JPS6133888B2 - - Google Patents

Info

Publication number
JPS6133888B2
JPS6133888B2 JP3661779A JP3661779A JPS6133888B2 JP S6133888 B2 JPS6133888 B2 JP S6133888B2 JP 3661779 A JP3661779 A JP 3661779A JP 3661779 A JP3661779 A JP 3661779A JP S6133888 B2 JPS6133888 B2 JP S6133888B2
Authority
JP
Japan
Prior art keywords
yield strength
copper
mold
amount
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3661779A
Other languages
Japanese (ja)
Other versions
JPS55128351A (en
Inventor
Masaru Yamaguchi
Yuzuru Kobayashi
Shigeru Sumya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP3661779A priority Critical patent/JPS55128351A/en
Publication of JPS55128351A publication Critical patent/JPS55128351A/en
Publication of JPS6133888B2 publication Critical patent/JPS6133888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は連続鋳造設備の鋳型材に関するもので
ある。連続鋳造設備における鋳型は、連続鋳片の
品質を左右する重要なセクシヨンであるためその
材料の選択は極めて重要である。鋳型材料にはこ
れまで熱伝導性を考慮して純銅が使用されてきた
が、鋳造条件の過酷化にともないより高強度の銅
合金が使用されつつあり、これらの銅合金として
銀銅、クロム銅などがあるが、本発明はこれらの
うちクロム銅の現状性能をさらに向上させること
を目的としてなされたものである。 上記目的を達成するため、本発明の連続鋳造設
備の鋳型材は、全重量に対する重量%で、Cr:
0.70〜1.5%,Ti0.05〜0.20%を含み、さらに
Fe:0.03〜0.50%,Mg:0.01〜0.20%の1種また
は2種を添加し、残りCuと不可避不純物よりな
るCu合金で構成したものである。 さらに、本発明の連続鋳造設備の鋳型材は、全
重量に対する重量%で、Cr:0.70〜1.5%,Ti:
0.05〜0.20%,Ce:0.005〜0.05%を含み、さらに
Fe:0.03〜0.50%,Mg:0.01〜0.20%の1種また
は2種を添加し、残りCuと不可避不純物よりな
るCu合金で構成したものである。 以下本発明の一実施例を図面に基づいて説明す
る。ここで、重量%は全重量に対する割合を示
す。 クロム銅は析出強化型材料として知られてお
り、溶体化処理―析出処理を施される材料で、一
般に溶体化処理温度は1000℃、析出処理温度は
500℃が適切であるといわれている。したがつて
以下での説明に際しては、これらの熱処理条件に
従つて処理した後の性質について述べることにす
る。 まず、添加成分の個々の量について説明する。 (1) Crについて 操作時の鋳型銅板の温度は、操業条件により変
化するが、250〜350℃に上昇するため熱応力を発
生し、この応力によりクリープ変形をおこすため
銅板の鋳型としての性能が低下する。このためク
リープ変形をできるだけ減少する必要がありこの
対策の一つとして純銅の耐力、例えば10〜20Kg
f/mm2の向上ならびに軟化抵抗の向上がはかられ
る。この目的に合致する合金としてクロム銅があ
るが、クロム銅を採用する効果を得るためには室
温における0.2%耐力が25Kgf/mm2以上必要であ
る。したがつてCr量の下限はこの25Kgf/mm2
えるのに必要なCr量により決定され、この量は
0.70%と決定される。クロム量の増加は耐力を向
上するが、1.5%をこえるとその効果が飽和する
ため上限は1.5%である。第1図にCr量と耐力の
関係を示す。 (2) Ti量について Tiはクロムの析出効果を促進し耐力の向上に
寄与する。すなわち0.05%以上の添加にて耐力向
上の効果が得られるが0.2%をこえて添加しても
その効果は飽和する。0.2%Tiにおいて0.2%耐力
は約33Kgf/mm2と0%Tiに比較して耐力向上効
果は顕著である。第2図にTi量と耐力の関係を
示す。 Tiの効果は耐力を著しく向上する以外に結晶
粒度を著しく微細化する効果もあり、この微細化
は第1表に示すように材料の均質性の向上に有効
となる。
The present invention relates to a mold material for continuous casting equipment. The mold in continuous casting equipment is an important section that affects the quality of continuous slabs, so the selection of its material is extremely important. Until now, pure copper has been used as a mold material in consideration of thermal conductivity, but as casting conditions become more severe, higher strength copper alloys are being used, and these copper alloys include silver copper, chromium copper, Among these, the present invention was made with the aim of further improving the current performance of chromium copper. In order to achieve the above object, the mold material of the continuous casting equipment of the present invention has Cr:
Contains 0.70~1.5%, Ti0.05~0.20%, and
It is composed of a Cu alloy to which one or both of Fe: 0.03 to 0.50% and Mg: 0.01 to 0.20% are added, and the remainder is Cu and inevitable impurities. Furthermore, the mold material of the continuous casting equipment of the present invention has Cr: 0.70 to 1.5%, Ti:
Contains 0.05-0.20%, Ce: 0.005-0.05%, and
It is composed of a Cu alloy to which one or both of Fe: 0.03 to 0.50% and Mg: 0.01 to 0.20% are added, and the remainder is Cu and inevitable impurities. An embodiment of the present invention will be described below based on the drawings. Here, % by weight indicates the proportion to the total weight. Chromium copper is known as a precipitation-strengthened material, and is a material that is subjected to solution treatment and precipitation treatment. Generally, the solution treatment temperature is 1000℃, and the precipitation treatment temperature is
It is said that 500℃ is appropriate. Therefore, in the following explanation, the properties after treatment under these heat treatment conditions will be described. First, the individual amounts of the added components will be explained. (1) About Cr The temperature of the mold copper plate during operation varies depending on the operating conditions, but it rises to 250 to 350°C, which generates thermal stress, and this stress causes creep deformation, which reduces the performance of the copper plate as a mold. descend. For this reason, it is necessary to reduce creep deformation as much as possible, and one of the countermeasures for this is to increase the yield strength of pure copper, for example 10 to 20 kg.
Improvements in f/mm 2 and softening resistance can be achieved. Chrome copper is an alloy that meets this purpose, but in order to obtain the effect of using chromium copper, a 0.2% proof stress at room temperature of 25 Kgf/mm 2 or more is required. Therefore, the lower limit of Cr amount is determined by the amount of Cr required to obtain this 25Kgf/ mm2 , and this amount is
Determined to be 0.70%. Increasing the amount of chromium improves yield strength, but the effect is saturated when it exceeds 1.5%, so the upper limit is 1.5%. Figure 1 shows the relationship between Cr content and yield strength. (2) About the amount of Ti Ti promotes the precipitation effect of chromium and contributes to improving the yield strength. That is, the effect of improving yield strength can be obtained by adding 0.05% or more, but the effect is saturated if it is added in excess of 0.2%. The 0.2% yield strength of 0.2% Ti is approximately 33 Kgf/mm 2 , which is a significant yield strength improvement effect compared to 0% Ti. Figure 2 shows the relationship between Ti content and yield strength. In addition to significantly improving the yield strength, Ti also has the effect of significantly refining the grain size, and as shown in Table 1, this refining is effective in improving the homogeneity of the material.

【表】 (3) Fe量について Feは耐力の向上ならびに結晶粒の微細化に効
果がある。0.03%以上の添加において効果があり
0.05%では耐力は28.5Kgf/mm2と向上する。Fe量
に比例して耐力は微増するが、0.5%をこえると
その効果は飽和する。結晶粒径に対してもFe量
に対し同傾向の顕著な微細化効果がある。第3図
にFe量と耐力の関係を、第4図にFe量と結晶粒
径の関係を示す。 (4) Mg量について Mgの添加効果は0.01%以上において認めら
れ、0.02%Mgでは27Kgf/mm2、0.07%Mgでは28
Kgf/mm2となるが0.2%をこえて添加してもその
効果は飽和する。第5図にMg量と耐力の関係を
示す。 (5) Ce量について 連続鋳造設備の鋳型銅板は耐力不足にともなう
変形のため鋳型としての性能を良好な状態で長時
間維持できない現状にあるが、耐力が向上された
クロム銅合金を使用すると、この変形問題の解消
にともなう鋳型寿命の延長にともない腐食による
新たな問題を発生する。すなわち銅板は溶融スラ
グスキンを介して溶鋼に接触しているためこの溶
融スラグによる腐食により寿命が低下する。一般
に金属材料の耐食性は同じ高温度であつても大気
中での酸化による腐食よりも溶融スラグ―連続鋳
造設備鋳型を例にとるとCaO―Al2O3―SiO2等を
主成分とする溶融又は半溶融状態のスラグである
が―下の方が腐食が著しく増大し、従来の耐大気
中高温酸化対策では処置できない。Ceはこのた
めの対策として添加する。この場合の、銅板の溶
融スラグに対する耐食性の向上は次の結果から明
らかである。 腐食実験の制約上から、酸化物系スラグ(25%
CaO、11%Al2O3、38%SiO2、12%HgO、14%そ
の他)にCaF2を約20%(酸化物系スラグ100に対
して)混合して融点を下げた溶融スラグを調合
し、880℃の溶融状態に0.5時間浸漬して腐食量を
調べた。その結果は0.005%以上において効果が
認められ、0.02%添加で腐食量はほぼ半減する
が、0.05%以上に添加してもその効果は飽和す
る。第6図にCe量と腐食量の関係を示す。 なお0.78%Cr銅に0.02%Ceを添加した銅板で
鋳型を製作し実機に供した結果、従来の50〜60回
の鋳造数で溶湯メニスカス面の肌あれが観察され
たのに対しCe添加鋳造では100回の鋳造でも肌あ
れは目視観察されなかつた。 次に銅板の製作手順を説明する。 溶解 電気銅、クロム銅母合金、マグネシウム銅
母合金、純Fe、純Ti、金属セリウム等を
所定の化学組成がえられるように配合した
のち低周波誘導溶解炉で溶解する。溶湯中
のガス吸収を防止するため不活性ガス雰囲
気としかつガス吹込みによる脱ガスを行な
う。 鋳造 溶湯温度1200℃で金型にダーピル鋳造し所
定寸法のインゴツトをえる。 熱間鍜造 インゴツト表面を荒切削したのち、
900℃以上の温度で均質化加熱を施し、次
に900〜650℃の温度で鍜造して鋳造組織の
残存しない均質な板材をえる。なお鍜造比
は4〜6が適切である。 熱処理 1000℃の温度に均質加熱後迅速に水焼入
れを施したのち500℃の温度で1時間加熱
し所定の機械的性質をえる。 次に本発明に係る鋳型材を用いて製作した鋳型
についての耐力、腐食量、実機変形寿命、実機メ
ニスカス肌荒れ寿命についての調査結果を第2表
に示す。
[Table] (3) About Fe content Fe is effective in improving yield strength and refining crystal grains. Effective when added at 0.03% or more
At 0.05%, the yield strength increases to 28.5Kgf/ mm2 . The yield strength slightly increases in proportion to the amount of Fe, but the effect is saturated when it exceeds 0.5%. There is also a remarkable refining effect on the crystal grain size with the same tendency as on the amount of Fe. Figure 3 shows the relationship between Fe content and yield strength, and Figure 4 shows the relationship between Fe content and crystal grain size. (4) Regarding the amount of Mg The effect of adding Mg is recognized at 0.01% or more, 27Kgf/mm 2 for 0.02%Mg and 28Kgf/mm 2 for 0.07%Mg.
Kgf/mm 2 , but the effect is saturated even if it is added in excess of 0.2%. Figure 5 shows the relationship between Mg content and yield strength. (5) Concerning the amount of Ce Currently, mold copper plates in continuous casting equipment cannot maintain good performance as molds for long periods of time due to deformation due to insufficient yield strength, but if a chromium-copper alloy with improved yield strength is used, As the mold life is extended as this deformation problem is resolved, new problems arise due to corrosion. That is, since the copper plate is in contact with molten steel through the molten slag skin, the life of the copper plate is shortened due to corrosion caused by the molten slag. In general, the corrosion resistance of metal materials is higher than corrosion due to oxidation in the atmosphere even at the same high temperature.For example, in the case of continuous casting equipment molds, molten slag containing mainly CaO-Al 2 O 3 -SiO 2 etc. Or the slag is in a semi-molten state - corrosion increases significantly at the bottom and cannot be treated with conventional atmospheric high-temperature oxidation measures. Ce is added as a countermeasure for this. The improvement in the corrosion resistance of the copper plate against molten slag in this case is clear from the following results. Due to the limitations of corrosion experiments, oxide-based slag (25%
Mix CaO, 11% Al 2 O 3 , 38% SiO 2 , 12% HgO, 14% others) with approximately 20% CaF 2 (based on 100% oxide slag) to prepare molten slag with a lower melting point. The amount of corrosion was examined by immersing it in a molten state at 880°C for 0.5 hours. The results show that it is effective at 0.005% or more, and the amount of corrosion is almost halved when 0.02% is added, but the effect is saturated even when it is added at 0.05% or more. Figure 6 shows the relationship between the amount of Ce and the amount of corrosion. Furthermore, as a result of making a mold using a copper plate containing 0.78% Cr copper and adding 0.02% Ce and using it in an actual machine, roughness on the molten metal meniscus surface was observed after 50 to 60 castings with conventional castings, whereas with Ce-added casting Even after 100 castings, no skin roughness was visually observed. Next, the procedure for manufacturing the copper plate will be explained. Melting Electrolytic copper, chromium-copper master alloy, magnesium-copper master alloy, pure Fe, pure Ti, metallic cerium, etc. are mixed to obtain the specified chemical composition, and then melted in a low-frequency induction melting furnace. To prevent gas absorption in the molten metal, create an inert gas atmosphere and degas by blowing gas. Casting Darpil casting is performed in a mold at a molten metal temperature of 1200℃ to obtain an ingot of the specified size. Hot forging After rough cutting the ingot surface,
Homogenization heating is performed at a temperature of 900°C or higher, and then forging is performed at a temperature of 900 to 650°C to obtain a homogeneous sheet material with no remaining cast structure. Note that a forging ratio of 4 to 6 is appropriate. Heat treatment: After homogeneous heating to 1000°C, water quenching is quickly performed, followed by heating at 500°C for 1 hour to obtain the desired mechanical properties. Next, Table 2 shows the results of an investigation regarding yield strength, amount of corrosion, actual deformation life, and actual meniscus roughening life for molds manufactured using the mold material according to the present invention.

【表】 第2表において試料番号1〜4に記載されたも
のは、Cuを主材とし、少なくともCr,Tiを含む
本発明に関するもので、参考として挙げた試料番
号5〜11に示すTiを含まないものに比べて耐力
が飛躍的に向上しており、さらに、これにFeあ
るいは/およびMgが添加されると相乗効果によ
つてさらに耐力が向上し、32.5〜33.1Kgf/mm2
ものが得られることがわかる。従つて実機変形寿
命も大巾に向上している。また、耐力の向上した
鋳型が溶融スラグによる腐食でその寿命を低下す
るのを防ぐために、Ceを添加した場合、鋳型の
寿命も格段に向上させることができる。 以上の説明から明らかなように、本発明による
と、現状のクロム銅による鋳型材の性能をCr,
Tiに加え、Fe,MgさらにはCeを添加することに
より大巾に向上させることができる。
[Table] The samples listed in sample numbers 1 to 4 in Table 2 are those related to the present invention that are mainly made of Cu and contain at least Cr and Ti. The yield strength is dramatically improved compared to the one without it, and when Fe and/or Mg are added, the yield strength is further improved due to the synergistic effect, and the yield strength is 32.5 to 33.1 Kgf/mm 2 . It can be seen that the following can be obtained. Therefore, the deformation life of the actual machine has also been greatly improved. Furthermore, when Ce is added to prevent a mold with improved yield strength from being shortened in life due to corrosion by molten slag, the life of the mold can be significantly improved. As is clear from the above explanation, according to the present invention, the performance of the current mold material made of chromium copper can be improved by Cr.
In addition to Ti, addition of Fe, Mg, and even Ce can greatly improve the resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は実験結果グラフ図である。 FIGS. 1 to 6 are graphs of experimental results.

Claims (1)

【特許請求の範囲】 1 全重量に対する重量%で、Cr:0.70〜1.5
%,Ti:0.05〜0.20%を含み、さらにFe:0.03〜
0.50%,Mg:0.01〜0.20%の1種または2種を添
加し、残りCuと不可避不純物よりなるCu合金で
構成した連続鋳造設備の鋳型材。 2 全重量に対する重量%で、Cr:0.70〜1.5
%,Ti:0.05〜0.20%,Ce:0.005〜0.05%を含
み、さらにFe:0.03〜0.50%,Mg:0.01〜0.20%
の1種または2種を添加し、残りCuと不可避不
純物よりなるCu合金で構成した連続鋳造設備の
鋳型材。
[Claims] 1. Cr: 0.70 to 1.5 in weight% of the total weight
%, Ti: 0.05~0.20%, Fe: 0.03~
Mold material for continuous casting equipment made of a Cu alloy containing 0.50%, Mg: 0.01 to 0.20%, and the remainder consisting of Cu and unavoidable impurities. 2 Cr: 0.70 to 1.5 in weight% of total weight
%, Ti: 0.05-0.20%, Ce: 0.005-0.05%, further Fe: 0.03-0.50%, Mg: 0.01-0.20%
A mold material for continuous casting equipment made of a Cu alloy containing one or two of the following, with the remaining Cu and unavoidable impurities.
JP3661779A 1979-03-27 1979-03-27 Casting mold material for continuous casting equipment Granted JPS55128351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3661779A JPS55128351A (en) 1979-03-27 1979-03-27 Casting mold material for continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3661779A JPS55128351A (en) 1979-03-27 1979-03-27 Casting mold material for continuous casting equipment

Publications (2)

Publication Number Publication Date
JPS55128351A JPS55128351A (en) 1980-10-04
JPS6133888B2 true JPS6133888B2 (en) 1986-08-05

Family

ID=12474755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3661779A Granted JPS55128351A (en) 1979-03-27 1979-03-27 Casting mold material for continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS55128351A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910004078B1 (en) * 1987-08-31 1991-06-22 미쯔비시마테리알 가부시기가이샤 Mold member and rapidly solidifying water looled rotary roll member kazuhiko tabei
DE3820203A1 (en) * 1988-06-14 1989-12-21 Kabelmetal Ag USE OF A CURABLE copper alloy
EP1690954B1 (en) * 2003-11-26 2014-10-08 KAWAMURA, Yoshihito High strength and high toughness magnesium alloy and method for production thereof

Also Published As

Publication number Publication date
JPS55128351A (en) 1980-10-04

Similar Documents

Publication Publication Date Title
JPH059502B2 (en)
CN111057937A (en) Electrothermal alloy iron-chromium-aluminum wire material and preparation method thereof
CN109252084B (en) Preparation process of high-purity GH825 alloy fine-grain plate
CN111663082B (en) Austenitic stainless steel precision seamless steel pipe and preparation method thereof
WO2023098919A1 (en) Manufacturing method for low-carbon nitrogen-containing austenitic stainless steel bar
CN112458340A (en) Nickel-based alloy for high-temperature fan shaft and preparation method thereof
CN109468476B (en) Method for improving comprehensive performance of copper alloy by adopting magnetic suspension process
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
CN115094263A (en) Alterant alloy for copper-chromium-zirconium alloy, preparation method and application thereof
WO2023062855A1 (en) Nickel alloy having excellent surface properties and manufacturing method thereof
CN114635077A (en) Super austenitic stainless steel and preparation method thereof
US3403997A (en) Treatment of age-hardenable coppernickel-zinc alloys and product resulting therefrom
KR950014423B1 (en) A copper-based metal alloy of improved type particularly for the contruction of electronic components
JPS6133888B2 (en)
JP2614210B2 (en) Cu alloy for continuous casting mold
CN114574769A (en) Rare earth hot work die steel and preparation method thereof
JPH07113133B2 (en) Cu alloy for continuous casting mold
JP4683712B2 (en) Ni-base alloy with excellent hot workability
JP3554283B2 (en) Fe-Ni alloy excellent in surface properties and method for producing the same
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
RU2267542C1 (en) Cast iron, method for producing the same and method for thermal processing of ingots cast from the same
CN112030041B (en) MonelK500A alloy with corrosion resistance in oxygen-containing hydrofluoric acid
JPS6144930B2 (en)
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPS63125632A (en) High-strength copper alloy having excellent thermal fatigue resistance