JPH0545141B2 - - Google Patents

Info

Publication number
JPH0545141B2
JPH0545141B2 JP8010485A JP8010485A JPH0545141B2 JP H0545141 B2 JPH0545141 B2 JP H0545141B2 JP 8010485 A JP8010485 A JP 8010485A JP 8010485 A JP8010485 A JP 8010485A JP H0545141 B2 JPH0545141 B2 JP H0545141B2
Authority
JP
Japan
Prior art keywords
power supply
crack
potential
supply terminals
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8010485A
Other languages
English (en)
Other versions
JPS61239154A (ja
Inventor
Makoto Hayashi
Masahiro Ootaka
Tasuku Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8010485A priority Critical patent/JPS61239154A/ja
Priority to DE19863612651 priority patent/DE3612651A1/de
Priority to US06/852,313 priority patent/US4764970A/en
Publication of JPS61239154A publication Critical patent/JPS61239154A/ja
Publication of JPH0545141B2 publication Critical patent/JPH0545141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、導電性の材料で構成される原子力機
器、蒸気タービン、水車等の構造部材表面のき裂
形状検出方法及び装置に係わり、特にき裂の進展
状態を正確に把握する上で不可欠なき裂形状の検
出を精度よく検出する方法及び装置に関する。
〔発明の背景〕
き裂周辺に電流を流し、き裂をはさんで電圧を
測定することによつてき裂の進展状態を測定する
ようにしたものとして特開昭58−215545がある。
しかし、この方法によれば電流供給端子や電圧測
定端子の取付位置が固定されているためき裂発生
場所が特定位置に決つている場合はき裂の進展状
態を把握することは可能であるが、き裂位置が電
圧測定端子の中央にない場合にはき裂深さの検出
精度は低下するし、またき裂の形状を検出するこ
とは極めて困難であるという欠点があつた。
〔発明の目的〕
本発明の目的は、構造部材に生じた表面き裂の
形状を精度良く検出可能な方法及び装置を提供す
ることにある。
〔発明の概要〕
本発明は、導電性の構造部材表面に給電端子対
によつて直流電流を印加し、給電端子対の間に位
置する電位測定端子により表面のき裂の発生位置
及び形状を検出する方法及び装置に関し、前記電
位測定端子を部材表面に走査させて表面の電位分
布を測定し、電位分布からき裂の発生方向を検出
して、次に検出した前記き裂の方向に沿つて詳細
な電位分布を求め、予め解析して求めておいた
種々の形状のき裂の電位分布のマスターカーブと
前記電位分布とを比較してき裂の形状を決定する
もので、き裂の進展状態を把握する上で不可欠な
き裂形状の検出を精度よく検出できる。
〔発明の実施例〕
以下、本発明の一実施例を説明する。第1図は
表面き裂近傍での電位分布を示す等電位線図であ
る。これは厚さ20mmの平板にき裂長さ30mm、深さ
15mmの半円き裂がある場合について有限要素法に
より解析して求めた結果で、材質が異なつても電
位の絶対値が変化するだけでその分布形状は不変
なものである。き裂面の電位分布に注目すると、
等電位線はき裂面にもぐり込む。き裂面にもぐり
込む等電位線の数はき裂深さに応じて変化する。
また電位分布はき裂面に対して対象な分布を示す
ことが分かる。即ち、き裂をはさんで電位は逆の
分布を示すことから、き裂位置を判定することは
容易である。勿論、き裂をはさんで電位差を測定
すると、き裂のあるところでは電位差は大きくな
るため検出できる。
次に、き裂周辺の電位分布を計算した結果を第
2図に示す。これは第1図に示したき裂について
求めたもので、き裂からY軸方向に1,2,3,
4,5,10mm離れた位置におけるX軸方向の電位
分布である。第2図から分かるようにき裂から10
mm離れた位置でもき裂形状はある程度判定するこ
とが可能である。しかし、離れた位置では電位が
ゆるやかに下降しているため、き裂形状の精度良
い検出は困難である。特に表面のき裂先端を特定
するのは困難である。ところが測定位置がき裂に
近付くと表面のき裂先端において電位分布に特異
点が現われるので、表面のき裂先端を決定するこ
とが容易である。また電位はき裂深さに比例す
る。従つてき裂に沿つてき裂の極近傍でき裂先端
の前方から電位分布を測定するか、き裂をはさん
で電位差を測定すればき裂形状を決定できる。
第3図に放電加工によりき裂を模擬したき裂を
いれたSUS304の平板においてき裂から1mm離れ
た位置で測定した電位差とき裂深さとの関係を示
す。き裂のアスペクト比a/c(a:き裂深さ
c:き裂長さ)は1.0,0.5および0.25である。多
少のばらつきはあるものの電位差はアスペクト比
に無関係にき裂深さに比例する。従つてき裂の形
状はき裂近傍の電位分布を測定するこにより精度
よく検出できる。
第4図に構造部材の表面き裂形状の検出装置の
模式図を示す。表面き裂11を有する構造部材1
に複数の給電端子対2を介して直流定電流電源3
から直流電流を印加する。測定端子4は給電端子
対2の中央に給電端子対2に平行に複数本を一列
に等間隔で配置してある。給電端子対2と測定端
子4とは、不導体基板(図示せず)に取付け、該
基板を駆動装置5に取付け、走査機構を持つ。測
定端子4間の電位差はスキヤナー6を介して微小
電圧計7で測定する。微小電圧計7の出力はイン
ターフエス8を介してマイクロコンピユータ9に
取り込まれる。取り込んだ電位差は予めマイクロ
コンピユータ9に記憶させたマスターカーブとの
比較演算によりき裂形状を決定する。き裂形状の
結果はX−Yプロツタ10に表示される。給電端
子対2と測定端子4を取り付けた基板である探傷
ヘツド(第5図参照)の位置決めは駆動装置5で
行われ、駆動装置5はマイクロコユピユータ9で
制御される。
第5図はき裂形状検出装置の駆動装置5の詳細
図である。駆動装置5は測定端子4と給電端子対
2を備えた探傷ヘツド40をZ軸まわりにステツ
ピングモータ50により回転可能とし、測定端子
4および給電端子対2を部材表面に押し付けるた
めの空気シリンダー49を具備している。さらに
駆動装置5は探傷ヘツド40を2次元平面上を移
動可能とするために、X軸51及びY軸52の駆
動機構を持ち、おのおのの座標軸はモータ53,
53′及び減速機54,54′によつて駆動され
る。Y軸52は側板55,55′に固定され、側
板55,55′には圧縮空気で作動する吸盤56
が取り付けてあり、部材表面に駆動装置5を固定
する機能を持つ。X,Y座標軸駆動用モータ5
3,53′は位置決め制御装置57に接続され、
位置決め制御装置57は計測制御システム58に
よつて制御される。第5図では探傷ヘツド40は
例えば後述の第9図に示すような給電端子対2と
測定端子4の配置を採つている。き裂の発生する
方向は部材によつて大体決まつており、給電端子
対2および測定端子4をき裂と平行になるように
設定して、X軸51,Y軸52方向に走査して駆
動装置5の移動可能な材料表面の電位分布を測定
する。き裂が無ければ測定端子2間には電位差は
生じない。き裂のある付近では電位差が生じ、表
面を初めから細かく走査すると測定時間が長大と
なる。そこで最初は探傷ヘツド40を測定間隔を
粗くして走査して電位分布を求めてき裂の発生位
置を判定し、次にき裂発生位置周辺だけを細かく
走査して詳細な電位分布を求めてき裂形状を決定
すればよい。最初の粗く測定するときの間隔は第
2図でも分かるように10mm以上であつても十分で
ある。
第6図はき裂形状の検出方法の更に具体的な説
明図である。き裂11を有する構造部材1に直流
電流を流し、その表面での電位分布14を測定端
子4を走査しながら測定し、コンピユータ9に入
力する。ここでマスターカーブ17と比較演算を
行い、基本のき裂形状15aを決定する。この形
状15aを用いてコンピユータ16により有限要
素法等の数値解析を行い電位分布17を求める。
これと実測した電位分布14と比較し、両者が等
しくなるようにき裂形状に15b及び15cのよ
うに修正を加え、再び計算により電位分布を求め
る。この過程を繰返し、最終的に実測した電位分
布14と計算から求めた電位分布17が一致した
ときのき裂18を表面き裂形状とするものであ
る。この方法によれば複雑な形状のき裂であつて
も精度よくき裂形状を検出することが可能であ
る。
なお、き裂形状が単純なときは、数種類のマス
ターカーブを組合せる方法によつてもき裂形状を
決定することも可能である。
第7図から第12図は本発明の給電端子対及び
測定端子の配列について実施例を示したものであ
る。
第7図に示すように給電端子対2と測定端子4
は不導体の基板である探傷ヘツド40に取り付け
られ、給電端子対2の中央に測定端子4を設けて
いる。構造部材にき裂がない場合には測定端子4
は等電位線上にあるため、測定端子4間に電位差
は生じないが、第2図に示したようにき裂が存在
する場合にはき裂周辺の電場の乱れから測定端子
4間に電位差が生じる。この電場の乱れを検出す
るための端子配列の実施例を第8図から第12図
に示す。
第8図は一組の給電端子対2の中央に測定端子
4を複数個配列したものである。
第9図は電位差を測定する領域に均一な電場を
形成するために給電端子対2を等間隔に複数個並
べて、その中央に測定端子4を設けたものであ
る。
第10図は給電端子対2による電流密度が同じ
電流密度になる位置に測定端子4が存在するよう
に給電端子対2の中央で、且つ隣り合う給電端子
対2の中央に位置するようにしたものである。
第11図は電位差の連続的な分布を測定するた
めに、給電端子対2を等間隔に並べた中央に2個
の測定端子4を設け、一方を固定とし、他方を給
電端子対2の中央を直線的に移動可能なものとし
たものである。
第12図はき裂の発生位置を効率よく検出する
ために第8図に示した端子配列のものに更に測定
端子4の中央に測定端子4と直角方向にき裂発生
位置検出用として測定端子24を2個設けたもの
である。
以上の第8図から第12図の給電端子対2およ
び測定端子4の配列はき裂に平行な電位分布を測
定するための配列となつている。
第13図は給電端子対2を等間隔で平行に配列
し、給電端子対2の中心と測定端子対25の中心
が一致するように測定端子対25を等間隔に、且
つそれぞれの測定端子対が隣り合う給電端子対2
の中央にくるように多数配列したものである。こ
のように配置することにより、スキヤニングが不
要になる。
第4図は給電端子、及び測定端子の電極構造を
示したものである。(従来はステンレス鋼や工具
鋼の丸棒の先端を円錐状にしたものを用いてい
た。従つて測定試料が軟らかい材料の場合には測
定試料を傷つけ、また硬い材料の場合には電極の
先端が摩耗するため、測定に当たつては測定位置
を変える度に測定ヘツドを持ち上げては移動しな
ければならなかつた。)測定ヘツドを測定試料に
押し付けたまま連続的に電位差分布を測定できる
ようにしたものである。電極ロツド31の先端に
円筒34を設け、その中にバネ32、銀または銀
箔のスペーサ39及び鋼球33が入れてあり、そ
れぞれは電気的に接続されている。この電極構造
によれば鋼球33が銀のスペーサ39を介してバ
ネ32により部材の表面に押し付けられ、且つ電
極の移動に伴い鋼球33が回転するため、電位分
布測定の際、連続的な測定と測定時間の短縮が可
能となる。
第15図は電極の他の実施例の構造を示したも
のである。電極ロツド31の先端に一方を密閉し
た円筒36を取付け、解放側に銀の膜38をは
り、その内部を2つの部分にしきり、銀の膜38
の内側に液体状の物質37を入れ、他方にバネ3
9を入れる。これにより電極は構造部材の表面状
態に応じて銀の膜38が変形し、確実な接触が可
能となる。
第16図は給電端子21に銀の平板22を用い
たものである。比抵抗が十分に小さい銀を電極材
料に用いているため、この電極間に平行な電場領
域が確保できるという効果がある。
第17図は給電端子31の電極の先端に銀のブ
ラシ35を設けたものである。これを給電端子と
すればブラシにより接触面積の増大と比抵抗の小
さな銀により給電端子の接触抵抗の低減ができ
る。
第18図は複数の給電端子対2にそれぞれ独立
した定電流電源23を設け、それらに流す電流を
制御する制御システムである。このシステムによ
れば給電端子対2の接触状態に関係なく一定電流
を供給できるため、均一な電場が形成できる。
第19図はき裂形状検出装置の他の実施例を示
したものである。第19図では第5図と異なり、
直流電流供給のための給電端子100は探傷ヘツ
ドには設けられておらず、電位分布の測定方法も
異なる。第19図では給電端子100は駆動装置
5の側板55,55′に等間隔に多数設けてあり、
電極の部分は絶縁して空気作動のシリンダー10
5の先端に取り付けてある。これにより駆動装置
5の内側では全体が電場が均一となる。電位分布
測定用の測定端子101,102の中一方の測定
端子101は側板55′に固定してあり、他方の
測定端子102は探傷ヘツド40に取り付けられ
ており、いずれも空気作動のシリンダーにより測
定試料に押し付けられる構造となつている。従つ
て電位分布は一方の測定端子102だけを走査す
れば測定できる。このとき測定端子102をY軸
52方向に走査すると固定された測定端子101
との間の電位差はY軸方向の距離に比例して増加
するが、き裂があるところではき裂の前方で電位
差は距離との比例関係よりも大きくなり、き裂の
後方では距離との比例関係よりも小さくなる。こ
のき裂前方および後方との間の電位差からき裂深
さを求めるものである。
第20図にこの装置を用いて求めたき裂周辺の
電位分布の模式図を示す。ただし、第20図では
分かり易くするために距離との比例関係からのず
れ、言い換えると基準電位からのずれで電位分布
を表示した。き裂の周辺では電位分布に乱れが生
じるので、最初に測定端子102をX軸、Y軸方
向ともに粗い間隔で走査して、き裂発生位置を検
出し、次にき裂の周辺、特にき裂の前後の電位差
を測定するとによりき裂の形状を精度よく判定す
るものである。勿論、探傷ヘツド40に取り付け
る測定端子4は1個でなく、複数個を等間隔で設
けて、一度に数箇所の電位を測定すれば計測時間
を短縮できる。また側板55′に固定した測定端
子101は用いず、探傷ヘツド40に測定端子4
を等間隔で2列設けておき、これをX軸、Y軸方
向に走査して電位差分布を求め、き裂位置とき裂
形状を検出してもよい。
上述の実施例によれば、直流電流を供給する複
数の給電端子対と電位差を測定する複数の測定端
子とから成る探傷ヘツドをき裂を有する構造部材
の表面を走査することにより、これらの電位差の
変化からき裂発生位置が検出でき、次に、そのき
裂に対してき裂方向に直交するように直流電流を
印加し、き裂の近傍でき裂に沿つた電位分布を測
定、或いはき裂をはさんで電位差を測定し、この
電位差から予め求めておいたマスターカーブを用
いてき裂形状を精度よく検出できる。このため、
き裂の進展状態を正確に把握できる。
〔発明の効果〕
以上説明したように本発明によれば、構造部材
表面の電位分布を測定し、これと予め求めておい
たき裂形状の電位分布のマスターカーブと比較す
ることによつてき裂の形状を決定するものである
から、き裂の進展状態を正確に把握する上で不可
欠なき裂形状の検出を精度良く検出できる効果が
ある。
【図面の簡単な説明】
第1図から第20図は本発明に係わるき裂形状
検出方法及び装置の実施例の説明図で、第1図は
有限要素法の解析によつて求めた表面き裂周辺の
電位分布図で中央の実線がき裂、破線は等電位線
であり、第2図は第1図に示した電位分布のき裂
近傍のき裂に平行な方向の電位分布図、第3図は
ステンレス鋼において得られた各測定位置におけ
る電位差とき裂深さとの関係図、第4図はき裂検
出装置の実施例の概略外観図、第5図は、き裂検
出装置の詳細図、第6図は実施値と解析とから求
めた電位分布より表面き裂形状を決定する手法を
フローチヤートで示す具体的な説明図、第7図は
給電端子対と電位測定端子とからなる探傷ヘツド
の構造図、第8図は給電端子対と電位測定端子の
配置の実施例の平面図、第9図は各端子の配置の
他の実施例の平面図、第10図は各端子の配置の
更に他の実施例の平面図、第11図は各端子の配
置の更に他の実施例の平面図、第12図は各端の
配置の更に他の実施例の平面図、第13図は各端
子の配置の更に他の実施例の平面図、第14図は
給電端子と電位測定端子の電極構造図、第15図
は電極の更に他の実施例の構造図、第16図は給
電端子の電極構造図、第17図は給電端子の更に
他の実施例の構造図、第18図は給電端子毎に独
立した定電流源を有する他の実施例の説明図、第
19図は給電端子を駆動装置の側板に取付けたき
裂検出装置の実施例の外観図、第20図はき裂を
有する構造部材表面を走査して得られた電位分布
の模式図である。 1……構造部材、2……給電端子、3……直流
電源、4……測定端子、5……駆動装置、6……
スキヤナー、7……微小電圧計、8……インター
フエース、9……マイクロコンピユータ、10…
…X−Yプロツター、11……表面き裂、14…
…実測より求めたき裂周辺の電位分布、15……
数値解析を行うための初期き裂形状、16……コ
ンピユータ、17……数値解析より求めた電位分
布、18……最終的に決定したき裂形状、31…
…電極ロツド、32……バネ、33……鋼球、3
4……円筒、40……探傷ヘツド、49……空気
作動シリンダー、50……ヘツド回転用モータ、
51……X軸、52……Y軸、53,53′……
モータ、54,54′……減速機、55……側板、
56……吸盤、57……位置決め制御装置、58
……計測制御装置、100……給電端子、10
1,102……測定端子、105……空気作動シ
リンダー。

Claims (1)

  1. 【特許請求の範囲】 1 構造部材表面に供給端子対によつて直流電流
    を印加し、給電端子対の間の電位測定端子によ
    り、き裂を検出する方法において、前記電位測定
    端子を走査させて電位分布を測定し、電位分布か
    らき裂の発生位置及びき裂の発生方向を検出し
    て、次に検出した前記き裂の方向に沿つて電位分
    布を求め、予め解析して求めておいた種々の形状
    のき裂の電位分布のマスターカーブと前記電位分
    布とを比較してき裂の形状を決定することを特徴
    とするき裂形状検出方法。 2 直流定電流電源に接続されて構造部材に直流
    の定電流を印加する給電端子対と、前記給電端子
    対の間に配置されて構造部材表面の電位分布を測
    定する電位測定端子と、前記給電端子対または電
    位測定端子の少なくとも一方を取付ける探傷ヘツ
    ドと、探傷ヘツドを定位置に支持する支持部材と
    からなるき裂形状検出装置において、前記探傷ヘ
    ツドを構造部材表面に沿つてX−Y方向に移動す
    る駆動装置と、予め解析して求めておいた種々の
    形状のき裂の電位分布のマスターカーブと電位測
    定端子間の電位差を比較してき裂形状を決定する
    マイクロコンピユータと、探傷ヘツドの位置を制
    御する位置決め制御装置及び計測制御系システム
    とからなることを特徴とするき裂形状検出装置。 3 特許請求の範囲第2項記載の装置において、
    探傷ヘツドに一組の給電端子対と前記給電端子対
    の間に複数個の電位測定端子を直列に取付けるこ
    とを特徴とするき裂形状検出装置。 4 特許請求の範囲第2項記載の装置において、
    探傷ヘツドに複数組の給電端子対を並列に取付
    け、更に前記給電端子対の間、及び互いに他方の
    給電端子対の前後の給電端子とを結ぶ間に電位測
    定端子を直列に取付けることを特徴とするき裂形
    状検出装置。 5 特許請求の範囲第2項記載の装置において、
    探傷ヘツドに複数組の給電端子対を並列に取付
    け、更に互いに他方の給電端子対の前後の給電端
    子とを結ぶ間に電位測定端子を直列に取付けるこ
    とを特徴とするき裂形状検出装置。 6 特許請求の範囲第2項記載の装置において、
    探傷ヘツドに複数組の給電端子対を並列に取付
    け、更に、前記給電端子の間に固定した電位測定
    端子及び給電端子対の間を給電端子と平行に移動
    可能な電位測定端子とを取付けることを特徴とす
    るき裂形状検出装置。 7 特許請求の範囲第2項記載の装置において、
    探傷ヘツドの間に複数組の給電端子対を並列に取
    付け、更に前記給電端子の間に直列に電位測定端
    子を取付けるとともに、前記電位測定端子をはさ
    んで一対の電位測定端子を取付けることを特徴と
    するき裂形状検出装置。 8 特許請求の範囲第2項記載の装置において、
    探傷ヘツドに複数組の給電端子対を並列に取付
    け、更に前記給電端子対の間に複数組の電位測定
    端子対を取付けることを特徴とするき裂形状検出
    装置。 9 特許請求の範囲第2項記載の装置において、
    探傷ヘツドに電位測定端子を取付け、前記測定端
    子の両側の支持部材に複数組の給電端子対を並列
    に取付け、前記電位測定端子と前記給電端子対の
    一方との間の支持部材に電位測定端子を直列に取
    付けることを特徴とするき裂形状検出装置。
JP8010485A 1985-04-15 1985-04-17 き裂形状検出方法及び装置 Granted JPS61239154A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8010485A JPS61239154A (ja) 1985-04-17 1985-04-17 き裂形状検出方法及び装置
DE19863612651 DE3612651A1 (de) 1985-04-15 1986-04-15 Verfahren und vorrichtung zum erfassen von rissen
US06/852,313 US4764970A (en) 1985-04-15 1986-04-15 Method and apparatus for detecting cracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8010485A JPS61239154A (ja) 1985-04-17 1985-04-17 き裂形状検出方法及び装置

Publications (2)

Publication Number Publication Date
JPS61239154A JPS61239154A (ja) 1986-10-24
JPH0545141B2 true JPH0545141B2 (ja) 1993-07-08

Family

ID=13708873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8010485A Granted JPS61239154A (ja) 1985-04-15 1985-04-17 き裂形状検出方法及び装置

Country Status (1)

Country Link
JP (1) JPS61239154A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296253A (ja) * 1985-06-24 1986-12-27 Res Dev Corp Of Japan 電位差法による非破壊検査方法
US4914378A (en) * 1986-10-20 1990-04-03 Hitachi, Ltd. Method and apparatus for inspecting surface defects
US4931740A (en) * 1988-08-02 1990-06-05 Mcdonnell Douglas Corporation Electrostatic field gradient sensor
JP2005308544A (ja) * 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The 電位差法による亀裂進展モニタリング装置および方法
JP4519578B2 (ja) * 2004-08-31 2010-08-04 株式会社アトラス 実鋼構造物における亀裂進展のモニタリング方法および実鋼構造物の余寿命推定方法
JP2008083038A (ja) * 2006-08-30 2008-04-10 Atlus:Kk 導電材料製構造物の損傷検出方法
JP2010145375A (ja) * 2008-12-22 2010-07-01 Chubu Electric Power Co Inc コーナー部亀裂測定方法及び測定装置
SG11202103383UA (en) * 2018-10-16 2021-05-28 Shimadzu Corp Magnetic body management system and magnetic body management method

Also Published As

Publication number Publication date
JPS61239154A (ja) 1986-10-24

Similar Documents

Publication Publication Date Title
US4764970A (en) Method and apparatus for detecting cracks
EP0289615B1 (en) Surface defect inspection method and surface defect inspection apparatus
KR940009197B1 (ko) 이온비임의 평행도 측정방법, 주사파형 정형방법 및 이온주입장치
US2977533A (en) Gaging device
WO2007088913A1 (ja) 損傷検出装置及び損傷検出方法
JPH0545141B2 (ja)
US3636441A (en) Method of measuring crack depths in electrically conductive metal workpieces using current probes with voltage probes located between current probes by measuring the minimum potential difference between the voltage and current probes
JP4822545B2 (ja) ナゲット径測定方法およびナゲット径測定装置
US2896159A (en) Method and apparatus for measuring electrical resistance
CN113791028B (zh) 一种直接检测金属材料土壤腐蚀速率的检测装置及方法
CN108562535A (zh) 一种检测金属表面缺陷的腐蚀电化学无损检测装置和检测方法
CN208568550U (zh) 一种检测金属表面缺陷的腐蚀电化学无损检测装置
JPS643071Y2 (ja)
EP3748346B1 (en) Method for non-destructively examining an anode of an aluminium electrolysis cell
JP4007484B2 (ja) 抵抗率測定方法及び固有抵抗率計
JPH049470B2 (ja)
CN108896609A (zh) 一种金属材料不连续性交直流激励检测装置及方法
JPH05106076A (ja) 電解槽の検査方法
CN108562625A (zh) 一体式在线检测金属焊头焊接部位电偶腐蚀敏感性的无损检测装置及方法
CN208568662U (zh) 一体式在线检测电偶腐蚀敏感性的无损检测装置
JPH0364830B2 (ja)
JP3576394B2 (ja) 放電加工マシンの加工電極長さ決定方法
JP4789502B2 (ja) 電位差法を用いた深い亀裂に対する亀裂深さ測定手法および装置
JPH05113305A (ja) プローブ針検査装置
JPH0574021B2 (ja)