JPH03107712A - Road surface measuring method - Google Patents

Road surface measuring method

Info

Publication number
JPH03107712A
JPH03107712A JP24332789A JP24332789A JPH03107712A JP H03107712 A JPH03107712 A JP H03107712A JP 24332789 A JP24332789 A JP 24332789A JP 24332789 A JP24332789 A JP 24332789A JP H03107712 A JPH03107712 A JP H03107712A
Authority
JP
Japan
Prior art keywords
road surface
road
measuring means
measurement
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24332789A
Other languages
Japanese (ja)
Inventor
Tetsushi Mimuro
哲志 御室
Takahiro Maemura
高広 前村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP24332789A priority Critical patent/JPH03107712A/en
Publication of JPH03107712A publication Critical patent/JPH03107712A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To take a measurement at high traveling speed, to obtain the rugged profile of the entire road surface to be measured and to improve the reliability by arranging plural sets of road surface measuring means in the width direction of a road while the numbers and positions of noncontact laser displacement gauges are uniformed. CONSTITUTION:Noncontact laser displacement gauges 2, 3, and 3 are arranged on a measuring wheel 1 at mutually different intervals on a straight line in the front-rear direction of the vehicle body to constitute one road surface measuring means S, and plural road surface measuring means S1 - S4 are arranged based upon the one road surface measuring means S in the width direction of the road so that the numbers and positions of displacement gauges 2, 3, and 4 are uniformed. While the measuring wheel 1 travels, the outputs of the respective sets of road surface measuring means S1 - S4 are inputted to a personal computer to perform arithmetic processing. Conse quently, the rugged profile measured shape on the straight line in the travel direction of the measuring vehicle 1 facing the respective sets of road surface measuring means S1 - S4 is obtained and the rugged profile in the width direction of the road is found by curve approximation from the measured shapes of the respective sets to obtain the rugged profile of the entire measured road surface W.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、計測車を走行して、波計、1lIj路面にお
ける進行方向の路面凹凸プロフィルを計測するとともに
道幅方向の凹凸プロフィルを曲線近似して求めることに
より、波計811路面全体の凹凸プロフィルを得る路面
計測法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention measures the road surface unevenness profile in the traveling direction on a 1lIj road surface using a wave meter by driving a measurement vehicle, and also measures the unevenness in the road width direction. The present invention relates to a road surface measurement method that obtains the uneven profile of the entire road surface using a wave meter 811, by approximating the profile to a curve.

(従来の技術) 道路の表面は、非舗装道路はもとより、舗装道路におい
ても完全に平滑ではなく、さまざまな凹凸がある。その
ため、道路を走行する自動車には、それぞれの路面凹凸
の形と走行速度に応じた複雑な力が作用する。これらの
力を自動車の上下、前後、左右方向の成分に分けると、
特に上下方向の力は振動乗り心地や積荷のいたみと密接
な関係を持つ。さらに、車体の変形や破壊を招く最大の
原因となる。したがって、路面全体の凹凸の程度を把握
しておくことは自動車の開発にとって、必要不可欠なこ
とである。
(Prior Art) The surface of a road, not only an unpaved road but also a paved road, is not completely smooth and has various unevenness. As a result, vehicles traveling on the road are subjected to complex forces that depend on the shape of the road's unevenness and the speed at which they are traveling. If we divide these forces into components in the vertical, longitudinal, and lateral directions of the car, we get
In particular, vertical force has a close relationship with vibration ride comfort and cargo damage. Furthermore, it is the biggest cause of deformation and destruction of the vehicle body. Therefore, understanding the degree of unevenness of the entire road surface is essential for the development of automobiles.

路面の凹凸プロフィルを計測する方法として、従来、多
輪Jl定輪金使用する方法、サーボ振動計を使用する方
法が広く知られている。前記多輪n1定車を使用する方
法は、多重リンクの平均で基準ラインを設定し、計測輪
の動きで路面の凹凸を11−する方法であるが、装置が
複雑であり、計測速度が遅く、長距離の路面を計ilJ
するには不向きである。
As methods for measuring the uneven profile of a road surface, methods using a multi-wheel fixed wheel metal and methods using a servo vibration meter are widely known. The method of using the multi-wheeled N1 rolling stock is to set a reference line using the average of multiple links and measure the unevenness of the road surface by the movement of the measurement wheel, but the device is complicated and the measurement speed is slow. , long-distance road surface planning
It is not suitable for doing so.

また、サーボ振動計を使用する方法は、計測車に計測車
輪を取り付け、計nj車と路面間の相対距離を計測車輪
の動きで、計測車の上下変位を加速度の二重積分でそれ
ぞれ求め、それらの引き算から路面の凹凸を求める方法
である。計測速度はある程度改善されたが、計測車輪が
路面と接触して振動するために共振などに配慮が必要に
なってくる。
In addition, the method of using a servo vibration meter is to attach a measuring wheel to a measuring car, calculate the relative distance between the measuring car and the road surface by the movement of the measuring wheel, and calculate the vertical displacement of the measuring car by double integration of the acceleration. This method calculates the unevenness of the road surface by subtracting them. Although the measurement speed has been improved to some extent, consideration must be given to resonance, as the measurement wheels vibrate when they come into contact with the road surface.

また、前述のような問題を解消するために、前記111
定車輪を持ったサーボ振動計に代わって非接触レーザ変
位計を用い、これを計測車に搭載して測定しようとする
道路を走行しながら路面に対してレーザビームを照射し
、路面からの反射ビームによって路面の凹凸プロフィル
を計測するようにした方法も知られている。
In addition, in order to solve the above-mentioned problems, the above-mentioned 111
Instead of a servo vibration meter with fixed wheels, a non-contact laser displacement meter is used, which is mounted on a measuring vehicle and while driving on the road to be measured, irradiates the road surface with a laser beam and measures the reflection from the road surface. A method is also known in which the uneven profile of a road surface is measured using a beam.

(発明が解決しようとする課題) ところが、前述のように、非接触レーザ変位計を計測車
に搭載し、計ハ1車を走行しながら計測する方法であっ
ても1台の非接触レーザ変位計によって計測しているた
めに、路面からの入力によって車体がバウンシングする
と計11111誤差が発生する。したがって、同一の被
計測道路を何回も走行して計a−1シ、精度を上げる必
要がある。また、計測車の走行速度が制限され、通常の
走行速度で計測することができないために、高速道路な
どの路面を計測する場合には一般車両と一緒に走行して
計測できない。
(Problem to be Solved by the Invention) However, as described above, even if a non-contact laser displacement meter is mounted on a measurement vehicle and the measurement is carried out while one vehicle is running, the displacement of one non-contact laser Since the measurement is performed using a meter, if the vehicle body bounces due to input from the road surface, a total of 11111 errors will occur. Therefore, it is necessary to drive the same road to be measured many times to improve accuracy by a total of a-1. Furthermore, the running speed of the measurement vehicle is limited and measurements cannot be taken at normal running speeds, so when measuring a road surface such as an expressway, it is not possible to drive along with general vehicles.

この発明は前記事情に着目してなされたもので、その目
的とするところは、通常の走行速度で迅速に計測するこ
とができ、しかも車体がバウンシングしても正確に計1
1)J して計測データの信頼性を向上できるとともに
進行方向の計n1形状から道幅方向の路面凹凸プロフィ
ルを曲線近似して求めることにより、路面全体の凹凸プ
ロフィルを得られる路面計測法を提供することにある。
This invention was made with attention to the above-mentioned circumstances, and its purpose is to be able to quickly measure the total speed at normal running speeds, and to accurately measure the total value even when the vehicle body is bouncing.
1) To provide a road surface measurement method that can improve the reliability of measurement data by using J and obtain the unevenness profile of the entire road surface by calculating the road surface unevenness profile in the road width direction from a total of n1 shapes in the traveling direction by curve approximation. There is a particular thing.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)本発明は、前
記目的を達成するために、計測車に、その車体の前後方
向に沿って一直線上に3台以上の非接触レーザ変位計を
互いに異なる間隔を存して配置してなる路面針DI手段
を1組とし、この1組の路面計測手段を基準として道幅
方向に非接触レーザ変位計の台数と位置を揃えて複数組
の路面計測手段を配置し、計allJ車を走行しながら
前記各組の路面針ハj手段からの出力を演算処理し、各
組の路面針J1手段に対向する計ΔII車の進行方向に
沿う一直線上の凹凸プロフィル計Δ11形状を得るとと
もに各組の計測形状から道幅方向の凹凸プロフィルを曲
線近似して求めることにより、被計測路面全体の凹凸プ
ロフィルを得ることを特徴とする路面計tPj法である
(Means and effects for solving the problem) In order to achieve the above-mentioned object, the present invention provides a measurement vehicle with three or more non-contact laser displacement meters arranged in a straight line along the longitudinal direction of the vehicle body. A set of road surface needle DI means arranged at intervals is set as one set, and a plurality of sets of road surface measuring means are arranged by aligning the number and position of non-contact laser displacement meters in the road width direction with reference to this set of road surface measuring means. and calculates and processes the outputs from the road surface needle J means of each set while driving the road surface needle J1 means, and calculates an uneven profile on a straight line along the traveling direction of the total ΔII vehicle facing the road surface needle J1 means of each set. This road surface meter tPj method is characterized in that the unevenness profile of the entire measured road surface is obtained by obtaining a total of Δ11 shapes and calculating the unevenness profile in the road width direction from each set of measured shapes by curve approximation.

ここで、第1図を参照して計測原理について説明すると
、1は計測車であり、この車体の前後方向に沿って一直
線上に非接触レーザ変位計とじてのAセンサ、Cセンサ
、Bセンサをこの順序に配置し、AセンサとBセンサと
の間をLSAセンサとCセンサとの間をり、、Cセンサ
とBセンサとの間をL2とする。
Here, to explain the measurement principle with reference to Fig. 1, numeral 1 is a measurement car, and sensors A, C, and B as non-contact laser displacement meters are arranged in a straight line along the front and rear direction of the car body. are arranged in this order, and the space between the A sensor and the B sensor is defined as the space between the LSA sensor and the C sensor, and the space between the C sensor and the B sensor is defined as L2.

A:CAセンサ出力) B:(Bセンサ出力) C:(Cセンサ出力) f (X) :  (路面関数) g (X)  :  (計illシステム出力)と仮定
する。
A: CA sensor output) B: (B sensor output) C: (C sensor output) f (X) : (road surface function) g (X) : (total ill system output).

そして、g (X)をf (X)を用いて表すと、・・
・ (1) 一方、g (X)をセンサ出力を用いて表すと、(1)
式から、g (X)とf (X)との関係をフーリエ変
換すると、 G(ω)= P(ω)X [1−I、2/Lx EXP
(−jωL+)−1、+ / L X EXP (j 
ωL2) ]−F(ω)Xl+(ω) F(ω)−G(ω)Xl+(ω) F(ω)は計all した路面を周波数領域で表したも
のである。F(ω)を逆フーリエ変換をなし、時間領域
f (X)で表わすことで計M1車1の進行方向におけ
る路面の凹凸プロフィルを再現できる。
Then, if g (X) is expressed using f (X),...
・ (1) On the other hand, if g (X) is expressed using the sensor output, (1)
From the formula, when the relationship between g (X) and f (X) is Fourier transformed, G (ω) = P (ω) X [1-I, 2/Lx EXP
(-jωL+)-1, + / L X EXP (j
ωL2) ]−F(ω)Xl+(ω) F(ω)−G(ω)Xl+(ω) F(ω) represents the measured road surface in the frequency domain. By performing an inverse Fourier transform on F(ω) and expressing it in the time domain f (X), it is possible to reproduce the uneven profile of the road surface in the traveling direction of the total M1 vehicle 1.

(実施例) 以下、本発明の一実施例を図面にもとづいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図〜第6図は車両の進行方向に沿う路面−直線上の
凹凸プロフィルを得る路面計測法を示すものである。車
両である計測車1には3台の非接触レーザ変位計2.3
および4が設けられているとともに、非接触光学速度計
6が設けられている。
FIGS. 2 to 6 show a road surface measurement method for obtaining a road surface unevenness profile on a straight line along the traveling direction of a vehicle. The measurement car 1, which is a vehicle, has three non-contact laser displacement meters 2.3
and 4 are provided, as well as a non-contact optical speed meter 6.

前記非接触レーザ変位計2.3および4は計測車1の前
後方向に沿って一直線上に配置されている。
The non-contact laser displacement gauges 2.3 and 4 are arranged in a straight line along the longitudinal direction of the measuring vehicle 1.

そして、非接触レーザ変位計2と3との間隔をLI  
3と4との間隔をL2とすると、L1≠L2に設定され
ている。
Then, set the distance between the non-contact laser displacement meters 2 and 3 to LI
If the interval between 3 and 4 is L2, then L1≠L2 is set.

前記3台の非接触レーザ変位計2.3および4からの出
力信号は計11−1車1に搭載された変位計プロセッサ
7を介してA/D変換器8に入力される。
Output signals from the three non-contact laser displacement gauges 2.3 and 4 are input to the A/D converter 8 via the displacement gauge processor 7 mounted on the vehicle 11-1.

また、前記非接触光学変位計6からの出力信号は速度計
プロセッサ9を介して前記A/D変換器8に入力される
。A/D変換器8からの出力信号はパーソナルコンピュ
ータ10に入力され、計7111Jデータはフロッピー
に保存またはプリントされる。
Further, the output signal from the non-contact optical displacement meter 6 is input to the A/D converter 8 via the speedometer processor 9. The output signal from the A/D converter 8 is input to the personal computer 10, and a total of 7111J data are saved or printed on a floppy disk.

したがって、計測車1が被計測道路Wを走行中に、各非
接触レーザ変位計2.3および4がら被計測路面Wにレ
ーザ光を照射し、その反射光を受光することによって、
得られた路面変位データは第4図に示すフローチャート
に示すルーチンを経て演算処理され、計測車1の進行方
向に沿う波計Δ−1路面Wの凹凸プロフィルが計測でき
る。
Therefore, while the measurement vehicle 1 is traveling on the road W to be measured, each of the non-contact laser displacement meters 2.3 and 4 irradiates the road surface W to be measured with laser light and receives the reflected light.
The obtained road surface displacement data is processed through the routine shown in the flowchart shown in FIG. 4, and the uneven profile of the wave meter Δ-1 road surface W along the traveling direction of the measurement vehicle 1 can be measured.

すなわち、各非接触レーザ変位計2.3および4から出
力された路面変位データは、ステップ1でシステム出力
g (X)算出し、ステップ2において非接触光学速度
計5から出力された車速データにもとづいて計11FJ
時間および計1(FJ短距離算出する。さらに、ステッ
プ3でフーリエ変換[g (ω)コし、周波数領域でシ
ステム伝達関数H(ω)を考慮し、ステップ4でF(ω
)−G(ω)/H(ω)を求める。さらに、パワースペ
クトル密度S (n)として入力するとともに、ステッ
プ5で逆フーリエ変換[F (ω)コすると、ステップ
6で進行方向の路面プロフィルf (X)を求めること
ができる。
That is, the road surface displacement data output from each non-contact laser displacement meter 2.3 and 4 is calculated as the system output g (X) in step 1, and is combined with the vehicle speed data output from the non-contact optical speed meter 5 in step 2. Based on a total of 11FJ
Calculate the time and total 1 (FJ short distance.Furthermore, in step 3, Fourier transform [g (ω) is applied, system transfer function H (ω) is considered in the frequency domain, and in step 4, F (ω
)-G(ω)/H(ω). Further, by inputting the power spectral density S (n) and performing an inverse Fourier transform [F (ω) in Step 5, the road surface profile f (X) in the traveling direction can be obtained in Step 6.

すなわち、F(ω)は計411シた路面を周波数領域で
表したものである。F(ω)を逆フーリエ変換で時間領
域f (X)で表わすことで、計#1111車1の進行
方向に沿う路面の凹凸プロフィルを再現できる。
That is, F(ω) represents a total of 411 road surfaces in the frequency domain. By expressing F(ω) in the time domain f (X) by inverse Fourier transformation, the uneven profile of the road surface along the traveling direction of the #1111 vehicle 1 can be reproduced.

このような実施例において、非接触レーザ変位計2と3
との間隔をLl、3と4との間隔をL2としたとき、た
とえばL + −L 2に設定すると、伝達関数は、第
7図(a)に示すようになり、a点のところでは伝達関
数はゼロとなり、システムとしての出力はない。したが
って、連続的に計測できる範囲はb点〜C点の範囲であ
る。つまり、3台の非接触レーザ変位計2.3および4
で、L、−L2の場合のシステムは、計測不能な路面波
長を周期的に持つことになる。
In such an embodiment, non-contact laser displacement meters 2 and 3
If the interval between 3 and 4 is set to Ll, and the interval between 3 and 4 is set to, for example, L + -L 2, the transfer function becomes as shown in Fig. 7 (a), and at point a, there is no transfer. The function becomes zero and there is no output as a system. Therefore, the range that can be continuously measured is the range from point b to point C. In other words, three non-contact laser displacement meters 2.3 and 4
In the case of L and -L2, the system periodically has unmeasurable road surface wavelengths.

しかしながら、先に説明したように3台の非接触レーザ
変位計2.3および4で、Ll≠L2とすると、伝達関
数はゼロとなる部分がなくなり、第7図(b)に示すよ
うに、連続的に計Allすることができる範囲、b点〜
C点は拡大される。
However, as explained earlier, when Ll≠L2 with the three non-contact laser displacement meters 2.3 and 4, the transfer function has no part where it becomes zero, and as shown in FIG. 7(b), Range that can be measured continuously, point b ~
Point C is enlarged.

このような波計AP1路面Wの凹凸プロフィルを得る路
面計測法は、第5図および第6図に示すように、非接触
レーザ変位計2.3.4が一直線上に配置されていると
ころから、被計測路面Wの道幅に対して計測車1の進行
方向に沿う非接触レーザ変位計2.3.4と対向する1
本の一直線上の路面プロフィルf (X)部分のみしが
計測できないことになる。
The road surface measurement method for obtaining such an uneven profile of the road surface W by the wave meter AP1 is as shown in FIGS. , 1 facing the non-contact laser displacement meter 2.3.4 along the traveling direction of the measurement vehicle 1 with respect to the road width of the road surface W to be measured.
This means that only the portion of the road surface profile f (X) on the straight line cannot be measured.

しかしながら、計21車1の車幅方向である被計測路面
Wの道幅方向においても、いわゆるわだちの跡など、複
雑な凹凸があるのが普通であり、この方向の路面凹凸プ
ロフィルも計測できれば都合がよい。
However, even in the width direction of the measured road surface W, which is the vehicle width direction of a total of 21 vehicles 1, there are usually complex irregularities such as so-called rut marks, and it would be convenient if the road surface irregularity profile in this direction could also be measured. good.

そこで第8図に示すように、計AP1車1に道幅方向に
所定間隔を存して複数組の路面針A1手段S・・・を配
置する。各路面計測手段S・・・は、例えば先に説明し
たように、互いに間隔を異ならせた3台の非接触レーザ
変位計2.3.4と非接触光学速度計5との組合わせで
よい。すなわち、各列の路面計測手段S・・・とも、非
接触レーザ変位計2.3.4の台数を同一とするととも
に、その位置を車幅方向に位置ずれのないように揃える
ことが必要である。
Therefore, as shown in FIG. 8, a plurality of sets of road needles A1 means S are arranged on the total AP1 vehicle 1 at predetermined intervals in the road width direction. Each road surface measuring means S... may be, for example, a combination of three non-contact laser displacement meters 2.3.4 and non-contact optical speed meters 5, which are spaced at different intervals, as described above. . In other words, it is necessary to make the number of non-contact laser displacement meters 2.3.4 the same for each row of road surface measuring means S... and to align their positions so that there is no misalignment in the vehicle width direction. be.

そして、各路面計測手段S・・・とも、先に説明したよ
うな方法で路面針ΔP1をなし、被計測路面Wの進行方
向に沿う路面凹凸プロフィルを得る。4組の路面計測手
段S・・・を備えた場合であると、例えば第9図に示す
ように、道幅方向に所定間隔を存した位置で、計測車1
の進行方向に沿う4本の路面凹凸プロフィルf (X)
・・・を計n1できる。ついで、進行方向とは交差する
所定位置、たとえばXnと各凹凸プロフィルf (X)
・・・との交点Z・・・相互を曲線で近似して、所定位
置Xnにおける道幅方向に沿った路面凹凸プロフィルを
推定する。
Then, each of the road surface measurement means S forms a road surface needle ΔP1 in the manner described above, and obtains a road surface unevenness profile along the traveling direction of the road surface W to be measured. In the case where four sets of road surface measuring means S are provided, for example, as shown in FIG.
Four road surface unevenness profiles along the traveling direction f (X)
... can be done for a total of n1. Next, a predetermined position intersecting the traveling direction, for example, Xn and each uneven profile f (X)
The intersection point Z with ... is approximated by a curved line to estimate the road surface unevenness profile along the road width direction at the predetermined position Xn.

選択する点の間隔が狭いほど、より多くの曲線近似が得
られ、精密化する。結局、計測車1の進行方向ばかりで
なく道幅方向に亘る凹凸プロフィルから、路面全体の凹
凸プロフィル形状の計測が可能である。
The more closely spaced the points you select, the more curve approximation will be obtained and the more refined it will be. As a result, it is possible to measure the uneven profile shape of the entire road surface from the uneven profile not only in the traveling direction of the measurement vehicle 1 but also in the road width direction.

具体的には、第10図に示すように、計測車1の進行方
向に沿って、−直線上に互いの間隔を異ならせて配置す
る複数の非接触レーザ変位計2.3、・・・からなる1
組の路面計測手段S1を基準とし、道幅方向に所定間隔
を存して複数組の路面計Δ−1手段、例えばS2ないし
S4を配置する。各組の路面計測手段S1ないしS4は
、非接触レーザ変位計の台数を合せるとともにその位置
を道幅方向に揃えなければならない。
Specifically, as shown in FIG. 10, a plurality of non-contact laser displacement meters 2.3, . 1 consisting of
With the set of road surface measuring means S1 as a reference, a plurality of sets of road surface measuring means Δ-1, for example S2 to S4, are arranged at predetermined intervals in the road width direction. Each set of road surface measuring means S1 to S4 must have the same number of non-contact laser displacement meters and must align their positions in the road width direction.

したがって、計測車1が被計測道路Wを走行中に、各組
の路面計測手段S1ないしS4は進行方向に沿って対向
する一直線上の路面変位を計測する。各組の路面計測手
段S1ないしS4毎に先に説明したようなフローチャー
トに沿うルーチンを経て演算処理され、第11図に示す
ような各組毎の計測車1の進行方向に沿う路面凹凸プロ
フィルf+  (X)、f2 (X)、f3 (X)、
f4 (X)を得る。
Therefore, while the measuring vehicle 1 is traveling on the road W to be measured, each set of road surface measuring means S1 to S4 measures the road surface displacement on a straight line facing each other along the traveling direction. Calculation processing is performed for each group of road surface measuring means S1 to S4 through a routine according to the flowchart described above, and a road surface unevenness profile f+ along the traveling direction of the measuring vehicle 1 for each group as shown in FIG. (X), f2 (X), f3 (X),
Obtain f4 (X).

このような各組毎の路面計測手段S1ないしS4が進行
方向に沿う路面凹凸プロフィルを得るルーチンは、第1
2図に示すフローチャートのステップ1〜ステツプ6ま
での演算処理と全て同一である。ついで、同図に示すフ
ローチャートのステップ7で、各組毎の進行方向に沿う
凹凸プロフィルf+  (X)、fz  (X)、f*
  (X)。
A routine in which the road surface measuring means S1 to S4 of each set obtains a road surface unevenness profile along the traveling direction is a first routine.
The arithmetic processing from step 1 to step 6 of the flowchart shown in FIG. 2 is all the same. Next, in step 7 of the flowchart shown in the figure, the unevenness profile f+ (X), fz (X), f* along the traveling direction for each group is calculated.
(X).

f、(X)を、第11図に示すように一つの図面上に作
図する。そして、ステップ8では第11図における進行
方向の所定位置Xnと各路面プロフィルfl  (X)
、f2  (X)、f3  (X)。
f and (X) are drawn on one drawing as shown in FIG. Then, in step 8, the predetermined position Xn in the traveling direction and each road surface profile fl (X) in FIG.
, f2 (X), f3 (X).

f、(X)との交点Z、、Z2.Z、、z4を求めて曲
線近似する。したがって、所定位置Xnにおける道幅方
向の路面凹凸プロフィルを推定できる。このような曲線
近似を多数得ることにより、ステップ9で波計?#1路
面W全体の凹凸プロフィルが計i4Nできることとなる
Intersection point Z with f, (X), Z2. Find Z, , z4 and approximate the curve. Therefore, the road surface unevenness profile in the road width direction at the predetermined position Xn can be estimated. By obtaining a large number of such curve approximations, the wave meter? #1 The overall unevenness profile of the road surface W can be made by a total of i4N.

結局、計測車1の進行方向に沿う路面凹凸プロフィルば
かりでなく、車幅方向である道幅方向の路面凹凸プロフ
ィルを推定して、路面全体の凹凸プロフィルを略正確に
計測可能である。
As a result, it is possible to estimate not only the road surface unevenness profile along the traveling direction of the measurement vehicle 1 but also the road surface unevenness profile in the road width direction, which is the vehicle width direction, to approximately accurately measure the overall road surface unevenness profile.

なお、上記実施例においては3台の非接触レーザ変位計
を備えたが、これに限定されるものではなく、たとえば
非接触レーザ変位計を4台とすることによって、4通り
のシステムで計測することと同じとなり、1回の走行で
同一路面を同じ条件で4回計1111 したことに相当
する。したがって、計測時間の大幅な短縮を図ることが
できるとともに、計11−1精度が向上し、信頼性を向
上できる。
Although three non-contact laser displacement meters are provided in the above embodiment, the present invention is not limited to this. For example, by providing four non-contact laser displacement meters, measurement can be performed using four different systems. This is equivalent to running a total of 1111 times on the same road surface under the same conditions four times in one run. Therefore, it is possible to significantly shorten the measurement time, improve the total accuracy by 11-1, and improve the reliability.

[発明の効果] 以上説明したように、本発明によれば、計Δ11車に、
その車体の前後方向に沿って一直線上に3台以上の非接
触レーザ変位計を互いに異なる間隔を存して配置してな
る路面計測手段を1組とし、この1組の路面計測手段を
基準として道幅方向に非接触レーザ変位計の台数と位置
を揃えて複数組の路面計測手段を配置し、計測車を走行
しながら前記各組の路面計測手段からの出力を演算処理
し、各組の路面計測手段に対向する計Ap1車の進行方
向に沿う一直線上の凹凸プロフィル計測形状を得るとと
もに各組の計ΔN形状から道幅方向の凹凸プロフィルを
曲線近似して求めることにより、波計A−1路面全体の
凹凸プロフィルを得ることができ、計測データが拡大し
て信頼性の向上化を図れるとともに、たとえ高速道路に
おいても通常の高速走行速度で計1fl11することが
でき、しかも車体のバウンシングに関係なく、正確に計
Ap1できるという効果がある。
[Effect of the invention] As explained above, according to the present invention, a total of Δ11 cars,
One set of road surface measurement means is made up of three or more non-contact laser displacement meters arranged at different intervals in a straight line along the longitudinal direction of the vehicle body, and this set of road surface measurement means is used as a reference. A plurality of sets of road surface measuring means are arranged with the number and position of non-contact laser displacement meters aligned in the road width direction, and while the measuring vehicle is running, the output from each set of road surface measuring means is processed, and the road surface of each set is calculated. By obtaining the unevenness profile measurement shape on a straight line along the traveling direction of the total Ap1 vehicle facing the measuring means, and calculating the unevenness profile in the road width direction from the total ΔN shape of each set by curve approximation, the wave meter A-1 road surface is obtained. It is possible to obtain the overall unevenness profile, expand the measurement data and improve reliability, and even on the expressway, it is possible to achieve a total of 1 fl 11 at normal high speed, regardless of the bouncing of the vehicle body. , there is an effect that the total Ap1 can be accurately calculated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するための計AFJ車の側
面図、第2図以下は本発明の一実施例を示すもので、第
2図は計測車の側面図、第3図は計illシステムのブ
ロック図、第4図は進行方向に沿う一直線上の路面プロ
フィルを得るためのフローチャート図、第5図はその計
1illl状態を概略的に示す横断面図、第6図は進行
方向に沿う一直線上の路面プロフィル図、第7図(a)
(b)は路面波長と振幅(システムの伝達関数)との関
係を示すグラフ、第8図は進行方向に沿う路面プロフィ
ルから道幅方向に沿う路面プロフィルを得るための計Δ
―1状態を概略的に示す横断面図、第9図は第8図の計
測システムによって得られる路面プロフィル図、第10
図は進行方向に沿う路面凹凸プロフィルから道幅方向に
沿う路面プロフィルを得るための計i11手段を備えた
計測車の概略平面図、第11図は路面全体の路面プロフ
ィル図、第12図はそのフローチャート図である。 1・・・計測車、2.3.4・・・非接触レーザ変位計
、SIないしS4・・・路面計測手段。
Fig. 1 is a side view of a total AFJ vehicle for explaining the present invention in detail, Fig. 2 and the following show an embodiment of the present invention, Fig. 2 is a side view of a measurement vehicle, and Fig. 3 is a side view of a measurement vehicle. Figure 4 is a flowchart for obtaining a road surface profile on a straight line along the direction of travel, Figure 5 is a cross-sectional view schematically showing the total illll state, and Figure 6 is the direction of travel. Road surface profile diagram on a straight line along , Figure 7 (a)
(b) is a graph showing the relationship between road surface wavelength and amplitude (transfer function of the system), and Figure 8 is a graph showing the relationship between road surface wavelength and amplitude (transfer function of the system).
9 is a cross-sectional view schematically showing the condition 1. Figure 9 is a road surface profile diagram obtained by the measurement system in Figure 8. Figure 10 is a cross-sectional view schematically showing the state
The figure is a schematic plan view of a measuring vehicle equipped with a total of 11 means for obtaining a road surface profile along the road width direction from the road surface unevenness profile along the traveling direction, FIG. 11 is a road surface profile diagram of the entire road surface, and FIG. 12 is a flowchart thereof. It is a diagram. 1... Measuring vehicle, 2.3.4... Non-contact laser displacement meter, SI or S4... Road surface measuring means.

Claims (1)

【特許請求の範囲】[Claims] 計測車に、その車体の前後方向に沿って一直線上に3台
以上の非接触レーザ変位計を互いに異なる間隔を存して
配置してなる路面計測手段を1組とし、この1組の路面
計測手段を基準として道幅方向に非接触レーザ変位計の
台数と位置を揃えて複数組の路面計測手段を配置し、計
測車を走行しながら前記各組の路面計測手段からの出力
を演算処理し、各組の路面計測手段に対向する計測車の
進行方向に沿う一直線上の凹凸プロフィル計測形状を得
るとともに各組の計測形状から道幅方向の凹凸プロフィ
ルを曲線近似して求めることにより、被計測路面全体の
凹凸プロフィルを得ることを特徴とする路面計測法。
The measurement vehicle is equipped with a set of road surface measurement means consisting of three or more non-contact laser displacement meters arranged at different intervals in a straight line along the longitudinal direction of the vehicle body, and this set of road surface measurement means is provided. arranging a plurality of sets of road surface measuring means with the number and position of non-contact laser displacement meters aligned in the road width direction based on the means, and calculating and processing the output from each set of road surface measuring means while the measuring vehicle is running; By obtaining the unevenness profile measurement shape on a straight line along the traveling direction of the measuring vehicle facing each set of road surface measuring means, and by calculating the unevenness profile in the road width direction from the measurement shape of each set by curve approximation, the entire measured road surface is A road surface measurement method characterized by obtaining an uneven profile.
JP24332789A 1989-09-21 1989-09-21 Road surface measuring method Pending JPH03107712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24332789A JPH03107712A (en) 1989-09-21 1989-09-21 Road surface measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24332789A JPH03107712A (en) 1989-09-21 1989-09-21 Road surface measuring method

Publications (1)

Publication Number Publication Date
JPH03107712A true JPH03107712A (en) 1991-05-08

Family

ID=17102179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24332789A Pending JPH03107712A (en) 1989-09-21 1989-09-21 Road surface measuring method

Country Status (1)

Country Link
JP (1) JPH03107712A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119353A (en) * 1995-04-03 2000-09-19 Greenwood Engineering Aps Method and apparatus for non-contact measuring of the deflection of roads or rails
DE102004055069B4 (en) * 2004-07-15 2007-02-15 Daimlerchrysler Ag Multidimensional road survey
WO2011009460A1 (en) * 2009-07-20 2011-01-27 Greenwood Engineering A/S A calibration method for a transportable apparatus
EP2985629A1 (en) * 2014-08-14 2016-02-17 Siemens Rail Automation S.A.U. System and method for detecting and locating the center of beacons installed along guided vehicle routes
CN110512503A (en) * 2019-08-29 2019-11-29 江西科技学院 A method of the measurement vertical section of road surface curve decomposed by Cholesky

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6119353A (en) * 1995-04-03 2000-09-19 Greenwood Engineering Aps Method and apparatus for non-contact measuring of the deflection of roads or rails
DE102004055069B4 (en) * 2004-07-15 2007-02-15 Daimlerchrysler Ag Multidimensional road survey
WO2011009460A1 (en) * 2009-07-20 2011-01-27 Greenwood Engineering A/S A calibration method for a transportable apparatus
EP2985629A1 (en) * 2014-08-14 2016-02-17 Siemens Rail Automation S.A.U. System and method for detecting and locating the center of beacons installed along guided vehicle routes
WO2016023652A1 (en) * 2014-08-14 2016-02-18 Siemens Rail Automation S.A.U. System and method for detecting and locating the center of beacons installed along guided vehicle routes
CN110512503A (en) * 2019-08-29 2019-11-29 江西科技学院 A method of the measurement vertical section of road surface curve decomposed by Cholesky
CN110512503B (en) * 2019-08-29 2021-03-19 江西科技学院 Method for measuring pavement longitudinal section curve through Cholesky decomposition

Similar Documents

Publication Publication Date Title
CN100489465C (en) Cable type medium and low speed road dynamic weighing device
JP4435383B2 (en) Vertical profile measuring device
US20150308926A1 (en) Vibration analysis method and vibration analysis device of vehicle
CN112816045B (en) Dynamic weighing method and dynamic weighing device for vehicle
JP2010503834A5 (en)
CN101523179A (en) System for detecting the pressure in a vehicle tyre and/or speed of the vehicle
JPH0658796A (en) Load weighting apparatus having centroid position detecting function
JP5844085B2 (en) Axle weight measuring device
US20130338942A1 (en) Method and system for estimating the forces and torques generated by the contact of a tire with the road in an instrumented wheel
JPH03107712A (en) Road surface measuring method
CN112525111A (en) Method for detecting surface smoothness of straddle type monorail track
JP2712537B2 (en) Road surface measurement method
JPH0353142A (en) Tire wear anticipating method
JP2712626B2 (en) Road surface measurement method
CN214224313U (en) Weighing device for dynamic weighing of road vehicles
JPH11232586A (en) Wheel interval calculating device
JP3686184B2 (en) Vehicle wheel load measuring device
JPH10185665A (en) Axle load measuring device
CN102057267A (en) Method of estimating the transverse grip of a pair of tyres by comparative analysis
KR20100106909A (en) Axle weight measuring apparatus and axle weight measuring method
JP2002031566A (en) Vehicle weight measuring device
CN210664723U (en) Strip type sensor dynamic weighing system
JP2002202182A (en) Apparatus for measuring wheel weight of railroad vehicle and wheel weight measuring method using the same
JPH03221807A (en) Method for measuring road face
CN102809414A (en) Vehicle dynamic weighing system