JPH0545190A - Fluidic flowmeter - Google Patents

Fluidic flowmeter

Info

Publication number
JPH0545190A
JPH0545190A JP20701591A JP20701591A JPH0545190A JP H0545190 A JPH0545190 A JP H0545190A JP 20701591 A JP20701591 A JP 20701591A JP 20701591 A JP20701591 A JP 20701591A JP H0545190 A JPH0545190 A JP H0545190A
Authority
JP
Japan
Prior art keywords
flow
flow rate
fluid
bypass valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20701591A
Other languages
Japanese (ja)
Other versions
JP3017567B2 (en
Inventor
Shigenori Okamura
繁憲 岡村
Hiroshi Ueda
浩史 上田
Hajime Onoda
元 小野田
Keiichi Tomota
馨一 友田
Masashige Imazaki
正成 今崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimmon Manufacturing Co Ltd
Osaka Gas Co Ltd
Original Assignee
Kimmon Manufacturing Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimmon Manufacturing Co Ltd, Osaka Gas Co Ltd filed Critical Kimmon Manufacturing Co Ltd
Priority to JP3207015A priority Critical patent/JP3017567B2/en
Publication of JPH0545190A publication Critical patent/JPH0545190A/en
Application granted granted Critical
Publication of JP3017567B2 publication Critical patent/JP3017567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To widen a flow measurement range by providing a bypass valve, detecting a flow corresponding to the oscillation of fluid in the case of a large flow, passing a narrow passage between which the reduction of the area lies in the case of a small flow and detecting its flow velocity. CONSTITUTION:Fluid such as gas is allowed to flow in an inlet part 15 of a bypass valve 5 through a passage 11 and a valve opening 14 of a shut-off valve 13 from an inlet 2 and made flow in the inlet part 16 of a fluidic element 8 from a narrow passage 6 in the case of a small flow. When the flow increases, pressure difference between the inlet parts 15, 16 of the bypass valve 5 and the element 8 increases, the valve body of the bypass valve 5 is lifted and a large part of the fluid is allowed to flow in the element 8 through a strainer 17 from the element inlet part 16. When the flow is small, the whole quantity of the fluid is allowed to flow in the narrow passage 6, the velocity of the flow is detected by the use of a hot-wire flow meter 25 and the flow is obtained by multiplying the cross section of the passage. When the flow is large, the fluid is jetted from a jet nozzle 32 to a downstream passage 29 to cause an alternating pressure wave, an oscillation frequency is detected by a piezoelectric film sensor from pressure wave introduction parts 39a, 39b and converted into the flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フルイディック現象を
利用した流量計に関し、特に微小流量まで計量できる流
量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow meter utilizing the fluidic phenomenon, and more particularly to a flow meter capable of measuring a minute flow rate.

【0002】[0002]

【従来の技術】一般家庭等に設置され、ガスの流量を計
量するフルイディック流量計は、たとえば、特開昭63
−313018号公報、特開平1−250725号公報
から公知である。このフルイディック現象を利用したフ
ルイディック流量計は、流路の入口側に噴出ノズルが設
けられ、この噴出ノズルから流路に流体を噴出すると、
コアンダ効果によって噴出流体は、たとえば右側の側壁
に沿って流れる。この右側の側壁に流れた流体の一部は
帰還流体となり、この帰還流体の流体エネルギが噴出流
体に付与され、噴出流体が左側の側壁に沿って流れるよ
うになり、今度は左側の側壁に流れた流体の一部が帰還
流体となり、この帰還流体の流体エネルギが噴出流体に
付与され、噴出流体が再び右側の側壁に沿って流れるよ
うになる。つまり、噴出ノズルから流路内に噴出される
流体の振動現象によって交番圧力波が生じる。この交番
圧力波を圧電膜センサなどによって検出し、この周波数
から流量を算出して流体の流量を検出している。
2. Description of the Related Art A fluidic flow meter for measuring the flow rate of gas, which is installed in a general household or the like, is disclosed in, for example, Japanese Patent Laid-Open No. 63-63.
It is known from JP-A-313018 and JP-A-1-250725. A fluidic flow meter utilizing this fluidic phenomenon is provided with a jet nozzle on the inlet side of the flow channel, and when a fluid is jetted from this jet nozzle into the flow channel,
The jetted fluid flows, for example, along the right sidewall by the Coanda effect. A part of the fluid that has flowed to the right side wall becomes the return fluid, the fluid energy of this return fluid is added to the jet fluid, and the jet fluid flows along the left side wall. A part of the returned fluid becomes a return fluid, the fluid energy of the return fluid is applied to the jet fluid, and the jet fluid again flows along the right side wall. That is, an alternating pressure wave is generated by the vibration phenomenon of the fluid ejected from the ejection nozzle into the flow path. This alternating pressure wave is detected by a piezoelectric film sensor or the like, the flow rate is calculated from this frequency, and the flow rate of the fluid is detected.

【0003】フルイディック流量計は、可動部分がな
く、中圧(3kg/cm2 G)程度の圧力でも使えると
いう利点があるが、ガスの流量が少ないと、振動現象が
発生しないという欠点があった。すなわち一般のガス流
量計は、最大使用流量からその1/300〜1/400
00の広い範囲にわたって計測できる必要性があるが、
交番圧力波を検出する圧電膜センサを用いたフルイディ
ック流量計の計測可能範囲は、最大使用流量時の圧力損
失が規定されているので、最大使用流量からその1/5
0程度であり、それ以下の微小流量域での計測は不可能
である。
The fluidic flowmeter has the advantage that it has no moving parts and can be used at a medium pressure (3 kg / cm 2 G), but it has the drawback that if the gas flow rate is low, no vibration phenomenon occurs. It was That is, the general gas flow meter is 1/300 to 1/400 of the maximum flow rate.
It is necessary to measure over a wide range of 00,
The measurable range of a fluidic flow meter using a piezoelectric film sensor that detects alternating pressure waves is that the pressure loss at the maximum operating flow rate is specified.
It is about 0, and measurement in a minute flow rate range below that is impossible.

【0004】そこで、大流量域はフルイディック現象を
利用し、圧電膜センサによって流量を検出し、微小流量
域は噴出ノズル部に取付けた流速検出器によって流速を
検出し、これに噴出ノズル部の断面積を掛けて流量を検
出するように構成したフルイディック流量計が開発され
た。これによって計測可能範囲は、最大使用流量からそ
の1/200程度まで拡大された。
Therefore, the flow rate is detected by the piezoelectric film sensor in the large flow rate region using the fluidic phenomenon, and the flow velocity is detected by the flow velocity detector attached to the jet nozzle portion in the minute flow rate region. A fluidic flow meter has been developed which is configured to multiply the cross-sectional area to detect the flow rate. As a result, the measurable range was expanded from the maximum usable flow rate to about 1/200.

【0005】[0005]

【発明が解決しようとする課題】しかしながら前述のよ
うに構成されたフルイディック流量計の微小流量域の流
速検出器は、流体の流速を検出するものであり、流量は
流速と流路の断面積を掛合わせたものである。したがっ
て微小流量を測定するためには、断面積の狭い噴出ノズ
ル部に流速検出器を取付けている。
However, the flow velocity detector in the minute flow rate range of the fluidic flow meter constructed as described above is for detecting the flow velocity of the fluid, and the flow rate is the flow velocity and the cross-sectional area of the flow channel. It is a product of Therefore, in order to measure a minute flow rate, a flow velocity detector is attached to the jet nozzle portion having a narrow cross-sectional area.

【0006】しかし、噴出ノズル部の断面積は、最大使
用流量時の圧力損失が規定されているので或る程度以下
に小さくできず、したがって最大使用流量の1/200
以下の微小流量は計測できなかった。
However, the cross-sectional area of the jet nozzle cannot be reduced to a certain extent or less because the pressure loss at the maximum use flow rate is regulated, and therefore 1/200 of the maximum use flow rate is required.
The following minute flow rates could not be measured.

【0007】本発明は、従来の噴出ノズル部よりも小さ
い狭小通路を設け、ここに流速検出器を取付けたもので
ある。また流量が大きいときは、狭小通路と並列に設け
たバイパス弁を開けてフルイディック現象を用いて流量
を測定するものである。狭小流路の断面積を噴出ノズル
部の1/10〜1/200程度とすれば最大使用流量の
1/300〜1/40000程度の流量が測定できる。
According to the present invention, a narrow passage which is smaller than the conventional jet nozzle portion is provided, and a flow velocity detector is attached to the narrow passage. When the flow rate is high, the bypass valve provided in parallel with the narrow passage is opened to measure the flow rate using the fluidic phenomenon. If the cross-sectional area of the narrow channel is set to about 1/10 to 1/200 of the jet nozzle portion, a flow rate of about 1/300 to 1 / 40,000 of the maximum use flow rate can be measured.

【0008】[0008]

【課題を解決するための手段】本発明は、(a)フルイ
ディック現象を利用して流量を測定すべき流体の振動に
対応した流量を検出する第1流量検出手段と、(b)前
記第1流量検出手段の上流側または下流側に設けられ、
絞りが介在する流体の通路を設け、この流体の通路に流
速に対応した流量を検出する第2流量検出手段と、
(c)第2流量検出手段と並列に、第1流量検出手段に
よって、少なくとも計測できる範囲よりも小さい流量の
とき閉じて、それ以上の流量のとき開くバイパス弁とを
含むことを特徴とするフルイディック流量計である。
The present invention includes (a) first flow rate detecting means for detecting a flow rate corresponding to vibration of a fluid whose flow rate is to be measured by utilizing a fluidic phenomenon, and (b) the first flow rate detecting means. 1 is provided on the upstream side or the downstream side of the flow rate detecting means,
A second flow rate detecting means for detecting a flow rate corresponding to the flow velocity in the fluid passage provided with a throttle.
(C) A bypass valve which is provided in parallel with the second flow rate detecting means and which is closed by the first flow rate detecting means at least when the flow rate is smaller than a range measurable by the first flow rate detecting means and which is opened when the flow rate is higher than the range. It is a Dick flow meter.

【0009】また本発明は、前記第2流量検出手段を流
体の絞りが介在する2以上の通路に設けてあることを特
徴とする。
Further, the present invention is characterized in that the second flow rate detecting means is provided in two or more passages in which a fluid throttle is interposed.

【0010】[0010]

【作用】本発明に従えば、大流量測定時は、フルイディ
ック素子を利用して、第1流量検出手段で流量を検出
し、小流量測定時は、フルイディック素子の噴出ノズル
部よりも小さい狭小通路を設け、この流速から流量を検
出する第2流量検出手段で流量を検出し、この第1、第
2流量検出手段のいずれか一方で検出した流量を表示
し、狭小通路と並列にバイパス弁を設け、フルイディッ
ク素子で流量を測定できる範囲よりも小さい流量範囲で
このバイパス弁を閉じるようにしたものである。ここで
狭小通路の断面積を必要に応じて小さくすれば、微小流
量の測定ができる。またフルイディック素子の噴出ノズ
ル部と狭小通路の断面積の比が大きいときは、フルイデ
ィック素子の噴出ノズル部にも第2流量検出手段を設け
る。狭小通路を2以上設け、その各々に第2流量検出手
段を設けるなどによってさらに流量測定範囲を拡大でき
る。
According to the present invention, when measuring a large flow rate, the fluidic element is used to detect the flow rate by the first flow rate detecting means, and when measuring a small flow rate, it is smaller than the ejection nozzle portion of the fluidic element. A narrow passage is provided, the flow rate is detected by the second flow rate detecting means for detecting the flow rate from this flow rate, the flow rate detected by either the first or second flow rate detecting means is displayed, and the bypass is provided in parallel with the narrow passage. A valve is provided and the bypass valve is closed within a flow rate range smaller than the range in which the flow rate can be measured by the fluidic element. Here, if the cross-sectional area of the narrow passage is reduced as necessary, a minute flow rate can be measured. Further, when the ratio of the cross-sectional area of the jet nozzle of the fluidic element to the narrow passage is large, the second flow rate detecting means is also provided in the jet nozzle of the fluidic element. The flow rate measurement range can be further expanded by providing two or more narrow passages and providing a second flow rate detecting means in each of them.

【0011】[0011]

【実施例】以下実施例でもって本発明に係るフルイディ
ック流量計をより具体的に説明するが、これに限定され
るものではない。
EXAMPLES The fluidic flowmeter according to the present invention will be described in more detail with reference to the following examples, but the invention is not limited thereto.

【0012】図1は、本発明に係る流量計の一実施例の
構成を示す断面図、図2は、図1のA−A断面図、図3
は側面図、図4は図1のB−B断面図である。ガスなど
の流体は、入口2から流量計1に入り、通路11、遮断
弁13の弁口14を通ってバイパス弁5の入口部15へ
流れる。ガスの流量の少ないときは、狭小通路6を通っ
て、フルイディック素子8の入口部16へ流れる。ガス
流量が多いと、バイパス弁入口部15とフルイディック
素子入口部16との差圧が大きくなり、この差圧によっ
てバイパス弁5の弁体21を持上げ、その弁口22から
大部分のガスが流れるようになる。フルイディック素子
入口部16からガスはストレーナ17を通ってフルイデ
ィック素子8に入り、出口3から流量計1を出て必要個
所に供給される。
FIG. 1 is a sectional view showing the structure of an embodiment of a flow meter according to the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG.
Is a side view, and FIG. 4 is a sectional view taken along line BB in FIG. A fluid such as gas enters the flowmeter 1 from the inlet 2, flows through the passage 11 and the valve port 14 of the shutoff valve 13 to the inlet portion 15 of the bypass valve 5. When the gas flow rate is low, the gas flows through the narrow passage 6 to the inlet portion 16 of the fluidic element 8. When the gas flow rate is high, the pressure difference between the bypass valve inlet portion 15 and the fluidic element inlet portion 16 becomes large, and the valve body 21 of the bypass valve 5 is lifted by this pressure difference, and most of the gas is discharged from the valve opening 22. It comes to flow. Gas enters the fluidic element 8 through the strainer 17 through the fluidic element inlet portion 16 and exits the flow meter 1 through the outlet 3 and is supplied to the required location.

【0013】ガス流量とバイパス弁5の開閉の状況の一
例を表1に示す。最大使用流量7000l/hのガス流
量計の場合、550l/h以下の流量ではバイパス弁は
閉じており、このときのバイパス弁入口部15とフルイ
ディック素子入口部16の差圧ΔP1は2.1mmH2
である。流量が増加し580l/hになると、この差圧
ΔP1が2.1mmH2Oを超え、バイパス弁5はその差
圧で持上げられ、バイパス弁5の弁座23と弁体21の
間が0.3mm開く。ガス流量がさらに増加すると、こ
の間隔は増加し、最大使用流量7000l/hでは、バ
イパス弁5の弁座23と弁体21の間隔は、ほぼ全開の
10.5mmとなる(図1の点線の位置)。これによっ
てバイパス弁入口部15とフルイディック素子入口部1
6の差圧ΔP1はほぼ一定の2.2mmH2Oに保たれ
る。なお、流量計1全体の差圧ΔPは、流量が少ないと
きはバイパス弁入口部15とフルイディック素子入口部
16との差圧ΔP1のみであるが、流量が増加するとこ
れにフルイディック素子部の差圧が加わる。この差圧Δ
Pは計量法では最大流量7000l/hの流量計で約2
2mmH2O(空気換算)以下に規定されている。
Table 1 shows an example of the gas flow rate and the opening / closing state of the bypass valve 5. In the case of a gas flow meter with a maximum usable flow rate of 7,000 l / h, the bypass valve is closed at a flow rate of 550 l / h or less, and the differential pressure ΔP1 between the bypass valve inlet portion 15 and the fluidic element inlet portion 16 at this time is 2.1 mmH. 2 O
Is. When the flow rate increases to 580 l / h, the differential pressure ΔP1 exceeds 2.1 mmH 2 O, the bypass valve 5 is lifted by the differential pressure, and the distance between the valve seat 23 and the valve body 21 of the bypass valve 5 is 0. Open 3 mm. When the gas flow rate further increases, this interval increases, and at the maximum use flow rate of 7000 l / h, the interval between the valve seat 23 of the bypass valve 5 and the valve body 21 becomes 10.5 mm which is almost fully opened (see the dotted line in FIG. 1). position). As a result, the bypass valve inlet 15 and the fluidic element inlet 1
The differential pressure ΔP1 of 6 is kept constant at 2.2 mmH 2 O. The differential pressure ΔP of the entire flow meter 1 is only the differential pressure ΔP1 between the bypass valve inlet portion 15 and the fluidic element inlet portion 16 when the flow rate is small, but when the flow rate increases, the differential pressure ΔP1 of the fluidic element portion increases. Differential pressure is applied. This differential pressure Δ
P is about 2 with a flow meter with a maximum flow rate of 7,000 l / h in the measurement method.
It is specified below 2 mmH 2 O (air conversion).

【0014】[0014]

【表1】 [Table 1]

【0015】まず、ガス流量が少ないときのガスの計量
方法について述べる。前述のようにバイパス弁5が閉じ
ているので、ガスは全量狭小通路6を通って流れる。こ
の狭小通路には第2流量検出手段としての流速検出器、
たとえば熱線流速計25が取付けられている。熱線流速
計は、図5(2)に示すようにガスの流れ方向(矢符の
方向)に直角に2個のヒータ26があり、その前後に温
度センサ27がある。ガスが流れていないときは、図5
(1)の点線のように2個のヒータ26の温度は等しい
が、ガスの流れがあると図5(2)の実線のように前方
ヒータはガス流で冷やされ、後方のヒータは暖められ、
2個のヒータ間に温度差が現れる。この温度差と流速の
関係が予め調べられてあるので、ガス流速がわかり、こ
れに狭小通路6の断面積を掛けてガス流量が計算でき
る。
First, a method of measuring gas when the gas flow rate is small will be described. Since the bypass valve 5 is closed as described above, the entire amount of gas flows through the narrow passage 6. In this narrow passage, a flow velocity detector as a second flow rate detecting means,
For example, a hot wire anemometer 25 is attached. As shown in FIG. 5 (2), the hot-wire anemometer has two heaters 26 at right angles to the gas flow direction (direction of arrows), and a temperature sensor 27 in front of and behind it. When the gas is not flowing,
Although the two heaters 26 have the same temperature as indicated by the dotted line in (1), when there is a gas flow, the front heater is cooled by the gas flow and the rear heater is warmed as indicated by the solid line in FIG. 5 (2). ,
A temperature difference appears between the two heaters. Since the relationship between the temperature difference and the flow velocity has been investigated in advance, the gas flow velocity can be known, and the gas flow rate can be calculated by multiplying this by the cross-sectional area of the narrow passage 6.

【0016】次にガス流量が多いときのガスの計量方法
について述べる。ガスは狭小通路6のみからまたは狭小
通路6とバイパス弁5の弁体21と弁座23の間隙から
フルイディック素子入口部16へ流れ、さらに、ストレ
ーナ17を通ってフルイディック素子8に入る。
Next, a method of measuring gas when the gas flow rate is high will be described. The gas flows from only the narrow passage 6 or from the gap between the narrow passage 6 and the valve body 21 of the bypass valve 5 and the valve seat 23 to the fluidic element inlet portion 16 and further enters the fluidic element 8 through the strainer 17.

【0017】図1、図6は、フルイディック素子による
ガス計量方法の原理を示す図である。ノズル32から下
流側流路29に向かって流体が噴出されると、コアンダ
効果によって噴出流体は、図6(1)のようにたとえば
左側の側壁34aの内側に沿って流れる。この左側の側
壁34aに流れた流体の大部分は排出通路38aに向か
うが、一部は帰還流体となり、帰還通路37aに向か
う。この帰還流体の流体エネルギが噴出流体に付与さ
れ、図6(2)のように噴出流体が右側の側壁34bの
内側に沿って流れるようになり、図6(3)のように今
度は右側の側壁34bに流れた流体の一部が帰還流体と
なり、この帰還流体の流体エネルギが噴出流体に付与さ
れ、図6(4)のように噴出流体が再び左側の側壁34
aの内側に沿って流れるようになる。つまり、噴出ノズ
ル32から下流側流路29内に噴出される流体の振動現
象によって交番圧力波が生じるように構成されている。
1 and 6 are diagrams showing the principle of a gas measuring method using a fluidic element. When the fluid is ejected from the nozzle 32 toward the downstream flow path 29, the ejected fluid flows along the inside of the left side wall 34a by the Coanda effect, as shown in FIG. 6 (1). Most of the fluid that has flowed to the left side wall 34a is directed to the discharge passage 38a, but part of it is returned fluid, which is directed to the return passage 37a. The fluid energy of the return fluid is applied to the jetted fluid, so that the jetted fluid flows along the inside of the right side wall 34b as shown in FIG. 6 (2), and this time as shown in FIG. 6 (3). A part of the fluid that has flowed to the side wall 34b becomes a return fluid, the fluid energy of this return fluid is applied to the ejected fluid, and the ejected fluid is again returned to the left side wall 34 as shown in FIG. 6 (4).
It comes to flow along the inside of a. That is, the alternating pressure wave is generated by the vibration phenomenon of the fluid ejected from the ejection nozzle 32 into the downstream flow passage 29.

【0018】また、フルイディック素子で生じた交番圧
力波は、噴射ノズル32の出口近傍左右対称の位置に設
けられた圧力波導入部39a,39bから圧電膜センサ
部31に導かれ、圧電膜センサ本体36の両面に交番圧
力波を伝える(図7参照)。第1流量検出手段はこの交
番圧力波の周波数がガス流量に比例することを利用して
計量を行う。
Further, the alternating pressure wave generated in the fluidic element is guided to the piezoelectric film sensor unit 31 from the pressure wave introducing units 39a and 39b provided at the symmetrical positions in the vicinity of the outlet of the injection nozzle 32, and the piezoelectric film sensor. An alternating pressure wave is transmitted to both sides of the main body 36 (see FIG. 7). The first flow rate detecting means performs measurement by utilizing the fact that the frequency of this alternating pressure wave is proportional to the gas flow rate.

【0019】以上、2つの流量検出手段によって計量さ
れたガス流量は、図7で示すように、制御器43で制御
され、表示器44で流量として表示される。すなわち第
2流量検出手段である熱線流速計25で測定された温度
差は熱線流速計付帯回路42で流量に換算され、流量信
号を制御器43に送る。一方フルイディック素子で測定
された交番圧力波は、圧電膜センサ本体36で第1流量
検出手段である交番波として検出され、増幅波形成形回
路41で交番波に相当する流量に換算され、流量信号を
制御部43に送る。制御器43では上記第1、第2の2
つの流量検出手段から送られた流量を対比し、熱線流速
計25から送られた流量信号が最大使用流量(たとえば
7000l/h)の1/20(350l/h)より若干
多い流量(たとえば360l/h)でこれを第1流量検
出手段である圧電膜センサ本体36からの流量信号に切
換える。また、流量が減少した場合は、最大使用流量の
1/20より若干少ない流量(たとえば340l/h)
で第2流量検出手段である熱線流速計25からの流量信
号に切換える。これらにより切換えられた流量が表示器
で表示される。この他に制御部43には、緊急時に遮断
弁13を閉じる回路や表示器44で表示される流量を通
信線などを使って遠隔表示する回路などが組込まれてい
る。
As described above, the gas flow rate measured by the two flow rate detecting means is controlled by the controller 43 and displayed as a flow rate on the display 44, as shown in FIG. That is, the temperature difference measured by the hot-wire anemometer 25, which is the second flow rate detecting means, is converted into a flow rate by the hot-wire anemometer auxiliary circuit 42, and the flow rate signal is sent to the controller 43. On the other hand, the alternating pressure wave measured by the fluidic element is detected by the piezoelectric film sensor body 36 as an alternating wave which is the first flow rate detecting means, converted into a flow rate corresponding to the alternating wave by the amplification waveform shaping circuit 41, and the flow rate signal. To the control unit 43. In the controller 43, the first and second two
The flow rate signal sent from the hot wire anemometer 25 is compared with the flow rate sent from one flow rate detecting means, and the flow rate signal sent from the hot wire anemometer 25 is slightly larger than 1/20 (350 l / h) of the maximum flow rate used (eg 370 l / h) (eg 360 l / h) In h), this is switched to the flow rate signal from the piezoelectric film sensor main body 36 which is the first flow rate detecting means. If the flow rate decreases, it is slightly less than 1/20 of the maximum flow rate (eg 340 l / h).
Then, the flow rate signal from the hot wire anemometer 25 which is the second flow rate detecting means is switched to. The flow rate switched by these is displayed on the display. In addition to this, the control unit 43 incorporates a circuit for closing the shutoff valve 13 in an emergency, a circuit for remotely displaying the flow rate displayed on the display unit 44 using a communication line, or the like.

【0020】フルイディック素子のみを使ったフルイデ
ィック流量計の器差特性を図10の実線で示す。図中に
示した枠は計量法での許容器差範囲である。この場合最
大使用流量の1/20以下では計量はできないが、この
流量近辺で流量検出手段を上述のように切換えることに
より、これ以下の流量までを点線のように正確に計量で
きる。
The solid line in FIG. 10 shows the instrumental error characteristic of the fluidic flowmeter using only the fluidic element. The frame shown in the figure is the allowable device error range in the measurement method. In this case, it is not possible to measure at 1/20 or less of the maximum usable flow rate, but by switching the flow rate detecting means in the vicinity of this flow rate as described above, it is possible to accurately measure up to a flow rate below this as shown by the dotted line.

【0021】バイパス弁と狭小通路をフルイディック素
子の入口側に設けた例を説明したが、これらをフルイデ
ィック素子の出口側に設けてもよい。また、これらを入
口直後の遮断弁の前に設けてもよい。配置位置によって
流量計の器差特性等の性能が左右されることはない。
Although the example in which the bypass valve and the narrow passage are provided on the inlet side of the fluidic element has been described, they may be provided on the outlet side of the fluidic element. Further, these may be provided immediately after the inlet and before the shutoff valve. The placement position does not affect the performance of the flowmeter such as instrumental error characteristics.

【0022】また、流速検出器25を狭小通路6以外に
フルイディック素子8の噴出ノズル部32にも取付け、
狭小通路6の断面積と噴出ノズル部32の断面積との比
をさらに小さくして3段階に切換えて流量を測定するこ
ともできる。この他に狭小通路6を2以上設け、その各
々に流速検出器25を取付け、狭小通路6の入口に切換
弁を設ける方法などによって、流量計測範囲をさらに拡
大することもできる。バイパス弁5の実施例としては図
1、図11に示すようなものがある。案内棒51はピン
53でバイパス弁5に取付けられ、弁体21は、案内棒
51を介してバイパス弁5内を上下動する構成である。
In addition to the narrow passage 6, the flow velocity detector 25 is attached to the jet nozzle portion 32 of the fluidic element 8,
It is also possible to measure the flow rate by further reducing the ratio of the cross-sectional area of the narrow passage 6 to the cross-sectional area of the ejection nozzle portion 32 and switching to three stages. Alternatively, two or more narrow passages 6 may be provided, a flow velocity detector 25 may be attached to each of the narrow passages 6, and a switching valve may be provided at the inlet of the narrow passage 6 to further expand the flow rate measurement range. Examples of the bypass valve 5 include those shown in FIGS. 1 and 11. The guide rod 51 is attached to the bypass valve 5 by the pin 53, and the valve body 21 is configured to move up and down in the bypass valve 5 via the guide rod 51.

【0023】バイパス弁5の他の実施例としては、図1
2に示すようなものがある。略長方形の孔54に円筒形
の弁体21を嵌め込む構成のものである。この実施例で
はバイパス弁5が開いたときは、円筒形の弁体21は浮
いた状態となる。
Another embodiment of the bypass valve 5 is shown in FIG.
There is something like the one shown in 2. The configuration is such that the cylindrical valve body 21 is fitted into the substantially rectangular hole 54. In this embodiment, when the bypass valve 5 is opened, the cylindrical valve body 21 is in a floating state.

【0024】バイパス弁の第3の実施例としては、図1
3のようなものがある。ヒンジピン55で一端を固定さ
れた片持ちのフラッパ弁形式の弁体21で構成され、バ
イパス弁5が開いたとき、弁体21はストッパ56で止
まり、流量が減少したとき、弁体21が直ちに降下し、
バイパス弁を閉じるようになっている。
A third embodiment of the bypass valve is shown in FIG.
There is something like 3. It is composed of a cantilever flapper valve type valve body 21 whose one end is fixed by a hinge pin 55. When the bypass valve 5 is opened, the valve body 21 stops at a stopper 56, and when the flow rate decreases, the valve body 21 immediately Descend,
It is designed to close the bypass valve.

【0025】[0025]

【発明の効果】以上のように本発明によれば、フルイデ
ィック流量計の計測範囲を最大使用流量からその1/3
00〜1/40000まで拡大できる。
As described above, according to the present invention, the measurement range of the fluidic flow meter is set to 1/3 of the maximum usable flow rate.
It can be expanded from 00 to 1/40000.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す断面図である。FIG. 1 is a sectional view showing the configuration of an embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の側面図である。FIG. 3 is a side view of FIG.

【図4】図1のB−B断面図である。4 is a sectional view taken along line BB of FIG.

【図5】本発明に用いる熱線流速計の原理図である。FIG. 5 is a principle diagram of a hot wire anemometer used in the present invention.

【図6】本発明に用いるフルイディック素子の原理図で
ある。
FIG. 6 is a principle diagram of a fluidic element used in the present invention.

【図7】本発明の一実施例の流量表示法を示す原理図で
ある。
FIG. 7 is a principle diagram showing a flow rate display method according to an embodiment of the present invention.

【図8】図7の流量信号の切換え範囲を示す原理図であ
る。
FIG. 8 is a principle diagram showing a switching range of the flow rate signal of FIG.

【図9】図7の流量信号の切換え状況を示す原理図であ
る。
FIG. 9 is a principle diagram showing a switching situation of the flow rate signal of FIG. 7.

【図10】本発明の一実施例の器差特性を示す図であ
る。
FIG. 10 is a diagram showing a device difference characteristic according to an embodiment of the present invention.

【図11】本発明のバイパス弁の一実施例を示す図であ
る。
FIG. 11 is a diagram showing an embodiment of a bypass valve of the present invention.

【図12】本発明のバイパス弁の他の実施例を示す図で
ある。
FIG. 12 is a view showing another embodiment of the bypass valve of the present invention.

【図13】本発明のバイパス弁の第3実施例を示す図で
ある。
FIG. 13 is a diagram showing a third embodiment of the bypass valve of the present invention.

【符号の説明】[Explanation of symbols]

1 流量計 2 入口 3 出口 5 バイパス弁 6 狭小通路 8 フルイディック素子 13 遮断弁 21 バイパス弁本体 23 バイパス弁弁座 25 熱線流速計 31 圧電膜センサ 32 噴出ノズル 34 側壁 36 圧電膜センサ本体 37 帰還通路 39 圧力波導入口 1 Flowmeter 2 Inlet 3 Outlet 5 Bypass valve 6 Narrow passage 8 Fluidic element 13 Shutoff valve 21 Bypass valve body 23 Bypass valve valve seat 25 Hot wire anemometer 31 Piezoelectric membrane sensor 32 Jet nozzle 34 Sidewall 36 Piezoelectric membrane sensor body 37 Return passage 39 Pressure wave inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野田 元 東京都板橋区志村一丁目2番3号 株式会 社金門製作所内 (72)発明者 友田 馨一 大阪府東大阪市西岩田4丁目7番31号 株 式会社金門製作所関西研究所内 (72)発明者 今崎 正成 大阪府東大阪市西岩田4丁目7番31号 株 式会社金門製作所関西研究所内 ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Gen Onoda, 2-3 Shimura, Itabashi-ku, Tokyo Inside Kinmon Mfg. Co., Ltd. (72) Inventor, Kaichi Tomoda 4--7, Nishiiwata, Higashiosaka-shi, Osaka No. 31 Incorporated company Kinmen Manufacturing Kansai Research Institute (72) Inventor Masanari Imasaki 4-7 31 Nishi-Iwata, Higashi-Osaka City, Osaka Prefecture Inside Kinmon Manufacturing Kansai Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)フルイディック現象を利用して流
量を測定すべき流体の振動に対応した流量を検出する第
1流量検出手段と、 (b)前記第1流量検出手段の上流側または下流側に設
けられ、絞りが介在する流体の通路を設け、この流体の
通路に流速に対応した流量を検出する第2流量検出手段
と、 (c)第2流量検出手段と並列に、第1流量検出手段に
よって、少なくとも計測できる範囲よりも小さい流量の
とき閉じて、それ以上の流量のとき開くバイパス弁とを
含むことを特徴とするフルイディック流量計。
1. (a) a first flow rate detecting means for detecting a flow rate corresponding to vibration of a fluid whose flow rate is to be measured utilizing a fluidic phenomenon; and (b) an upstream side of the first flow rate detecting means, or A second flow rate detecting means provided on the downstream side and provided with a fluid passage in which a throttle intervenes, and detecting the flow rate corresponding to the flow velocity in the fluid passage; and (c) the second flow rate detecting means in parallel with the first flow rate detecting means. A fluidic flow meter, comprising: a bypass valve that is closed at a flow rate that is at least smaller than a measurable range by a flow rate detection means and that is opened at a flow rate higher than that.
【請求項2】 前記第2流量検出手段を流体の絞りが介
在する2以上の通路に設けてあることを特徴とする請求
項1記載のフルイディック流量計。
2. The fluidic flow meter according to claim 1, wherein the second flow rate detecting means is provided in at least two passages in which a fluid throttle is interposed.
JP3207015A 1991-08-19 1991-08-19 Fluidic flow meter Expired - Fee Related JP3017567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3207015A JP3017567B2 (en) 1991-08-19 1991-08-19 Fluidic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3207015A JP3017567B2 (en) 1991-08-19 1991-08-19 Fluidic flow meter

Publications (2)

Publication Number Publication Date
JPH0545190A true JPH0545190A (en) 1993-02-23
JP3017567B2 JP3017567B2 (en) 2000-03-13

Family

ID=16532786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3207015A Expired - Fee Related JP3017567B2 (en) 1991-08-19 1991-08-19 Fluidic flow meter

Country Status (1)

Country Link
JP (1) JP3017567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289686A (en) * 2000-04-07 2001-10-19 Aichi Tokei Denki Co Ltd Gas flowmeter
JP2002310771A (en) * 2001-04-19 2002-10-23 Aichi Tokei Denki Co Ltd Stop valve and gas meter
WO2011026445A1 (en) * 2009-09-07 2011-03-10 天津空中代码工程应用软件开发有限公司 Combined measurement instrument for flowfield pressure and velocity and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289686A (en) * 2000-04-07 2001-10-19 Aichi Tokei Denki Co Ltd Gas flowmeter
JP4550965B2 (en) * 2000-04-07 2010-09-22 愛知時計電機株式会社 Gas flow meter
JP2002310771A (en) * 2001-04-19 2002-10-23 Aichi Tokei Denki Co Ltd Stop valve and gas meter
WO2011026445A1 (en) * 2009-09-07 2011-03-10 天津空中代码工程应用软件开发有限公司 Combined measurement instrument for flowfield pressure and velocity and method thereof
CN102112850A (en) * 2009-09-07 2011-06-29 天津空中代码工程应用软件开发有限公司 Combined measurement instrument for flow field pressure and velocity and method thereof

Also Published As

Publication number Publication date
JP3017567B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US7474968B2 (en) Critical flow based mass flow verifier
CN101978245B (en) High accuracy mass flow verifier with multiple inlets
US4610162A (en) Fluidic flowmeter
JPH0545190A (en) Fluidic flowmeter
JPS61223517A (en) Fluidic flowmeter
JP3315005B2 (en) Fluidic gas meter
JPH08240469A (en) Flowmeter
JP3122981B2 (en) Reversible flow measurement device
JP3267448B2 (en) Fluidic flow meter and fluidic oscillation detector
JP3290300B2 (en) Fluid flow meter
JPH0618244Y2 (en) Fluid vibration type flow meter
JPH07324955A (en) Fluidic gas meter
JP3005272B2 (en) Fluidic flow meter
JPH08159839A (en) Flow meter and flow measurement
JPH08240468A (en) Flowmeter
JPH01227925A (en) Fluidic flowmeter
JP3267446B2 (en) Fluid flow meter
JPH085432A (en) Gain correcting apparatus for thermal type flow velocity sensor for gas meter
JPH0875511A (en) Gas meter
JPH07209056A (en) Gas flow meter
JPH10221150A (en) Flowmeter
JP3530645B2 (en) Flow meter structure
JP3334736B2 (en) Flowmeter
JPS62175619A (en) Fluidic flowmeter
JPS63140916A (en) Fluidic flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees