JPS6141734A - Manufacture of particle dispersion type composite material - Google Patents

Manufacture of particle dispersion type composite material

Info

Publication number
JPS6141734A
JPS6141734A JP16309684A JP16309684A JPS6141734A JP S6141734 A JPS6141734 A JP S6141734A JP 16309684 A JP16309684 A JP 16309684A JP 16309684 A JP16309684 A JP 16309684A JP S6141734 A JPS6141734 A JP S6141734A
Authority
JP
Japan
Prior art keywords
metal
particles
matrix
composite material
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16309684A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Morita
森田 喜保
Manabu Seguchi
瀬口 学
Fuminori Higami
樋上 文範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16309684A priority Critical patent/JPS6141734A/en
Publication of JPS6141734A publication Critical patent/JPS6141734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture the titled material having no pore and superior heat resistance, by pouring molten metal for matrix from the bottom part of a vessel fed with preheated ceramic particles. CONSTITUTION:The vessel 22 fed with metal such as Al, Al alloy, Ni, Cr, Co alloy, steel, stainless steel of metal material to be matrix, is entered a high frequency furnace 20. Further, a partition chamber 23 fed with ceramic particles 28 such as Al2O3, SiC, ZnO2, TiC and having an opening hole 24 and a gas exhausting hole 25 at the bottom and upper parts respectively, is arranged therein, and a weight 26 is mounted thereon. Electricity is conducted to a coil 27 of the furnace 20 to preheat the particles 28 and melt metal in the vessel 22, molten metal is entered into the chamber 23 from the hole 24, inside gas is pushed out from the hole 25, and said metal is filled in the particles 28 and solidified. The titled material superior in heat shock resistance and composed of metal matrix in which ceramic particles are dispersed uniformly without pores, is manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒子分散型複合材料の製造方法に関する。更に
詳しくは、金属マトリックス中にセラミック粒子を均一
に分散した、気泡を殆ど含まない複合材料の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a particle-dispersed composite material. More specifically, the present invention relates to a method for producing a composite material containing almost no bubbles, in which ceramic particles are uniformly dispersed in a metal matrix.

従来の技術 従来、スキッドボタンなどの高温強度部材として耐熱合
金、例えば30Cr −50Co −Fe系耐熱合金(
1MCo50) 、27Cr−40Co−2ONi−F
e系耐熱合金等が使用されてきたが、クリープ変形が生
じ易いなどの欠点があるために、金属では自ずと限界が
ある。一方、セラミックを耐熱合金の代用として使用す
ることも当然考えられるが、セラミックは耐II強度が
低いために、セラミック単体の実用化には問題がある。
Conventional technology Conventionally, heat-resistant alloys, such as 30Cr-50Co-Fe heat-resistant alloys (
1MCo50), 27Cr-40Co-2ONi-F
E-based heat-resistant alloys and the like have been used, but metals naturally have their limits because they have drawbacks such as being susceptible to creep deformation. On the other hand, it is naturally possible to use ceramics as a substitute for heat-resistant alloys, but since ceramics have low II strength, there is a problem in putting ceramics into practical use.

そこで、セラミックと金属夫々の利点を生かした、金属
をマ) IJソックスする粒子分散型複合材の開発が重
視されてきており、既にいくつかの複合材並びにその製
法が開発されている。
Therefore, emphasis has been placed on the development of particle-dispersed composite materials for IJ socks, which take advantage of the respective advantages of ceramics and metals, and several composite materials and their manufacturing methods have already been developed.

例えば、E、 Nakataの金属、1982年、pp
19〜22には溶湯鍛造法、拡散結合法、鋳造法、押出
し、圧延法、蒸着法等による各種の複合化技術が金属系
複合材料の複合加工法に応用できることを開示しており
、特に最初の溶湯鍛造法について詳述している。
For example, E. Nakata Metals, 1982, pp.
Nos. 19 to 22 disclose that various composite technologies such as molten metal forging, diffusion bonding, casting, extrusion, rolling, and vapor deposition can be applied to composite processing methods for metal composite materials. The molten metal forging method is explained in detail.

この溶湯鍛造法による粒子分散型複合材料の製造法を添
付第2図に従って説明する。
A method for producing a particle-dispersed composite material using this molten metal forging method will be explained with reference to the attached FIG. 2.

まず、第2図(a)はこの方法で使用する装置を示すも
のであり、金型lとプランジャー2とから主としてなり
、該金型1にはその周囲にヒータ3が設けられている。
First, FIG. 2(a) shows an apparatus used in this method, which mainly consists of a mold 1 and a plunger 2, and a heater 3 is provided around the mold 1.

該金型1内に分散すべき粒子4を充填し、第2図(b)
に示したように一担ブランジャー2により圧力P1で加
圧し、粒子4をできる限り密なバッキング状態とする。
The mold 1 is filled with particles 4 to be dispersed, as shown in FIG. 2(b).
As shown in Figure 2, the particle 4 is brought into a backing state as dense as possible by pressurizing it with a pressure P1 using the single plunger 2.

次いで、金型1の上方から鋼製金網5を装入し、溶融金
属よりも比重の小さな粒子が溶湯注入の際に浮上しない
ようにする。この状態でマトリックスを形成する溶融金
属6を金型1の上方から注入(第2図(C)参照)し、
再度プランジャー2で加圧(pi)  (第2図(d)
参照)しつつ冷却して、目的とする粒子分散型複合材料
を得ることができる。
Next, a steel wire mesh 5 is inserted into the mold 1 from above to prevent particles having a specific gravity smaller than that of the molten metal from floating during injection of the molten metal. In this state, the molten metal 6 forming the matrix is injected from above the mold 1 (see FIG. 2(C)),
Apply pressure (pi) again with plunger 2 (Fig. 2 (d)
(see) and cooling, the desired particle-dispersed composite material can be obtained.

しかしながら、マトリックスとしての金属が高融点のも
のである場合、セラミックには溶融金属の鋳込みによる
熱衝撃が作用し、その結果セラミック粒子10が極めて
損傷を受けやすく、第3図に模式的に示したように、割
れ11などの損傷を生じる。また、特にセラミック粒子
間並びに粒子内に存在する空気などのガスおよび鋳込み
過程で生ずるガスに起因する空洞(第3図の12)の形
成がみ −られる。これは上方から急激に溶融金属を注
入すること並びに鋳込みの際の冷却過程において凝固が
四周並びに表面などの冷却され易い部分から始まること
によるものと考えられる。従って、今までのところ良質
のこの種の複合材は、製品化されていない。
However, when the metal as the matrix has a high melting point, the ceramic is subjected to thermal shock due to the casting of the molten metal, and as a result, the ceramic particles 10 are extremely susceptible to damage, as shown schematically in FIG. As a result, damage such as cracks 11 occurs. In addition, the formation of cavities (12 in FIG. 3) caused by gases such as air existing between and within the ceramic particles and gases generated during the casting process is also observed. This is thought to be due to the rapid injection of molten metal from above and the fact that during the cooling process during casting, solidification begins from areas that are easily cooled, such as the circumference and the surface. Therefore, to date, this type of composite material has not been commercialized with good quality.

発明が解決しようとする問題点 上で詳細に述べたように、従来の粒子分散型複合材料の
製造方法では、分散すべき粒子の上方からマトリックス
としての溶融金属を注入していたために、粒子間、粒子
内のガス並びに複合材料の鋳込み過程で発生するガスが
抜けにくいので、最終製品中には空洞が形成されたり、
また、鋳込みの際の熱衝撃のために分散粒子が割れなど
の損傷を受ける恐れがあった。
Problems to be Solved by the Invention As described in detail above, in the conventional manufacturing method of particle-dispersed composite materials, molten metal was injected as a matrix from above the particles to be dispersed, which caused Since the gas inside the particles and the gas generated during the casting process of composite materials are difficult to escape, cavities may be formed in the final product.
Further, there was a risk that the dispersed particles would be damaged such as cracking due to thermal shock during casting.

このような情況の下で、上記の各種問題点を解決し、良
質の粒子分散型複合材料の製造方法を開発することは当
分野において重要な課題の一つとなっている。
Under these circumstances, solving the above-mentioned various problems and developing a method for producing high-quality particle-dispersed composite materials has become one of the important issues in this field.

そこで、本発明の目的は前記従来の各種問題点を解決す
ることのできる、新規な粒子分散型複合材料の製造方法
を提供することにある。また、彼方法によって得られる
良質の粒子分散型複合材料を提供することも本発明の目
的の一つである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel method for producing a particle-dispersed composite material, which can solve the various problems of the conventional methods. Another object of the present invention is to provide a high-quality particle-dispersed composite material obtained by this method.

問題点を解決するための手段 本発明者等は粒子分散型複合材料の製法における従来法
の前記現状に鑑みて、良質の使用に耐え得る複合材料を
製造すべく種々検討、研究した結果、分散すべき粒子を
予熱し、溶融金属の注入を下方から実施することが、前
記本発明の目的達成のために極めて有効であることを見
出した。本発明はこれらの知見に基き完成されたもので
ある。
Means for Solving the Problems In view of the above-mentioned current state of the conventional method for manufacturing particle-dispersed composite materials, the inventors have conducted various studies and researches in order to manufacture composite materials of good quality that can withstand use. It has been found that preheating the particles to be treated and carrying out the injection of molten metal from below is extremely effective for achieving the object of the present invention. The present invention was completed based on these findings.

即ち、本発明の粒子分散型複合材料の製造方法は、炉内
に、少なくとも1つの開孔を有する隔壁と、ガス抜き用
孔を備えた上部壁とを有する隔室を設け、該隔室内にセ
ラミック粒子を装入し、該隔室外に固体金属を装入し、
加熱して該固体金属を溶融させ、該溶融金属を前記開孔
を介して前記隔室内に浸入させることを特徴とする。
That is, in the method for producing a particle-dispersed composite material of the present invention, a compartment having a partition wall having at least one opening and an upper wall having a gas vent hole is provided in the furnace, and charging ceramic particles and charging solid metal outside the compartment;
The method is characterized in that the solid metal is heated to melt and the molten metal is allowed to enter the compartment through the opening.

尚、使用炉としては高周波炉が最も適しているが、他の
加熱炉でもよい。
Although a high frequency furnace is most suitable as the furnace to be used, other heating furnaces may be used.

作用 第1図に本発明の方法を実施するための装置の1例を断
面図として概略的に示した。以下この第1図に従って、
本発明の方法を更に詳しく説明する。
Operation FIG. 1 schematically shows, as a sectional view, an example of an apparatus for carrying out the method of the present invention. Below, according to this figure 1,
The method of the present invention will be explained in more detail.

第1図に示した装置は、高周波炉20と、炉20内にス
タンプ材21を介して設けられた複合材のマトリックス
を形成する金属用の容器22と、セラミック粒子を装入
するための隔室23とから主として構成されている。
The apparatus shown in FIG. 1 includes a high-frequency furnace 20, a container 22 for metal forming a matrix of composite material provided in the furnace 20 via a stamp material 21, and a partition for charging ceramic particles. It is mainly composed of a chamber 23.

隔室23は底部壁を有していてもよく、また底部開放型
であって、容器22によって閉じられるように構成され
ていてもよい。隔室23の側壁下方には少なくとも1つ
、好ましくは複数の開孔部24が設けられていて、溶融
金属が隔室下部から浸入し得るようになっている。更に
上部壁にもガス抜き用孔25が少なくとも1つ、好まし
くは複数設けられていて、溶融金属が下方から浸入した
場合に、隔室上方から粒子間並びに粒子内に含まれてい
る空気などのガスおよび溶融金属と粒子とが接触した際
に生成される可能性のあるすべてのガスを大気中に排出
できるように構成されている。
The compartment 23 may have a bottom wall and may be open-bottomed and configured to be closed by the container 22. At least one and preferably a plurality of apertures 24 are provided in the lower side wall of the compartment 23 to allow molten metal to enter from the lower part of the compartment. Furthermore, the upper wall is also provided with at least one, preferably a plurality of gas venting holes 25, so that when molten metal enters from below, air contained between and within the particles is removed from above the compartment. It is configured to allow gases and any gases that may be produced upon contact of the particles with the molten metal to be vented to the atmosphere.

また、隔室上部には重り26が設けられていて、溶融金
属よりも比重の小さな分散用粒子の浮き上がりを防止し
ている。
Further, a weight 26 is provided at the top of the compartment to prevent dispersion particles having a specific gravity smaller than that of the molten metal from floating up.

隔室23の形状は特に制限されず、所望の複合材料の形
状に応じて適宜選ぶことができ、例えば立方体、直方体
、円柱、角柱等いかなる形状であってもよい。
The shape of the compartment 23 is not particularly limited and can be appropriately selected depending on the desired shape of the composite material, and may be any shape such as a cube, rectangular parallelepiped, cylinder, or prism.

高周波炉20の炉壁には加熱手段27(ここでは高周波
コイル)が埋設されており、マトリックス用の固体金属
を溶融すると共に、溶融金属の注入が開始される前に隔
室内の分散粒子を予熱する役割を果たす。
A heating means 27 (here, a high frequency coil) is embedded in the furnace wall of the high frequency furnace 20, which melts the solid metal for the matrix and preheats the dispersed particles in the compartment before the injection of molten metal starts. play a role.

第1図に示したような装置を用いて、実際に粒子分散型
複合材料を形成する方法を説明すると、まず、隔室23
内に粒子28を装入する。次いで、容器22の空間内に
複合材料のマトリックスを形成するための固体金属29
を詰める。
To explain how to actually form a particle-dispersed composite material using the apparatus shown in FIG.
Particles 28 are charged inside. A solid metal 29 is then applied to form a matrix of composite material within the space of the container 22.
Pack it.

ここで、分散粒子即ちセラミック粒子としては、例えば
Al2O3,3AIzOs ・2SIO2、Zr0zな
どの酸化物系セラミックス、SiC、TiCなどの炭化
物系セラミックス、サイアロン等が使用できる。また、
複合材料のマ) IJフックス成用金属としてはAI、
その合金、N1、Co、 Cr系合金、鋼、ステンレス
鋼等各種のものを例示できる。これら分散粒子用セラミ
ック材料、マトリックス用金属材料は最終製品としての
複合材料の所望する物性、用途等に応じて適宜選ぶこと
ができる。
Here, as the dispersed particles, that is, the ceramic particles, for example, oxide ceramics such as Al2O3,3AIzOs.2SIO2, Zr0z, carbide ceramics such as SiC and TiC, sialon, etc. can be used. Also,
Composite material materials: AI, IJ Fuchs metals,
Examples include alloys thereof, N1, Co, Cr alloys, steel, stainless steel, etc. The ceramic material for the dispersed particles and the metal material for the matrix can be appropriately selected depending on the desired physical properties, intended use, etc. of the composite material as a final product.

次いで、高周波炉20の高周波コイルを動作させて高周
波加熱を行ない、隔室23内のセラミック粒子28を予
熱すると共に容器23内に詰められたマトリックス用固
体金属を溶融させる。かくして、高周波加熱により溶融
する金属は自重により、また液面を加圧して強制圧入す
ることにより、隔室23の側壁下部に設けられた開口2
4を介してセラミック粒子の間隙内に溶融金属が下方か
ら徐々に浸入する。一方セラミック粒子間、粒子内等に
存在するガス、溶融金属とセラミック粒子との接触によ
り発生する可能性のあるガスなどが徐々に隔室上方に押
し上げられ、上部壁土に設けられたガス抜き孔25を介
して外気中に排出される。
Next, the high frequency coil of the high frequency furnace 20 is operated to perform high frequency heating, thereby preheating the ceramic particles 28 in the compartment 23 and melting the solid metal for the matrix packed in the container 23. In this way, the metal melted by high-frequency heating is forced into the opening 2 provided in the lower part of the side wall of the compartment 23 by its own weight and by pressurizing the liquid surface.
The molten metal gradually penetrates from below into the gaps between the ceramic particles through the holes 4 and 4. On the other hand, gases existing between and within ceramic particles, gases that may be generated due to contact between molten metal and ceramic particles, etc., are gradually pushed upwards into the compartment, and gas vent holes 25 provided in the upper wall soil are gradually pushed up. is discharged into the outside air through the

本発明の方法によれば、分散粒子中にもしくは分散粒子
間に存在するガスは、前記予熱期間中にも孔25を介し
て外部に放出される可能性が十分にあり、またマトリッ
クスを形成する金属の溶融物が隔室下部から注入される
ために、ガスの除去効率は極めて大きいものと考えられ
る。更に、隔室23への溶融金属の注入を幾分過剰に行
い、ガス抜き孔25から過剰溶融金属を排除して、ガス
抜き効率等を更に高め、より良質の複合材料を製造する
ことができる。
According to the method of the present invention, there is a good possibility that the gas present in the dispersed particles or between the dispersed particles is released to the outside through the holes 25 even during the preheating period, and also forms a matrix. Since the metal melt is injected from the bottom of the compartment, the gas removal efficiency is believed to be extremely high. Furthermore, by injecting the molten metal into the compartment 23 in a somewhat excessive amount and removing the excess molten metal from the gas vent hole 25, it is possible to further improve the gas venting efficiency and produce a higher quality composite material. .

上記の操作の終了後、冷却して、目的とするセラミック
粒子を分散させた複合材料を得ることができる。
After the above operation is completed, it is cooled to obtain a composite material in which the desired ceramic particles are dispersed.

実施例 以下、実施例に従って本発明の方法を更に具体的に説明
する。しかしながら、本発明は以下の実施例によって何
等制限されない。
EXAMPLES Hereinafter, the method of the present invention will be explained in more detail according to Examples. However, the present invention is not limited in any way by the following examples.

舅 以下表1に示す組成のセラミック粒子と金属とを用いて
、上記の操作に従って、セラミック粒子分散型複合材料
を試作した。
Using ceramic particles and metal having the compositions shown in Table 1 below, a ceramic particle-dispersed composite material was prototyped according to the above procedure.

表1 供試材の性状 金属 (本数値は%) 第4図(a)はこれら試作品の断面の一部を拡大して示
したものであり、(b)はその一部を更に拡大して示し
たものである。第4図から明らかな如く、円形のものが
分散セラミック粒子であり、それ以 −外の部分はマト
リックスとしての金属部分である。
Table 1 Metal properties of the sample materials (values are in %) Figure 4 (a) shows a partially enlarged cross section of these prototypes, and (b) shows a further enlarged view of that part. This is what is shown. As is clear from FIG. 4, the circular parts are the dispersed ceramic particles, and the other parts are the metal parts as a matrix.

該マ) IJフックス分はCOを主成分とする高融点の
耐熱合金(融点1390℃)であるが、このような高融
点金属を用いた鋳込みにおいても、セラミック粒子には
割れなどの損傷がまったく観察されなかった。更に、マ
トリックス地をみれば理解されるように空洞は殆どみら
れず、マトリックス金属がセラミック粒子間を殆ど完全
に満たしていることがわかる。
The IJ Fuchs component is a heat-resistant alloy with a high melting point (melting point 1390°C) whose main component is CO, but even when cast using such a high melting point metal, there is no damage such as cracks to the ceramic particles. Not observed. Furthermore, as can be seen from the matrix, there are almost no cavities, indicating that the matrix metal almost completely fills the spaces between the ceramic particles.

尚、参考までに、同じ材料を使用し、従来の方法でセラ
ミック粒子に上方から直接溶湯を注入することにより、
複合材を作製したが、第3図に模式的に示したように、
セラミック粒子には割れが観測され、また残留ガス等に
よる空洞が形成されていることがわかった。
For reference, by using the same material and injecting molten metal directly into the ceramic particles from above using the conventional method,
A composite material was prepared, but as schematically shown in Fig. 3,
Cracks were observed in the ceramic particles, and cavities were found to be formed due to residual gas.

発明の効果 かくして、これまで詳細に記載したように、本発明の粒
子分散型複合材料の製造方法によれば、マトリックス形
成用の溶融金属を分散粒子の下方から浸入させ、該マト
リックス金属の溶融をセラミック粒子を装入した後に行
って、該粒子を予熱するという特徴に基き、複合材料製
品中での空洞の形成を効果的に回避し、かつ溶融金属注
入の際の熱衝撃に起因する分散粒子の割れなどの損傷の
問題が完全に解決される。従って、本発明によれば十分
に使用に耐える良質の粒子分゛散型の複合材料を提供す
ることが可能となり、その利用価値は極めて大きいもの
といえよう。
Effects of the Invention Thus, as described in detail above, according to the method for producing a particle-dispersed composite material of the present invention, molten metal for forming a matrix is infiltrated from below the dispersed particles to prevent the melting of the matrix metal. Due to the characteristic of preheating the particles after charging the ceramic particles, it is possible to effectively avoid the formation of cavities in the composite product and reduce the dispersion of particles caused by thermal shock during molten metal injection. The problem of damage such as cracking is completely solved. Therefore, according to the present invention, it is possible to provide a high-quality particle-dispersed composite material that can be used satisfactorily, and its utility value can be said to be extremely large.

第1図は本発明の方法を実施するための装置を概略的断
面図で示すものであり、 第2図は従来の溶湯鍛造法による粒子分散型の複合材の
製造法を説明するための概略図であり、第3図は従来法
の鋳込みの際の熱isに起因する分散粒子の割れ、並び
に粒子内、粒子間に存在するガス等による空洞の形成を
示すための模式的な図であり、 第4図(a) :16よび(b)は本発明の方法によっ
て作製された粒子分散型複合材料の一部を拡大した断面
図で示すものである。
FIG. 1 is a schematic cross-sectional view of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic diagram for explaining a method for manufacturing a particle-dispersed composite material by a conventional molten metal forging method. Figure 3 is a schematic diagram showing the cracking of dispersed particles due to heat is during conventional casting, and the formation of cavities due to gas existing within and between particles. , FIGS. 4(a): 16 and 4(b) are enlarged cross-sectional views of a part of the particle-dispersed composite material produced by the method of the present invention.

(主な参照番号) 1−金型、 2・・・プランジャー、  3・−ヒータ
、4−分散粒子、 5・・・鋼製金網、 6°・溶融金属、 10  セラミック粒子、11・°
・割れ、 12・・°空洞、 20”高周波炉、21 
 スタンプ材、 22°容器、 23°°・隔室、  
   ゛24パ・開孔、 25・・・−ガス抜き孔、 
26・・・−重り、27・・高周波コイル、 28・ 
 分散粒子29・・固体金属、 30・ セラミック粒
子、31・・金属マトリックス
(Main reference numbers) 1-Mold, 2-Plunger, 3-Heater, 4-Dispersed particles, 5-Steel wire mesh, 6° Molten metal, 10 Ceramic particles, 11°
・Crack, 12...° cavity, 20" high frequency furnace, 21
Stamp material, 22° container, 23°/compartment,
゛24 hole/opening, 25...-gas vent hole,
26...-weight, 27...high frequency coil, 28...
Dispersed particles 29: Solid metal, 30: Ceramic particles, 31: Metal matrix

Claims (1)

【特許請求の範囲】[Claims] (1)溶解炉内に、下部に少なくとも1つの開孔を有す
る隔壁を有し、かつガス抜き用孔を備えた上部壁を有す
る隔室を設け、該隔室内にセラミック粒子を装入し、該
隔室外に固体金属を入れて、加熱し、該固体金属を溶融
させ、該溶融金属を前記隔室の開孔より隔室内に浸入さ
せることを特徴とする粒子分散型複合材料の製造方法。
(1) A compartment having a partition wall with at least one opening in the lower part and an upper wall provided with a gas vent hole is provided in the melting furnace, and ceramic particles are charged into the compartment, A method for producing a particle-dispersed composite material, comprising placing a solid metal outside the compartment, heating it to melt the solid metal, and allowing the molten metal to infiltrate into the compartment through an opening in the compartment.
JP16309684A 1984-08-02 1984-08-02 Manufacture of particle dispersion type composite material Pending JPS6141734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16309684A JPS6141734A (en) 1984-08-02 1984-08-02 Manufacture of particle dispersion type composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16309684A JPS6141734A (en) 1984-08-02 1984-08-02 Manufacture of particle dispersion type composite material

Publications (1)

Publication Number Publication Date
JPS6141734A true JPS6141734A (en) 1986-02-28

Family

ID=15767103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16309684A Pending JPS6141734A (en) 1984-08-02 1984-08-02 Manufacture of particle dispersion type composite material

Country Status (1)

Country Link
JP (1) JPS6141734A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157827A (en) * 1986-12-20 1988-06-30 Sumitomo Metal Ind Ltd Heat-resisting alloy for furnace bed member
JPH04325641A (en) * 1991-04-26 1992-11-16 Daido Steel Co Ltd Material with high young's modulus
WO1998042460A3 (en) * 1997-03-25 1998-10-29 Komtek Inc Producing a metal article by casting and forging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157827A (en) * 1986-12-20 1988-06-30 Sumitomo Metal Ind Ltd Heat-resisting alloy for furnace bed member
JPH05463B2 (en) * 1986-12-20 1993-01-06 Sumitomo Metal Ind
JPH04325641A (en) * 1991-04-26 1992-11-16 Daido Steel Co Ltd Material with high young's modulus
WO1998042460A3 (en) * 1997-03-25 1998-10-29 Komtek Inc Producing a metal article by casting and forging

Similar Documents

Publication Publication Date Title
JP3757165B2 (en) Decomposable core for high pressure casting, method for producing the same, and method for extracting the same
JP3051177B2 (en) Pressure infiltration casting method and pressure infiltration casting apparatus
KR100683365B1 (en) Semi-solid concentration processing of metallic alloys
JPH0669608B2 (en) Lost foam casting method for casting metal objects
CN102861873A (en) Casting method of gear
US3764575A (en) Salt core containing synthetic resin and water-glass as binders
JPH09509101A (en) Permanent mold casting of reactive melt
JPH05192761A (en) Method of manufacturing part with abrasion proof face
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
US2530853A (en) Method of casting
CN112122550A (en) Investment casting process for thin-wall annular casing casting
US3701379A (en) Process of casting utilizing magnesium oxide cores
WO1980001146A1 (en) Method of making and using a ceramic shell mold
US3284862A (en) Pyrolitic graphite coated casting mold and method of making same
JPS6141734A (en) Manufacture of particle dispersion type composite material
RU2314891C1 (en) Mold making method for casting with use of investment patterns
RU2319580C2 (en) Method for producing thin-wall articles or articles with inner cavity of composite material on base of carbide
US3200455A (en) Method of shell mold casting
US2510546A (en) Manufacture of precision articles from powdered material
US3605855A (en) Process for the making of metal moulds for a casting
CN111136258B (en) Heat treatment method of high-temperature Ti-based alloy casting
WO2006091619A2 (en) Casting process
JPH0399769A (en) Method of pressurizing type lost foam casting of metallic object
US4120345A (en) Method for ingot mold repair
JPH04500949A (en) Container for molten metal, material for the container, and method for manufacturing the material