JPH054609B2 - - Google Patents

Info

Publication number
JPH054609B2
JPH054609B2 JP61208472A JP20847286A JPH054609B2 JP H054609 B2 JPH054609 B2 JP H054609B2 JP 61208472 A JP61208472 A JP 61208472A JP 20847286 A JP20847286 A JP 20847286A JP H054609 B2 JPH054609 B2 JP H054609B2
Authority
JP
Japan
Prior art keywords
rail
error
measurement
distance
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61208472A
Other languages
Japanese (ja)
Other versions
JPS6361909A (en
Inventor
Hajime Kametani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Engineering Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Engineering Works Co Ltd filed Critical Shibaura Engineering Works Co Ltd
Priority to JP20847286A priority Critical patent/JPS6361909A/en
Publication of JPS6361909A publication Critical patent/JPS6361909A/en
Publication of JPH054609B2 publication Critical patent/JPH054609B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄道線路のレール上を走行しなが
ら、レール上面の波状摩耗を連続的に検測するレ
ールの波状摩耗検測装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a rail wavy wear detection device that continuously measures wavy wear on the upper surface of a rail while traveling on the rails of a railway track. be.

[従来の技術] 鉄道線路の軌道のレール上面(レール頭部の上
面)には、レール上を走行する車両の車輪との間
の摩擦等により、レール上面の長さ方向に波状に
凹凸を呈する摩耗が発生する。この波状摩耗が進
行すると、車両、軌道および路盤に激しい振動や
衝撃を与え、乗客の乗り心地を悪化させるととも
に、軌道や路盤の破壊を促し、また騒音を発生し
て、鉄道沿線に騒音公害をひき起す等の不都合を
生ずる。
[Prior Art] The upper surface of the rail (the upper surface of the rail head) of a railway track has wavy irregularities in the length direction due to friction between the rail and the wheels of vehicles running on the rail. Wear occurs. As this wave-like wear progresses, it causes severe vibrations and shocks to vehicles, tracks, and roadbeds, worsening passenger ride comfort, prompting damage to tracks and roadbeds, and generating noise, causing noise pollution along railway lines. causing inconvenience such as causing

そのため、従来より、レール上面に発生した波
状摩耗等を検測し、必要に応じてレール頭部の前
記波状摩耗や変位層を削正し、レール頭部の輪郭
を修正することが行なわれている。この場合、レ
ール上面に発生した波状摩耗等の検測には相当の
精度、正確さが要求される。
For this reason, conventional methods have been to measure the wavy wear, etc. that occur on the top surface of the rail, and to correct the contour of the rail head by removing the wavy wear or displaced layer on the rail head, if necessary. There is. In this case, considerable precision and accuracy are required to measure the wavy wear etc. that occur on the upper surface of the rail.

上記のようにレール上面に発生した波状摩耗を
検測する従来の装置は、車両に装備した1個の検
測器により摩耗を検測するもの(例えば特開昭51
−114151号公報、特開昭52−75459号公報)であ
つて、検測器を装備した検測車両がレール上面の
凹凸状態や車輪の偏心等によつて上下に変動する
と、前記の検測器も上下に変位して大きな測定誤
差が生じる。
As mentioned above, conventional devices for detecting the wave-like wear that occurs on the top surface of the rail are those that measure the wear using a single measuring device installed on the vehicle (for example, Japanese Patent Laid-Open No. 51
-114151, Japanese Patent Application Laid-open No. 52-75459), if the inspection vehicle equipped with the inspection device moves up and down due to irregularities on the top surface of the rail, eccentricity of the wheels, etc., the above-mentioned inspection The instrument also moves up and down, causing a large measurement error.

そこで、本出願人は、検測車両の上下変位動に
よる測定誤差をできるだけ小さくするために、レ
ール上面の凹凸を検測する2個の検測器をレール
の長さ方向に一定間隔をおいて並設し、これを検
測台車により走行させながら、両検測器によりレ
ール上面の凹凸を検測して、差分演算器により双
方の検測値の差分を求めるとともに、2個の検測
器の間隔を数等分してその等分数で前記差分を除
算し、総和演算器により前記等分距離ごとに前記
除算された差分の値を順次加算することにより、
検測起点を基準とするレール上面の凹凸量(つま
り上下方向の変位量)を求め、これによりレール
上面の波状摩耗を検出することとしたものであ
る。この差分方式によるレールの波状摩耗検測方
法および装置については既に特許出願している
(特願昭61−75275号)。
Therefore, in order to minimize the measurement error caused by the vertical displacement movement of the inspection vehicle, the present applicant has installed two measuring instruments for measuring irregularities on the top surface of the rail at regular intervals in the length direction of the rail. They are installed side by side and run by an inspection trolley, while both inspection instruments measure the irregularities on the top surface of the rail, and a difference calculator calculates the difference between the two measurement values. By dividing the interval into a number of equal parts, dividing the difference by the equal number, and sequentially adding the divided difference values for each of the equal distances using a summation calculator,
The amount of unevenness (that is, the amount of displacement in the vertical direction) on the top surface of the rail is determined based on the measurement starting point, and thereby the wave-like wear on the top surface of the rail is detected. A patent application has already been filed for a method and device for measuring rail wave wear using this differential method (Japanese Patent Application No. 75275/1982).

すなわち、第5図に示すように、レール1の上
面の検測開始位置の2点に位置する2個の検測器
A,Bが、その間隔lをC等分(図の場合2等
分)して、最初の位置と前記の等分距離l/Cず
つ矢印方向に移動した位置の各点における検測器
Aの検測値をAc,Ac+1,Ac+2,Ac+3,Ac+oとし、
検測器Bの検測値をB0,B1,B2,……Boとし、
さらに起点P0から前記等分距離l/Cのピツチ
で移動した点P1,P2,P3,……Poでのレール1
上面の前記起点P0に対する上下方向変位量を、
それぞれβ0,β1,β2,……βo-1,βoとすると、次
の関係式が成立する。
That is, as shown in Fig. 5, two measuring instruments A and B located at two points on the upper surface of the rail 1 at the starting position of the inspection divide the interval l into equal parts C (in the case of the figure, it is divided into two equal parts). ), and the measured values of the measuring device A at each point between the initial position and the position moved in the direction of the arrow by the above-mentioned equal distance l/C are A c , A c+1 , A c+2 , A c+3 , A c+o ,
Let the measured values of measuring device B be B 0 , B 1 , B 2 , ...B o ,
Further, points P 1 , P 2 , P 3 , ... rail 1 at P o moved from the starting point P 0 at the pitch of the equal distance l/C
The amount of vertical displacement of the top surface with respect to the starting point P 0 is
Assuming that β 0 , β 1 , β 2 , ...β o-1 , β o respectively, the following relational expression holds true.

βp=1/Cop=0 〔Ac+p−Bp〕(p=0,1,2,3…
…n) ここでΔβp=〔Ac+p−Bp〕/C(p=0,1,2,,
3……n)とすると、 βpop=0 〔Δβp〕 (p=0,1,2,3……
n) 前記の関係式から明らかなように、2個の検検
測器A,Bにより検測されたレール1の上面にお
ける2点の検測値の差分を求めるとともに、両検
測器A,Bの間隔lを数等分してその等分数Cで
前記両検測値の差分を除算し、2個の検測器A,
Bが前記の等分距離ずつ移動するごとに、その各
点における除算された差分の値Δβp(p=0,1,
2,3……n)を加算することにより、レール1
の上面の前記等分距離ごとの各点における検測起
点P0に対する上下方向の変位量β0,β1,β2,β3
…βoを求めることができ、波状摩耗による凹凸状
態を検出できるのである。
β p = 1/C op=0 [A c+p −B p ] (p=0, 1, 2, 3...
…n) Here, Δβ p = [A c+p −B p ]/C (p=0, 1, 2,,
3...n), then β p = op=0 [Δβ p ] (p=0, 1, 2, 3...
n) As is clear from the above relational expression, while finding the difference between the measurement values at two points on the top surface of the rail 1 measured by the two inspection instruments A and B, Divide the interval l of B into several equal parts, divide the difference between the two measurement values by the equal fraction C, and divide the two measuring instruments A,
Each time B moves by the above-mentioned equal distance, the divided difference value Δβ p (p=0, 1,
2, 3...n), rail 1
The amount of vertical displacement β 0 , β 1 , β 2 , β 3 , etc. with respect to the measurement starting point P 0 at each point on the upper surface of the above-mentioned equal distances.
... β o can be determined, and unevenness due to wavy wear can be detected.

そして、上記のように、レールの長さ方向に一
定間隔lをおいて2個の検測器を検測台車に配し
て、両検測器による検測値の差分つまり上下方向
の変位量(凹凸量)をとることとした場合、レー
ルの頭部上面の凹凸状態等により前後車輪がレー
ル上面に平行な標準位置から上下方向に変動し、
これに伴なつて2個の検測器が上下に変位したと
きの、検測器各々の測定誤差はかなり大きいが、
前記のように両検測値の差分をとるために前記双
方の測定誤差も差分されることになり、したがつ
て検測台車の変位による実際の測定誤差は従来の
ものに比してごく小さいものとなる。
Then, as mentioned above, two measuring instruments are placed on the measuring cart at a constant interval l in the length direction of the rail, and the difference between the measured values by both measuring instruments, that is, the amount of displacement in the vertical direction, is measured. (amount of unevenness), the front and rear wheels will fluctuate in the vertical direction from the standard position parallel to the top surface of the rail due to the unevenness of the top surface of the rail head, etc.
As a result, when the two measuring instruments are displaced vertically, the measurement error of each measuring instrument is quite large; however,
As mentioned above, in order to calculate the difference between the two measured values, the measurement errors of both are also subtracted, so the actual measurement error due to the displacement of the test cart is very small compared to the conventional one. Become something.

[発明が解決しようとする問題点] ところで、上記のように2個の検測器による両
検測値の差分を一定距離ごとに順次加算して検測
起点を基準とする上下方向変位量を求める場合、
実際のレール状面の波状摩耗の波長と測定波長と
の関連で、ある測定波長に対して振幅の測定誤差
が大きくなる。
[Problems to be Solved by the Invention] By the way, as mentioned above, the amount of displacement in the vertical direction with respect to the measurement starting point can be calculated by sequentially adding the differences between the values measured by the two measuring instruments at regular intervals. If you ask for
Due to the relationship between the actual wavelength of wave-like wear on the rail-like surface and the measurement wavelength, the amplitude measurement error becomes large for a certain measurement wavelength.

すなわちレール上面の波状摩耗fxをcos関数と
仮定すると、fx=cosθ また上記のごとく2個の検測器による検測値の
差分を順次加算して、検測起点を基準とする上下
方向変位量を求める場合、波状摩耗検測値f′Xは、 f′x=1/Cop=0 〔Ap+2−Bp〕(p=0,1,2,3
……n) となり、第6図に示すように、波状摩耗検測値の
振幅の最大測定誤差Fは、 F=fx max−f′x max となる。
In other words, assuming that the wave-like wear fx on the top surface of the rail is a cos function, fx = cosθ Also, as mentioned above, the difference between the measured values from the two measuring instruments is sequentially added, and the amount of vertical displacement with respect to the measurement starting point is calculated. When calculating the wavy wear measurement value f′X, f′x=1/C op=0 [A p+2 −B p ] (p=0, 1, 2, 3
...n), and as shown in FIG. 6, the maximum measurement error F of the amplitude of the wave-like wear measurement value is F=fx max - f'x max.

前記差分による検測値の測定誤差Fについて
は、実験の結果、第7図の図表に示すように、同
じ波長に対して最も誤差の大きい点から測定を開
始した場合aと、最も誤差の少ない点から測定を
開始した場合bとにより、つまり測定開始点の差
によつてその誤差に若干幅があるが、その測定誤
差Fは、ほぼ測定波長/センサー関数として示す
ことができ、センサーつまり検測器の間隔および
検測速度が一定の場合、測定誤差Fは測定波長に
よつて決定される。
As for the measurement error F of the measured value due to the difference, as shown in the chart in Figure 7, the experimental results show that when measurement is started from the point with the largest error for the same wavelength, a and the point with the smallest error are If measurement is started from point b, the error will vary slightly depending on the difference in the measurement starting point, but the measurement error F can be approximately expressed as a function of measurement wavelength/sensor, and the sensor or detection If the instrument spacing and measurement speed are constant, the measurement error F is determined by the measurement wavelength.

この図表から明らかなように、センサー間隔に
対する波状摩耗の波長が充分に長い場合、振幅に
関する測定誤差はごく少ないが、センサー間隔よ
りも長い波長の場合でも、前記の波状摩耗の測定
波長/センサー間隔の比率が4以下、すなわちセ
ンサー間隔に対して波状摩耗の波長が4倍以下に
なると前記測定誤差を大きく無視できなくなる。
これを無視すると高精度の測定が行なえないこと
になる。
As is clear from this chart, if the wavelength of the wavy wear is long enough with respect to the sensor spacing, there will be very little measurement error regarding the amplitude. When the ratio is 4 or less, that is, the wavelength of the wave-like wear is 4 times or less as compared to the sensor interval, the measurement error cannot be ignored.
If this is ignored, highly accurate measurements will not be possible.

そこで、本発明は、2個の検測器を配して両検
測値の差分によりレール上面の検測起点を基準と
する上下方向変位量により摩耗を検測するように
した場合において、上記の差分による振幅の測定
誤差を補正して、より精度の高い測定を行なえる
レールの波状摩耗測定装置を提供しようとするも
のである。
Therefore, the present invention provides the above-mentioned method in the case where two measuring instruments are arranged and the wear is measured by the amount of displacement in the vertical direction with respect to the starting point of the inspection on the top surface of the rail based on the difference between the two measured values. The present invention aims to provide a rail wavy wear measurement device that can perform more accurate measurements by correcting amplitude measurement errors due to differences in the amplitude.

[問題点を解決するための手段] 本発明は、軌道のレール1上を走行可能な検測
台車2にレールの長さ方向に一定間隔をおいて配
され、かつレール上面の凹凸を検測台車側の基準
位置からの距離によつて検測する2個の検測器
A,Bと、前記検測台車2が前記2個の検測器
A,Bの間隔または該間隔を数等分した距離を走
行移動する毎にパルスを出力する走行検出器6
と、前記2個の検測器A,Bの出力する検測値を
入力し、一方の検測値から他方の検測値を減じて
両検測値を差分する演算を行うか、または両検測
値を差分して前記等分数で除算する演算を行なう
差分演算器14と、前記走行検出器6がパルスを
出力する毎に、前記差分演算器14からの出力値
を順次加算する総和演算を行ない、前記パルスを
出力する距離毎の各点における検測起点に対する
レール上面の上下方向の変位量を順次求め、その
演算結果を出力する総和演算器16とを備え、検
測台車が両検測器間隔または該間隔を数等分した
距離移動する毎の各点におけるレール上面の検測
起点を基準とする上下方向変位量によつて波状摩
耗を検測するレールの波状摩耗検測装置におい
て、上記の問題点を解決するために下記の構成と
なしたものである。
[Means for Solving the Problems] The present invention provides inspection carts 2 that are arranged at regular intervals in the length direction of the rails on inspection carts 2 that can run on rails 1 of a track, and that measure irregularities on the upper surface of the rails. The two measuring instruments A and B measure according to the distance from the reference position on the trolley side, and the measuring trolley 2 divides the interval between the two measuring instruments A and B or the interval into several equal parts. A travel detector 6 outputs a pulse every time the travel distance is traveled.
Then, input the measured values output from the two measuring instruments A and B, and perform a calculation to subtract the measured value of one from the other and calculate the difference between the two measured values, or A difference calculator 14 that performs an operation of subtracting the measured value and dividing it by the equal fraction; and a summation operation that sequentially adds the output values from the difference operator 14 each time the traveling detector 6 outputs a pulse. The inspection cart is equipped with a summation calculator 16 that sequentially calculates the amount of vertical displacement of the top surface of the rail with respect to the measurement starting point at each point for each distance where the pulse is output, and outputs the calculation result. In a rail wavy wear detection device that detects wavy wear based on the amount of vertical displacement based on the measurement starting point on the top surface of the rail at each point at each point where the measuring instrument moves or a distance divided into several equal parts. In order to solve the above problems, the following configuration was adopted.

本発明では、総和演算器16から出力される演
算値が上記したように、実際の波状摩耗に対して
第7図に示す測定誤差Fを含み、しかもその測定
誤差が検測器間隔に対する波状摩耗の測定波長比
によつて決定されることに鑑み、記録に必要な範
囲の測定波長(周波数)に対して、第7図鎖線の
ような誤差分を補正して出力する誤差補正部18
を設けたものである。
In the present invention, as described above, the calculated value output from the summation calculator 16 includes the measurement error F shown in FIG. Considering that it is determined by the measurement wavelength ratio of
It has been established.

すなわち、第1番目の発明は、測定必要範囲の
周波数に応じて設定されたカツトオフ特性を持ち
かつ前記総和演算器16から出力される前記変位
量の出力信号をアナログ量で通過させるローパス
フイルタ19と、前記ローパスフイルタ19を通
過した前記変位量の測定誤差を含む入力に対し
て、検測器間隔に対する波状摩耗の測定波長比に
よつて決定される前記誤差の補正量分を出力する
周波数特性を持つフイルタ20と、このフイルタ
20を通過した信号と前記ローパスフイルタ19
を通過した前記誤差を含む信号とを加算する加算
演算器21と、測定必要範囲の周波数に応じて設
定されたカツトオフ特性を持ちかつ前記加算演算
器21からの出力信号を通過させるハイパスフイ
ルタ22とを有する誤差補正部18を設けたこと
を特徴とする。
That is, the first invention includes a low-pass filter 19 which has a cut-off characteristic set according to the frequency in the necessary measurement range and which passes the output signal of the displacement amount outputted from the summation calculator 16 in an analog quantity. , a frequency characteristic that outputs a correction amount for the error determined by the measurement wavelength ratio of the wave-like wear to the measuring instrument interval with respect to the input including the measurement error of the displacement amount that has passed through the low-pass filter 19. A filter 20 with a signal passing through the filter 20 and the low-pass filter 19
an addition calculation unit 21 that adds the signal containing the error that has passed through the addition calculation unit 21; and a high-pass filter 22 that has a cutoff characteristic set according to the frequency in the required measurement range and passes the output signal from the addition calculation unit 21. The present invention is characterized in that it is provided with an error correction section 18 having the following.

また第2番目の発明は、測定必要範囲の周波数
に応じて設定されたカツトオフ特性を持ちかつ前
記総和演算器16から出力される変位量の出力信
号をアナログ量で通過させるローパスフイルタ1
9′と、このローパスフイルタ19′を通過した前
記変位量の測定誤差を含む信号に応じた増幅率調
整信号を発生する回路25と、前記ローパスフイ
ルタ19′を通過した前記誤差を含む信号を入力
するとともに、前記回路からの増幅率調整信号に
より検測器間隔に対する波状摩耗の測定波長比に
よつて決定される前記誤差の補正分を含む増幅率
に調整されて増幅する増幅率可変形増幅器26
と、測定必要範囲の周波数に応じて設定されたカ
ツトオフ特性を持ちかつ前記増幅器の出力信号を
通過させるハイパスフイルタ22′とを有する誤
差補正部18を設けてなることを特徴とする。
The second invention provides a low-pass filter 1 which has a cut-off characteristic set according to the frequency in the necessary measurement range and which passes the output signal of the displacement amount outputted from the summation calculator 16 in an analog quantity.
9', a circuit 25 that generates an amplification factor adjustment signal in accordance with the signal including the measurement error of the displacement amount that has passed through the low-pass filter 19', and a circuit 25 that inputs the signal that has passed the low-pass filter 19' and includes the error. At the same time, a variable amplification amplifier 26 adjusts and amplifies the amplification factor by the amplification factor adjustment signal from the circuit to an amplification factor that includes a correction for the error determined by the measurement wavelength ratio of the wave-like wear to the measuring instrument interval.
and a high-pass filter 22' which has a cut-off characteristic set according to the frequency in the necessary measurement range and passes the output signal of the amplifier.

[作用] 上記の構成を備えた本発明の波状摩耗検測装置
によれば、検測台車2が所定速度でレール1上を
走行して、これに装備した2個の検測器A,Bに
よりレール上面の波状摩耗による凹凸が検測され
ると、双方の検測値がそれぞれ差分演算器14に
入力され、この差分演算器14において、前記2
個の検測器A,Bによる両検測値を差分する演
算、あるいは両検測値を差分して両検測器A,B
の間隔lを数等分する等分数Cで除算する演算を
行ない出力する。
[Function] According to the wave-like wear inspection device of the present invention having the above-mentioned configuration, the inspection cart 2 runs on the rail 1 at a predetermined speed, and the two inspection instruments A and B equipped thereon run on the rail 1 at a prescribed speed. When unevenness due to wavy wear on the top surface of the rail is measured, both measured values are input to the difference calculator 14, and in this difference calculator 14, the two
Calculation of the difference between the measured values of both measuring instruments A and B, or the calculation of the difference between the measured values of both measuring instruments A and B.
An operation is performed to divide the interval l by an equal fraction C, which divides the interval l into equal parts, and outputs the result.

一方、検測台車2が検測器A,Bの間隔lまた
はその数等分した距離を走行移動するごとに、走
行検出器6から走行パルスが出力されるととも
に、このパルスの出力によつて前記差分演算器1
4からの出力値を総和演算器16に入力させる。
この総和演算器16において前記差分演算器14
からの出力値を順次加算してその総和を演算し
て、前記パルスを出力する各位置のレール上面に
おける検測起点に対する上下方向の変位量を順次
求め、その演算値を出力する。
On the other hand, each time the inspection trolley 2 travels the distance l between the inspection instruments A and B or a distance equally divided by the number, the travel detector 6 outputs a travel pulse, and by the output of this pulse, a travel pulse is output. The difference calculator 1
The output value from 4 is input to the summation calculator 16.
In this summation calculation unit 16, the difference calculation unit 14
The output values are sequentially added and the total sum is calculated, and the amount of displacement in the vertical direction with respect to the measurement starting point on the top surface of the rail at each position where the pulse is output is sequentially determined, and the calculated value is output.

しかして、上記の総和演算器16から出力され
る前記変位量の演算値は、上記したように、実際
の波状摩耗に対して測定誤差F分だけ少ない値と
なるが、第1番目の本発明の場合、次のようにし
て誤差補正が行なわれる。
Therefore, as described above, the calculated value of the displacement amount outputted from the summation calculator 16 is a value smaller than the actual wave-like wear by the measurement error F. In this case, error correction is performed as follows.

総和演算器16から出力される変位量の演算値
の信号は、測定必要範囲の波長(周波数)に応じ
て設定された通過帯域、つまり波状摩耗検測範囲
の周波数を濾波するカツトオフ特性を持つたロー
パスフイルタ19を通過するもので、前記の測定
誤差を含む通過信号はそのまま加算演算器21入
力される。一方、前記誤差を含む信号の入力に対
して、波状摩耗の測定波長によつて決定される前
記誤差の補正量分を出力する周波数特性を持つフ
イルタ20を通過した信号も前記加算演算器21
に入力され、この加算演算器21において前記フ
イルタ20を通過した誤差補正量分の出力信号と
前記誤差を含む信号とが加算されて出力される。
The signal of the calculated displacement amount output from the summation calculator 16 has a pass band set according to the wavelength (frequency) of the required measurement range, that is, a cut-off characteristic that filters out the frequency of the wave-like wear detection range. The passing signal, which passes through the low-pass filter 19 and includes the measurement error described above, is input to the addition calculator 21 as is. On the other hand, in response to the input of the signal containing the error, the signal that has passed through the filter 20 which has a frequency characteristic that outputs the correction amount of the error determined by the measurement wavelength of the wave-like wear is also sent to the addition calculator 21.
In this addition calculator 21, the output signal corresponding to the error correction amount that has passed through the filter 20 and the signal containing the error are added and output.

すなわちローパスフイルタ19の通過信号は上
記したように誤差分だけ少ないが、この誤差分に
相当する出力を持つ周波数特性のフイルタ20の
通過信号が加算され、前記誤差差分が補正される
ことになる。
That is, although the signal passed through the low-pass filter 19 is smaller by the amount of the error as described above, the signal passed through the filter 20 whose frequency characteristics have an output corresponding to this error is added to correct the error difference.

そして検測必要範囲の波長(周波数)に応じて
設定された通過帯域を持つハイパスフイルタ22
を通過して出力される。この出力値は、波状摩耗
の波長に応じてその測定差分が補正され、実際の
波状摩耗に近似した出力となる。
and a high-pass filter 22 with a pass band set according to the wavelength (frequency) of the range required for inspection.
is passed through and output. The measured difference in this output value is corrected according to the wavelength of the wavy wear, resulting in an output that approximates the actual wavy wear.

また第2番目の発明の場合、前記総和演算器1
6から出力される演算値つまり変位量の信号は、
上記と同様に測定必要範囲の波長(周波数)に応
じて設定されたカツトオフ特性を持つローパスフ
イルタ19′を通過する。この測定誤差を含む通
過信号はそのまま増幅率可変形増幅器26に入力
されて増幅されるもので、この増幅器26におい
ては、前記誤差を含む信号に応じた増幅率調整信
号を発生する回路25からの信号により、測定波
長によつて決定される前記誤差の補正分を含むよ
うに調整された増幅率で増幅され、つまり誤差が
補正される。この増幅器26から出力は上記と同
じようにハイパスフイルタ22′を通過して出力
されるもので、この出力値は、波状摩耗の波長に
応じてその測定誤差分が前記のように補正された
値となる。
Further, in the case of the second invention, the summation calculator 1
The calculated value, that is, the displacement signal output from 6, is
Similarly to the above, the light passes through a low-pass filter 19' having a cutoff characteristic set according to the wavelength (frequency) in the range required for measurement. The passing signal containing the measurement error is input as is to the variable amplification amplifier 26 and amplified. In this amplifier 26, the signal from the circuit 25 that generates the amplification adjustment signal according to the signal containing the error is input to the variable amplification amplifier 26 and amplified. The signal is amplified with an amplification factor adjusted to include a correction for said error determined by the measurement wavelength, ie the error is corrected. The output from this amplifier 26 passes through the high-pass filter 22' in the same way as above and is output, and this output value is a value with the measurement error corrected as described above according to the wavelength of the wavy wear. becomes.

従つて、上記した本発明装置によれば、2個の
検測器A,Bによる両検測値を差分して測定点ご
とに順次加算して検測起点を基準とする上下方向
変位量を測定する差分方式のレール上面の波状摩
耗の検測が高精度で行なわれる。
Therefore, according to the above-mentioned apparatus of the present invention, the difference between the values measured by the two measuring instruments A and B is sequentially added for each measurement point to calculate the amount of displacement in the vertical direction with respect to the measurement starting point. The wavy wear on the top surface of the rail can be measured with high precision using the differential method.

[実施例] 以下、本発明の1実施例を図面に基いて説明す
る。
[Example] Hereinafter, one example of the present invention will be described based on the drawings.

第1図は本発明の波状摩耗検測装置の1実施例
を示すブロツク図であり、第2図はその検測部の
側面図である。第2図に示すようにレール1の凹
凸を検測する2個の検測器A,Bは、検測台車2
の前車輪3と後車輪4の略中間点において、レー
ル1の長さ方向に振り分けられた一定間隔lをお
いて検測台車2に配設されており、検測台車側の
基準位置からの距離によつてレール上面の凹凸を
検測する。
FIG. 1 is a block diagram showing one embodiment of the wavy wear measuring device of the present invention, and FIG. 2 is a side view of the measuring section thereof. As shown in FIG.
It is arranged on the inspection trolley 2 at approximately the midpoint between the front wheel 3 and the rear wheel 4 of the rail 1 at a constant interval l distributed in the length direction of the rail 1, and Measure the unevenness of the top surface of the rail based on the distance.

この検測器A,Bとしては、光を利用した光学
式センサ、レールとのギヤツプsの静電容量を検
出する静電容量式センサ、またはセンサヘツドの
コイルにより磁界を発生させ、電磁誘導によりレ
ールに誘導電流が流れて生ずるコイルのインダク
タンス損失を検出する磁気式センサ等の無接触型
の検出器、あるいはレールに接触するスライドシ
ヤフトの上下変位量を電圧または電流に変換する
ポテンシヨメータまたは差動トランス等を利用し
たセンサ等の接触型の検測器が用いられる。
These measuring instruments A and B are an optical sensor that uses light, a capacitive sensor that detects the capacitance of the gap with the rail, or a coil in the sensor head that generates a magnetic field and uses electromagnetic induction to detect the rail. A non-contact type detector such as a magnetic sensor that detects the inductance loss of the coil caused by an induced current flowing through the rail, or a potentiometer or differential that converts the amount of vertical displacement of the slide shaft in contact with the rail into voltage or current. A contact-type measuring device such as a sensor using a transformer or the like is used.

検測台車2は、前後車輪3,4によつてレール
1上を走行でき、またレール頭部削正車等の作業
車(図示せず)と設定、収納用油圧シリンダ5を
介して連結され、この油圧シリンダ5により、作
業時にはレール1上に降されて作業状態に設定さ
れ、前記作業車とともにレール1上を走行し、回
送時にはレール1より引き上げられて車両限界内
に収納される。
The inspection trolley 2 can run on the rail 1 with front and rear wheels 3 and 4, and is connected to a working vehicle (not shown) such as a rail head removal vehicle via a hydraulic cylinder 5 for setting and storing. During work, the hydraulic cylinder 5 lowers the work vehicle onto the rail 1 and sets it in a work state, and the work vehicle travels on the rail 1 together with the work vehicle.When forwarding, the work vehicle is pulled up from the rail 1 and stored within the vehicle limit.

検測台車2の後車輪4の車軸端には検測台車2
が一定の距離だけ、走行するごとに走行パルスを
出力する走行検出器6が設けられており、特に2
個の検測器A,Bの間隔lをC等分してその等分
距離だけ走行するごとにパルスを発するものが用
いられる。例えば第3図のように前記間隔lを2
等分する距離ごとにパルスを発生するものが用い
られる。
The inspection truck 2 is attached to the axle end of the rear wheel 4 of the inspection truck 2.
A traveling detector 6 is provided which outputs a traveling pulse every time the vehicle travels a certain distance.
A device is used that divides the distance l between the measuring devices A and B into C equal parts and emits a pulse every time the measuring devices travel by the equal distance. For example, as shown in FIG.
A device that generates a pulse for each equally divided distance is used.

そして、上記の検測器A,Bおよび走行検出器
6等が第1図に示す摩耗検測装置の検測部7を構
成する。
The above-mentioned measuring instruments A, B, traveling detector 6, etc. constitute a measuring section 7 of the wear measuring device shown in FIG.

第1図において、演算部11は、作業車または
検測台車2に設けられ、検測部7の2個の検測器
A,Bの出力する各検測値を、それぞれリニアラ
イザ12a,12bにより直線性を補正し、ロー
パスフイルタ13a,13bにより所定周波数以
上のノイズ等の外乱を除去して入力し、一方の検
測値から他方の検測値を減じてその差分を演算す
るとともに、2個の検出器A,Bの間隔lをC等
分してその等分数Cで前記差分を除算する差分演
算器14と、走行検出器6より出力され、かつワ
ンシヨツト回路15により波形整形された走行パ
ルスを入力するごとにゲートを開き、差分演算器
14が出力する除算された差分の値を総和演算器
16に入力させる入力された値を順次加算しその
総和を演算して、走行検出器6がパルスを出力し
た位置のレール1上面の検測起点を基準とする凹
凸量、つまり上下方向変位量を順次出力する総和
演算器16とを有している。
In FIG. 1, a calculation section 11 is provided in a working vehicle or an inspection cart 2, and receives each measurement value outputted from two inspection instruments A and B of an inspection section 7 by linearizers 12a and 12b, respectively. The linearity is corrected, disturbances such as noise having a frequency higher than a predetermined frequency are removed by low-pass filters 13a and 13b, and the difference is calculated by subtracting one measured value from the other. A difference calculator 14 divides the interval l between the detectors A and B into C equal parts and divides the difference by the equal fraction C, and a running pulse output from the running detector 6 and whose waveform is shaped by the one-shot circuit 15. The gate is opened every time , and the divided difference value output from the difference calculator 14 is input to the summation calculator 16.The inputted values are sequentially added and the sum is calculated. It has a summation calculator 16 that sequentially outputs the amount of unevenness, that is, the amount of vertical displacement based on the measurement starting point on the top surface of the rail 1 at the position where the pulse is output.

上記演算部11の後続には総和演算器16から
の出力される前記変位量の測定誤差を補正する誤
差補正部18が設けられている。
An error correction section 18 is provided downstream of the calculation section 11 to correct the measurement error of the displacement amount outputted from the summation calculation section 16.

この誤差補正部18は、測定必要範囲の周波数
に応じて設定されたカツトオフ特性を持ちかつ前
記総和演算器16から出力される前記変位量の演
算値信号を通過させるローパスフイルタ19と、
前記ローパスフイルタ19を通過した信号の第7
図に示す測定誤差Fを含む入力に対して、検測器
間隔に対する波状摩耗の測定波長によつて決定さ
れる前記誤差の補正量分を出力する周波数特性を
持つたハイパスフイルタ等のフイルタ20と、こ
のフイルタ20を通過した信号と前記ローパスフ
イルタ19を通過した前記誤差を含む信号とを加
算する加算演算器21と、測定必要範囲の周波数
に応じて設定されたカツトオフ特性を持ちかつ前
記加算演算器21からの出力信号を通過させるハ
イパスフイルタ22とを有してなる。この誤差補
正部18を通過した出力信号は記録器(図示せ
ず)に送られ記録される。前記の誤差補正量分を
出力するフイルタ20は、ハイパスフイルタの立
ち上り部分の特性を利用するほかに、バンドパス
フイルタの立ち上り部分の周波数特性を利用する
こともできる。
The error correction section 18 includes a low-pass filter 19 that has a cutoff characteristic set according to the frequency in the necessary measurement range and that passes the calculated value signal of the displacement amount output from the summation calculator 16;
The seventh signal that has passed through the low-pass filter 19
A filter 20, such as a high-pass filter, has a frequency characteristic that outputs a correction amount for the error determined by the measurement wavelength of the wave-like wear with respect to the measuring instrument interval in response to an input including the measurement error F shown in the figure. , an addition calculator 21 that adds the signal that has passed through this filter 20 and the signal that has passed through the low-pass filter 19 that includes the error; The high-pass filter 22 passes the output signal from the filter 21. The output signal that has passed through the error correction section 18 is sent to a recorder (not shown) and recorded. The filter 20 that outputs the error correction amount can utilize the frequency characteristics of the rising portion of a bandpass filter in addition to the characteristics of the rising portion of the high-pass filter.

次に、上記の摩耗検測装置により、レールの摩
耗検測を特に2個の検測器A,Bの間隔lを2等
分して実施する場合について説明する。
Next, a case will be described in which rail wear is measured using the above-mentioned wear measuring device, particularly by dividing the interval l between the two testers A and B into two equal parts.

作業車を介して検測台車2が所定の速度でレー
ル1上を走行して、検測器A,Bによりレール1
の上面の波状摩耗による凹凸が検測されると、そ
の検測値はそれぞれリニアライザ12a,12b
およびローパスフイルタ13a,13bを介して
差分演算器14に入力され、その差分を演算する
とともに、2個の検測器A,Bの間隔lを2等分
する等分数2で除算する。
The inspection trolley 2 travels on the rail 1 at a predetermined speed via the work vehicle, and the rail 1 is inspected by the inspection instruments A and B.
When unevenness due to wavy wear on the upper surface is measured, the measured values are measured by the linearizers 12a and 12b, respectively.
The signal is input to the difference calculator 14 via the low-pass filters 13a and 13b, and the difference is calculated, and at the same time, it is divided by an equal fraction 2 that divides the interval l between the two measuring instruments A and B into two.

一方、検測台車2が検測器A,Bの間隔lを等
分、例えば2等分した距離l/2だけ走行するごと
に走行パルスを出力し、このパルスはワンシヨツ
ト回路15により波形整形されてゲート回路17
に入力されてゲートを開き、前記差分演算器14
の出力する除算された差分の値Δβp=〔Ap+2
Bp〕/2(p=0,1,2,3……n)を総和演
算器16に入力させる。総和演算器16において
は、この入力された値Δβpを順次加算してその総
和を演算し、つまりβpop=0 〔Δβp〕(p=0,1,
2,3……n)の演算を行ない、走行検出器6が
検測起点P0より矢印方向に走行して走行パルス
を出力した各点P1,P2,P3……Po毎のレール上
面の前記検測起点P0に対する上下方向の変位量
β0,β1,β2……βoを順次出力する。
On the other hand, each time the inspection cart 2 travels a distance l/2, which is equal to the distance l between the inspection instruments A and B, for example, it is divided into two, it outputs a running pulse, and this pulse is waveform-shaped by the one-shot circuit 15. gate circuit 17
is input to open the gate, and the difference calculator 14
The divided difference value Δβ p = [A p+2
B p ]/2 (p=0, 1, 2, 3...n) is input to the summation calculator 16. The summation calculator 16 sequentially adds the input values Δβ p and calculates the sum, that is, β p = op=0 [Δβ p ] (p=0, 1,
2, 3...n) are performed, and the travel detector 6 travels in the direction of the arrow from the measurement starting point P0 and outputs travel pulses at each point P1 , P2 , P3 ...for each P0 . The vertical displacement amounts β 0 , β 1 , β 2 , . . . β o of the top surface of the rail with respect to the measurement starting point P 0 are sequentially output.

上記のように演算部11における総和演算器1
6から出力される前記変位量の演算値の信号は、
測定必要範囲に応じて設定された通過帯域つまり
波状摩耗検測範囲の周波数を濾波するカツトオフ
特性を持つたローパスフイルタ19を通過する。
この通過信号Dは、その短波長成分域で実際の波
状摩耗に対して測定誤差Fを含んでいるが、この
測定誤差を含む信号は加算演算器21に入力さ
れ、これと同時に前記の測定誤差を含む信号Dの
入力に対して、その誤差補正量分を出力する特性
を持つハイパスフイルタ等のフイルタ20を通過
した信号Eも加算演算器21に入力され、この加
算演算器21で前記信号Dと補正量分の信号Eと
が加算され、測定誤差がこれによつて補正されて
出力する。
As mentioned above, the summation calculator 1 in the calculation unit 11
The signal of the calculated value of the displacement amount output from 6 is
The signal passes through a low-pass filter 19 having a cut-off characteristic that filters out frequencies in a pass band set according to the range required for measurement, that is, the wave-like wear measurement range.
This passing signal D contains a measurement error F with respect to actual wave-like wear in its short wavelength component region, but the signal containing this measurement error is input to the addition calculator 21, and at the same time, the measurement error The signal E that has passed through a filter 20 such as a high-pass filter that has the characteristic of outputting the error correction amount for the input signal D including and the signal E corresponding to the correction amount are added, and the measurement error is corrected and output.

すなわち第3図のように、総和演算器16から
の出力Dがローパスフイルタ19によりそのカツ
トオフ特性dに応じて測定必要範囲の波長成分が
濾波され通過すると、その通過信号は上記したよ
うに誤差分F′だけ少ないが、この誤差分F′に相当
する出力Eを持つように設定された周波数特性e
のフイルタ20により前記誤差分が補正されるこ
とになる。
That is, as shown in FIG. 3, when the output D from the summation calculator 16 is filtered by the low-pass filter 19 to filter wavelength components in the range required for measurement according to its cut-off characteristic d, the passed signal has an error component as described above. The frequency characteristic e is set to have an output E corresponding to this error F′, although it is less by F′.
The error is corrected by the filter 20.

さらに前記の加算演算器21からの出力信号は
測定必要範囲の周波数に応じて設定されたカツト
オフ特性gを持つハイパスフイルタ22を通過し
て出力されるもので、この出力値は、波状摩耗の
波長の誤差分が補正され、実際の波状摩耗に近似
した出力となり、この出力値が記録される。
Further, the output signal from the adder 21 is passed through a high-pass filter 22 having a cut-off characteristic g set according to the frequency range required for measurement, and this output value is determined by the wavelength of the wave-like wear. The error is corrected, resulting in an output that approximates the actual wave-like wear, and this output value is recorded.

上記において、測定必要範囲の周波数を濾波す
るローパスフイルタ19とハイパスフイルタ2
2、および誤差補正量分を出力するフイルタ20
が、第1図鎖線のように走行検出器6からの速度
信号をF/V変換して得られた電圧によつて周波
数特性を可変できるようになされていると、走行
速度に応じて上記の誤差補正量を制御でき、より
正確な高精度の検測を行なうことができる。
In the above, a low-pass filter 19 and a high-pass filter 2 filter frequencies in the range required for measurement.
2, and a filter 20 that outputs the error correction amount.
However, if the frequency characteristics can be varied by the voltage obtained by F/V converting the speed signal from the running detector 6, as shown by the chain line in Figure 1, the above-mentioned changes will occur depending on the running speed. The amount of error correction can be controlled, and more accurate and highly accurate measurements can be performed.

第4図は、誤差補正部18の他の構成例を示し
ており、測定必要範囲の周波数に応じて設定され
たカツトオフ特性を持ちかつ前記総和演算器から
出力される変位量の演算値信号をアナログ量で通
過させるローパスフイルタ19′と、このローパ
スフイルタ19′を通過した前記変位量の測定誤
差を含む信号について波形整形器23およびF/
V変換器24を介して波状摩耗の周波数を電圧に
変換し前記誤差を含む信号に応じた増幅率調整信
号を発生する回路25と、前記のローパスフイル
タ19′を通過した前記誤差を含む信号を入力す
るとともに、前記回路25からの増幅率調整信号
により検測器間隔に対する波状摩耗の測定波長比
によつて決定される前記誤差の補正分を含む増幅
率に調整されて増幅する増幅率可変形増幅器26
と、測定必要範囲の周波数に応じて設定されたカ
ツトオフ特性を持ちかつ前記の増幅器26の出力
信号を通過させるハイパスフイルタ22′とを有
してなる。
FIG. 4 shows another example of the configuration of the error correction unit 18, which has a cutoff characteristic set according to the frequency in the necessary measurement range and which outputs a calculated value signal of the displacement amount output from the summation calculator. A low-pass filter 19' passes the analog quantity, and a waveform shaper 23 and F/
A circuit 25 converts the frequency of the wave-like wear into a voltage via a V converter 24 and generates an amplification factor adjustment signal according to the signal containing the error, and a circuit 25 that converts the frequency of the wave-like wear into a voltage and generates an amplification factor adjustment signal according to the signal containing the error, and the signal containing the error that has passed through the low-pass filter 19'. a variable amplification type that is adjusted and amplified by an amplification factor adjustment signal from the circuit 25 to an amplification factor that includes a correction amount for the error determined by the measurement wavelength ratio of the wave-like wear to the detector interval; amplifier 26
and a high-pass filter 22' which has a cut-off characteristic set according to the frequency in the range required for measurement and which passes the output signal of the amplifier 26.

この場合にも、演算部11の総和演算器16か
ら出力され、ローパスフイルタ19′を通過する
測定誤差を含む通過信号は、増幅率可変形増幅器
26に入力され、この増幅器26において、前記
誤差を含む信号に応じた増幅率調整信号を発生す
る回路25からの信号により、前記誤差の補正分
を含むように調整された増幅率で増幅されて出力
され、ハイパスフイルタ22′を通過して出力さ
れるもので、この出力値は、波状摩耗の波長の誤
差分が上記同様に補正された値となる。
In this case as well, the pass signal containing the measurement error that is output from the summation unit 16 of the arithmetic unit 11 and passes through the low-pass filter 19' is input to the variable amplification amplifier 26, which eliminates the error. A signal from the circuit 25 that generates an amplification factor adjustment signal corresponding to the signal included in the signal is amplified with an amplification factor adjusted to include the correction of the error, and is output after passing through the high-pass filter 22'. This output value is a value obtained by correcting the wavelength error of the wave-like wear in the same manner as above.

なお、上記の実施例では、2個の検測器A,B
の間隔をC等分してその等分距離ごとに両検測値
の差分を除算して、この除算された差分の値を順
次加算してその総和を演算することとした場合を
示したが、前記差分および差分の総和演算を前記
2個の検測器の間隔距離ごとに行なうようにして
実施することも可能であり、この場合、走行検出
器を前記間隔距離ごとにパルスを発するようにし
ておけばよく、上記総和演算器から出力される上
下方向変位量の誤差を上記と同様にして補正する
ことができる。
In addition, in the above embodiment, two measuring instruments A and B are used.
The case is shown in which the interval is divided into C equal parts, the difference between both measured values is divided for each equal distance, and the divided difference values are sequentially added to calculate the sum. , it is also possible to perform the difference and the summation calculation of the difference for each interval distance between the two detectors, and in this case, the travel detector is made to emit a pulse for each interval distance. The error in the vertical displacement amount output from the summation calculator can be corrected in the same manner as described above.

[発明の効果] 上記したように、本発明によれば、2個の検測
器による両検測値の差分を一定距離毎に順次加算
して、検測起点を基準とする上下方向変位量を前
記距離毎に順次求めて波状摩耗を検測する場合に
おいて、特に前記変位量を測定波長との関連で生
じる誤差分を補正して出力でき、実際の波状摩耗
にごく近似した検測値を出力でき、正確で高精度
の検測が行なえる。もちろん2個の検測器の検測
値の差分をとることで、検測台車の上下変動に伴
う測定誤差も小さくなる。それゆえ、レール上面
の波状摩耗等をその凹凸状態に応じてその深さや
波長をきわめて正確に検測することができ、以つ
てレール頭部削正車による波状摩耗等の削正を、
摩耗状況に応じ適切に行なうことができる。
[Effects of the Invention] As described above, according to the present invention, the difference between the values measured by the two measuring instruments is sequentially added for every fixed distance, and the amount of displacement in the vertical direction with respect to the measurement starting point is calculated. When detecting wave-like wear by sequentially determining the amount of displacement for each distance, it is possible to output the displacement amount after correcting the error caused in relation to the measurement wavelength, and to output a measured value that closely approximates the actual wave-like wear. It is possible to output accurate and high-precision measurements. Of course, by taking the difference between the measured values of the two measuring instruments, the measurement error caused by the vertical movement of the measuring cart is also reduced. Therefore, the depth and wavelength of wavy wear etc. on the top surface of the rail can be very accurately measured according to its unevenness, and the removal of wavy wear etc. by the rail head grinding wheel can be done with great accuracy.
This can be done appropriately depending on the wear condition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示すブロツク図、
第2図は装置検測部の側面図、第3図は誤差と出
力との関係を示す図表、第4図は別のもう一つの
発明の誤差補正部の実施例を示すブロツク図、第
5図は差分方式による検測状態の説明図、第6図
は波状摩耗の振幅誤差についての説明図、第7図
は振幅の測定誤差と波長との関係を示す測定図表
である。 A,B……検測器、1……レール、2……検測
台車、3……前車輪、4……後車輪、6……走行
検出器、7……検測部、11……演算部、14…
…差分演算器、16……総和演算器、18……誤
差補正部、19,19′……ローパスフイルタ、
20……フイルタ、21……加算演算器、22,
22′……ハイパスフイルタ、25……増幅率調
整信号を発生する回路、26……増幅率可変形増
幅器。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a side view of the device inspection section, FIG. 3 is a chart showing the relationship between error and output, FIG. 4 is a block diagram showing an embodiment of the error correction section of another invention, and FIG. FIG. 6 is an explanatory diagram of the measurement state by the differential method, FIG. 6 is an explanatory diagram of the amplitude error of wave-like wear, and FIG. 7 is a measurement chart showing the relationship between the amplitude measurement error and wavelength. A, B...Inspection instrument, 1...Rail, 2...Inspection trolley, 3...Front wheel, 4...Rear wheel, 6...Travel detector, 7...Inspection section, 11... Arithmetic unit, 14...
...Difference calculator, 16...Summing calculator, 18...Error correction unit, 19, 19'...Low pass filter,
20... Filter, 21... Addition operator, 22,
22'... High pass filter, 25... Circuit for generating an amplification factor adjustment signal, 26... Variable amplification factor amplifier.

Claims (1)

【特許請求の範囲】 1 軌道のレール上を走行可能な検測台車にレー
ルの長さ方向に一定間隔をおいて配され、かつレ
ール上面の凹凸を検測台車側の基準位置からの距
離によつて検測する2個の検測器と、前記検測台
車が前記2個の検測器の間隔または該間隔を数等
分した距離を走行移動する毎にパルスを出力する
走行検出器と、前記2個の検測器の出力する検測
値を入力し、一方の検測値から他方の検測値を減
じて両検測値を差分する演算を行うか、または両
検測値を差分して前記等分数で除算する演算を行
なう差分演算器と、前記走行検出器がパルスを出
力する毎に、前記差分演算器からの出力値を順次
加算する総和演算を行ない、前記パルスを出力す
る距離毎の各点における検測起点に対するレール
上面の上下方向の変位量を順次求め、その演算結
果を出力する総和演算器とを備え、検測台車が両
検測器間隔または該間隔を数等分した距離移動す
る毎の各点におけるレール上面の検測起点を基準
とする上下方向変位量によつて波状摩耗を検測す
るレールの波状摩耗検測装置において、 測定必要範囲の周波数に応じて設定されたカツ
トオフ特性を持ちかつ前記総和演算器から出力さ
れる前記変位量の出力信号をアナログ量で通過さ
せるローパスフイルタと、前記ローパスフイルタ
を通過した前記変位量の測定誤差を含む入力に対
して、検測器間隔に対する波状摩耗の測定波長比
によつて決定される前記誤差の補正量分を出力す
る周波数特性を持つフイルタと、このフイルタを
通過した信号と前記ローパスフイルタを通過した
前記誤差を含む信号とを加算する加算演算器と、
測定必要範囲の周波数に応じて設定されたカツト
オフ特性を持ちかつ前記加算演算器からの出力信
号を通過させるハイパスフイルタとを有する誤差
補正部を設けたことを特徴とするレールの波状摩
耗検測装置。 2 測定必要範囲に応じて設定されたカツトオフ
特性のローパスフイルタとハイパスフイルタ、お
よび誤差補正量分を出力するフイルタは、その周
波数特性が走行検出器からの速度信号によつて制
御されるようになされた特許請求の範囲第1項記
載のレールの波状摩耗検測装置。 3 軌道のレール上を走行可能な検測台車にレー
ルの長さ方向に一定間隔をおいて配され、かつレ
ール上面の凹凸を検測台車側の基準位置からの距
離によつて検測する2個の検測器と、前記検測台
車が前記2個の検測器の間隔または該間隔を数等
分した距離を走行移動する毎にパルスを出力する
走行検出器と、前記2個の検測器の出力する検測
値を入力し、一方の検測値から他方の検測値を減
じて両検測値を差分する演算を行うか、または両
検測値を差分して前記等分数で除算する演算を行
なう差分演算器と、前記走行検出器がパルスを出
力する毎に、前記差分演算器からの出力値を順次
加算する総和演算を行ない、前記パルスを出力す
る距離毎の各点における検測起点に対するレール
上面の上下方向の変位置を順次求め、その演算結
果を出力する総和演算器とを備え、検測台車が両
検測器間隔または該間隔を数等分した距離移動す
る毎の各点におけるレール上面の検測起点を基準
とする上下方向変位量によつて波状摩耗を検測す
るレールの波状摩耗検測装置において、 測定必要範囲の周波数に応じて設定されたカツ
トオフ特性を持ちかつ前記総和演算器から出力さ
れる前記変位量の出力信号をアナログ量で通過さ
せるローパスフイルタと、このローパスフイルタ
を通過した前記変位量の測定誤差を含む信号に応
じた増幅率調整信号を発生する回路と、前記ロー
パスフイルタを通過した前記誤差を含む信号を入
力するとともに、前記回路からの増幅率調整信号
により検測器間隔に対する波状摩耗の測定波長比
によつて決定される前記誤差の補正分を含む増幅
率に調整されて増幅する増幅率可変形増幅器と、
測定必要範囲の周波数に応じて設定されたカツト
オフ特性を持ちかつ前記増幅器の出力信号を通過
させるハイパスフイルタとを有する誤差補正部を
設けてなることを特徴とするレールの波状摩耗検
測装置。
[Scope of Claims] 1. An inspection trolley that can run on the rails of a track is arranged at regular intervals in the length direction of the rail, and the unevenness on the top surface of the rail is adjusted to the distance from the reference position on the inspection trolley side. and a travel detector that outputs a pulse every time the inspection trolley travels a distance between the two measuring instruments or a distance divided into several equal parts by the distance between the two measuring instruments. , input the measured values output from the two measuring instruments, and perform a calculation to subtract the measured value from one measured value and calculate the difference between both measured values, or calculate the difference between both measured values. A difference calculator that performs a calculation of difference and division by the equal fraction, and a summation calculation that sequentially adds the output values from the difference calculator every time the traveling detector outputs a pulse, and outputs the pulse. It is equipped with a summation calculator that sequentially calculates the amount of displacement in the vertical direction of the top surface of the rail with respect to the measurement starting point at each point for each distance, and outputs the calculation result. In a rail wave wear detection device that measures wave wear based on the amount of vertical displacement based on the measurement starting point on the top of the rail at each point after moving an equal distance, a low-pass filter that has a cut-off characteristic set as follows and that passes the output signal of the displacement amount outputted from the summation unit in an analog quantity; a filter having a frequency characteristic that outputs a correction amount of the error determined by the measurement wavelength ratio of the wave-like wear to the measuring instrument interval; and a signal passing through this filter and the error passing through the low-pass filter. an addition operator that adds the signals including the
A rail wavy wear inspection device characterized by being provided with an error correction section having a cut-off characteristic set according to a frequency in a required measurement range and having a high-pass filter that passes an output signal from the addition arithmetic unit. . 2. The low-pass filter and high-pass filter with cut-off characteristics set according to the necessary measurement range, and the filter that outputs the amount of error correction, are designed so that their frequency characteristics are controlled by the speed signal from the running detector. A rail wavy wear measuring device according to claim 1. 3. The inspection carts that can run on the rails of the track are arranged at regular intervals in the length direction of the rails, and the irregularities on the top surface of the rails are measured by the distance from the reference position on the inspection cart side. 2 a traveling detector that outputs a pulse every time the measuring cart travels a distance between the two measuring devices or a distance divided into several equal parts; Input the measured values output by the measuring instrument and perform a calculation to subtract the other measured value from one measured value and calculate the difference between the two measured values, or calculate the equal fraction by subtracting the two measured values. a difference calculator that performs a calculation of dividing by , and a summation calculation that sequentially adds the output values from the difference calculator each time the travel detector outputs a pulse, and each point for each distance where the pulse is output. A summation calculator that sequentially calculates the displacement position of the top surface of the rail in the vertical direction with respect to the measurement starting point and outputs the calculation result, and the inspection cart moves a distance between the two measuring instruments or a distance that divides the interval into several equal parts. In a rail wave wear detection device that measures wave wear based on the amount of vertical displacement with respect to the measurement starting point on the top of the rail at each point, the cut-off characteristic is set according to the frequency of the required measurement range. and an amplification factor adjustment signal corresponding to a signal including a measurement error of the displacement amount that has passed through the low-pass filter and that passes the output signal of the displacement amount output from the summation calculator in an analog quantity. A circuit that generates a signal containing the error that has passed through the low-pass filter is input, and an amplification factor adjustment signal from the circuit is used to generate the error that is determined by the measurement wavelength ratio of the wave-like wear to the measuring instrument interval. a variable amplification amplifier that performs amplification while being adjusted to an amplification factor that includes a correction amount;
A rail corrugated wear inspection device comprising: an error correction section having a cut-off characteristic set according to a frequency in a required measurement range and a high-pass filter that passes an output signal of the amplifier.
JP20847286A 1986-09-03 1986-09-03 Wavy wear measuring instrument for rail Granted JPS6361909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20847286A JPS6361909A (en) 1986-09-03 1986-09-03 Wavy wear measuring instrument for rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20847286A JPS6361909A (en) 1986-09-03 1986-09-03 Wavy wear measuring instrument for rail

Publications (2)

Publication Number Publication Date
JPS6361909A JPS6361909A (en) 1988-03-18
JPH054609B2 true JPH054609B2 (en) 1993-01-20

Family

ID=16556740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20847286A Granted JPS6361909A (en) 1986-09-03 1986-09-03 Wavy wear measuring instrument for rail

Country Status (1)

Country Link
JP (1) JPS6361909A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245855A (en) * 1991-06-24 1993-09-21 Rittenhouse-Zemen & Associates, Inc. Rail seat abrasion measurement
JP4521524B2 (en) * 2005-11-30 2010-08-11 学校法人日本大学 Track state analysis method, track state analysis apparatus, and track state analysis program
FR2981904B1 (en) * 2011-10-28 2013-11-01 Lohr Ind SYSTEM FOR DYNAMICALLY CONTROLLING THE ROLLING OF THE GUIDE RAIL (S) FOR A GUIDE ASSEMBLY OF A VEHICLE ALONG AT LEAST ONE RAIL.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112154A (en) * 1974-07-22 1976-01-30 Nippon Kokan Kk Hyomenheitandosokuteihoho
JPS5275495A (en) * 1975-12-19 1977-06-24 Sanyo Jido Hanbaiki Kk Price setting means for automatic vending machines
JPS6112010B2 (en) * 1983-04-11 1986-04-05 Mitsubishi Seiko Kk

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112010U (en) * 1984-06-28 1986-01-24 東京モノレ−ル株式会社 Vehicle track and road surface inspection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112154A (en) * 1974-07-22 1976-01-30 Nippon Kokan Kk Hyomenheitandosokuteihoho
JPS5275495A (en) * 1975-12-19 1977-06-24 Sanyo Jido Hanbaiki Kk Price setting means for automatic vending machines
JPS6112010B2 (en) * 1983-04-11 1986-04-05 Mitsubishi Seiko Kk

Also Published As

Publication number Publication date
JPS6361909A (en) 1988-03-18

Similar Documents

Publication Publication Date Title
US4288855A (en) Device for measuring deformations of the travel surface of the rails of a railway
US5353512A (en) Measuring arrangement for continuously measuring undulatory irregularities of a rail
FI59485C (en) I FORD INSTALLATION INSTRUCTIONS FOR MAINTENANCE AND REGISTRATION OF MONTERADE RAELSARS GEOMETRIC STORETER
JPS57173701A (en) Eddy current type device and method for measuring rail displacement
CZ282525B6 (en) Method of determining operational state of railway lines and apparatus for making the same
JPH10339629A (en) Measuring device
US4771549A (en) Method and apparatus for measuring deviations from flatness
JPH054609B2 (en)
JP3686184B2 (en) Vehicle wheel load measuring device
JPS62231110A (en) Wavy wear measuring instrument for rail
RU2110803C1 (en) Device for measurement of motion speed of railway transport facility
JPS6361908A (en) Wear measuring instrument for rail
SU1541086A1 (en) Device for measuring vehicle speed
JP3107341B2 (en) Railcar traveling wheel inspection device
JPH0611331A (en) Instrument and method for measuring undulating wear of rail
JPH07104147B2 (en) Rail wear inspection method and apparatus
SU1555405A1 (en) Device for measuring rail track parameters
JPS63177008A (en) Apparatus for measuring unevenness of tread surface of rail
JPH03107712A (en) Road surface measuring method
RU2292283C2 (en) Device for noncontact inspection of wheelset roll surfaces in motion of rail vehicle
RU2134319C1 (en) Device for checking irregularities of rail track
JPS62156510A (en) Method and instrument for detecting and measuring wavy wear of head top surface of rail
JPS60252207A (en) Measuring instrument of shape of rail top surface
JP4198838B2 (en) Rail vehicle running wheel inspection device
JPS5814347B2 (en) Defect measurement device for the top surface of the rail