、16……
アルミナ粒子、17……セラミツクフオーム、1
8……耐熱合金マトリツクス。
FIG. 1 is a schematic diagram of essential parts showing an example of a hearth support structure of a heating furnace for heating steel materials, FIG. 1a is a front view thereof, and FIG. 1b is a cross-sectional view thereof. FIG. 2 is a schematic diagram of main parts showing another example of a hearth support structure of a heating furnace for heating steel materials. FIG. 3 is a schematic diagram showing an example of a method for manufacturing a ceramic particle composite material. FIG. 4 is a schematic diagram showing another example of a method for manufacturing a ceramic particle composite material. FIG. 5 is a schematic vertical cross-sectional view showing an example of a skid button for a heating furnace made of an alumina particle dispersed composite material. FIG. 6 is a graph showing the results of investigating the influence of the number of impacts on the crack occurrence rate for conventional materials and the alloy of the present invention. In the drawing, 1...Insulation material, 2...Water cooling pipe, 3...Pedestal, 4...Skid button, 5...
Support stand, 6... skid rail, 7... material to be heated (slab etc.), 8... crucible, 9... high frequency heating coil, 10... pressure piston, 11... opening, 1
2... Gas vent hole, 13... Compartment, 14... Refractory container, 15... Ceramic particles, 16...
Alumina particles, 17... Ceramic foam, 1
8...Heat-resistant alloy matrix.

Claims (1)

【特許請求の範囲】 1 含有化学成分が C:0.1%以下、Si:0.8%以下、 Mn:0.8%以下、Cr:25〜30%、 Ni:20〜30%、Mo:0.5〜2%、 Fe:10〜20%、P:0.04%以下、 S:0.04%以下 であつて(以上、重量%)、残部が実質的にCoか
ら成ることを特徴とする、耐酸化性及び耐衝撃亀
裂性に優れた炉床部材用耐熱合金。 2 用途がセラミツクス粒子を均一分散させた粒
子分散複合炉床部材の素地材である、特許請求の
範囲第1項に記載の耐酸化性及び耐衝撃亀裂性に
優れた炉床部材用耐熱合金。
[Claims] 1 Containing chemical components: C: 0.1% or less, Si: 0.8% or less, Mn: 0.8% or less, Cr: 25-30%, Ni: 20-30%, Mo: 0.5-2%, Oxidation resistance and impact cracking resistance characterized by Fe: 10 to 20%, P: 0.04% or less, S: 0.04% or less (weight %), and the balance essentially consists of Co. A heat-resistant alloy for hearth parts with excellent properties. 2. The heat-resistant alloy for hearth members having excellent oxidation resistance and impact cracking resistance according to claim 1, which is used as a base material for particle-dispersed composite hearth members in which ceramic particles are uniformly dispersed.
JP30485086A 1986-12-20 1986-12-20 Heat-resisting alloy for furnace bed member Granted JPS63157827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30485086A JPS63157827A (en) 1986-12-20 1986-12-20 Heat-resisting alloy for furnace bed member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30485086A JPS63157827A (en) 1986-12-20 1986-12-20 Heat-resisting alloy for furnace bed member

Publications (2)

Publication Number Publication Date
JPS63157827A JPS63157827A (en) 1988-06-30
JPH05463B2 true JPH05463B2 (en) 1993-01-06

Family

ID=17938026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30485086A Granted JPS63157827A (en) 1986-12-20 1986-12-20 Heat-resisting alloy for furnace bed member

Country Status (1)

Country Link
JP (1) JPS63157827A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439207A (en) * 1977-09-02 1979-03-26 Hitachi Ltd A propeller fan and process for making the same
JPS60200948A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Ind Ltd Composite material for supporting member of heating furnace
JPS6141734A (en) * 1984-08-02 1986-02-28 Sumitomo Metal Ind Ltd Manufacture of particle dispersion type composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439207A (en) * 1977-09-02 1979-03-26 Hitachi Ltd A propeller fan and process for making the same
JPS60200948A (en) * 1984-03-23 1985-10-11 Sumitomo Metal Ind Ltd Composite material for supporting member of heating furnace
JPS6141734A (en) * 1984-08-02 1986-02-28 Sumitomo Metal Ind Ltd Manufacture of particle dispersion type composite material

Also Published As

Publication number Publication date
JPS63157827A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
CN102994834B (en) Heatproof magnesium alloy containing Nb
US3085005A (en) Alloys
WO2022148426A1 (en) High-aluminum austenitic alloy having excellent high-temperature anticorrosion capabilities and creep resistance
JPS60200948A (en) Composite material for supporting member of heating furnace
JPH0321622B2 (en)
EP0441574B1 (en) Skid member using Fe/Cr dispersion strengthened alloys
JPH05463B2 (en)
JPH06287667A (en) Heat resistant cast co-base alloy
JP4213901B2 (en) Low thermal expansion casting alloy having excellent hardness and strength at room temperature and low cracking susceptibility during casting, and method for producing the same
JPS6221860B2 (en)
US5226980A (en) Skid rail alloy
JP2688729B2 (en) Aluminum corrosion resistant material
RU1520871C (en) Alloy on nickel-base
CA1070145A (en) High strength ferritic alloy
CN117026015B (en) High-temperature-resistant alloy and preparation method and application thereof
EP0441573B1 (en) Heat-resistant alloy
JPS6254388B2 (en)
CN113444950B (en) Chromium-based high-nitrogen alloy cushion block for silicon steel high-temperature heating furnace and preparation method thereof
JPS6214214B2 (en)
JPH05271840A (en) Cr based alloy for superheat resistant member
JPS628497B2 (en)
JPS6330380B2 (en)
JPH101753A (en) Heat resistant alloy for skid button in heating furnace
JPS6133888B2 (en)
JPH04301049A (en) Heat resisting alloy for support surface member for steel material to be heating in heating furnace