JPH0544678A - Sealed type rotary compressor - Google Patents

Sealed type rotary compressor

Info

Publication number
JPH0544678A
JPH0544678A JP20288591A JP20288591A JPH0544678A JP H0544678 A JPH0544678 A JP H0544678A JP 20288591 A JP20288591 A JP 20288591A JP 20288591 A JP20288591 A JP 20288591A JP H0544678 A JPH0544678 A JP H0544678A
Authority
JP
Japan
Prior art keywords
stage
low
pipe
compression mechanism
stage side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20288591A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
和生 中谷
Minoru Tagashira
實 田頭
Shozo Funakura
正三 船倉
Koji Ebisu
晃司 戎
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20288591A priority Critical patent/JPH0544678A/en
Publication of JPH0544678A publication Critical patent/JPH0544678A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To constitute a compressor which can be applied to a water system for cooling and warming and carries out the low stage compressor single operation and the high stage compressor single operation which are advantageous in case of low faculty, parallel operation which is advantageous in case of high faculty, and twostage compression operation which is advantageous in the high compression ratio operation, and possesses the wide variable width of faculty, and permits the disposal of the high pressure compression ratio. CONSTITUTION:The low and high stage side compression mechanisms 5 and 6 and the low and high stage side motors 3 and 4 for driving both the compression mechanisms 5 and 6 are installed in a sealed shell 2, and at least the high stage side compression mechanism 6 is installed at the position on the opposite side to the low stage side compression mechanism 5 for the low stage side motor 3. A low stage suction pipe 7, high stage suction pipe 9, and a high stage discharge pipe 10 are opened outside the sealed shell 2, and a low stage discharge pipe 8 is opened in the sealed shell 2. Further, the inside of the sealed shell 2 and the outside of the sealed shell 2 are allowed to communicate by arranging a pipe A11 at the position on the opposite side to the low stage side compression mechanism 5 for the low stage side motor 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置等の循環冷媒
を低段側圧縮機構と高段側圧縮機構で圧縮する密閉型ロ
ータリー圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic rotary compressor for compressing a circulating refrigerant such as a refrigerating device by a low-stage compression mechanism and a high-stage compression mechanism.

【0002】[0002]

【従来の技術】従来、低温冷凍装置や高温ヒートポンプ
のように冷凍サイクルの蒸発圧力と凝縮圧力との比(圧
縮比)が大きい場合には、圧縮機の吐出温度上昇の防
止、および圧縮機効率を向上させるために、従来の一段
の圧縮機を二台直列に設けた二段圧縮装置が使用されて
いる。この場合、低段側圧縮機の吐出ガスは高圧の液冷
媒や中間圧の二相冷媒と直接、あるいは間接的に熱交換
して冷却された後、高段側圧縮機に吸引され、そこで高
圧まで圧縮、吐出される。こうすることによって高段側
圧縮機の吸入ガス温度を低下させてその吐出温度上昇を
防止するものである。 また、低段側、高段側圧縮機で
の圧縮比を適当に設定することによって各段の圧縮機効
率の良い条件で運転することができ、総合的にみて冷凍
サイクル効率が向上するものである。
2. Description of the Related Art Conventionally, when a ratio (compression ratio) between the evaporation pressure and the condensation pressure of a refrigeration cycle is large as in a low temperature refrigeration system or a high temperature heat pump, the discharge temperature of the compressor is prevented from rising and the compressor efficiency is improved. In order to improve the above, a two-stage compression device in which two conventional one-stage compressors are provided in series is used. In this case, the discharge gas of the low-stage compressor is directly or indirectly heat-exchanged with a high-pressure liquid refrigerant or an intermediate-pressure two-phase refrigerant to be cooled, and then sucked into the high-stage compressor, where the high pressure Is compressed and discharged. By so doing, the intake gas temperature of the high-stage compressor is lowered and its discharge temperature is prevented from rising. Also, by appropriately setting the compression ratios of the low-stage side and high-stage side compressors, it is possible to operate under conditions with good compressor efficiency in each stage, and overall improve refrigeration cycle efficiency. is there.

【0003】また、二台の圧縮機を用いて一段の並列運
転または単独運転と二段運転を切り換える装置も考案さ
れており(たとえば特開昭63−87556)、配管に
設けた弁の開閉によって、一台の低能力運転から二台の
高能力運転まで幅広く能力可変でき、また高圧縮比時に
は二段運転によって高効率な運転ができるものである。
A device has also been devised which switches between single-stage parallel operation or single-stage operation and two-stage operation by using two compressors (for example, Japanese Patent Laid-Open No. 63-87556), and by opening and closing a valve provided in a pipe. The capacity can be widely varied from one low-capacity operation to two high-capacity operations, and high-efficiency operation can be performed by the two-stage operation when the compression ratio is high.

【0004】さらに、一台の圧縮機で二段運転を行う装
置も考案されており(たとえば特公昭53−9410)
一つの密閉シェル内に一つのモータと低段側、高段側圧
縮機構が同軸に設けられ、低段で圧縮したガスを一旦冷
却して後、高段で高圧まで圧縮して高効率な二段圧縮を
行うものである。
Further, a device for performing two-stage operation with one compressor has been devised (for example, Japanese Patent Publication No. 53-9410).
A single motor and low-stage and high-stage compression mechanisms are coaxially installed in a single sealed shell, and the gas compressed in the low stage is cooled once and then compressed to high pressure in the high stage to achieve high efficiency. It is a stage compression.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、二台の
圧縮機を用いて二段圧縮や並列運転する従来例において
は、圧縮機の潤滑オイルが低段側、高段側に均一に保持
されず、片寄りが生じるため、オイル分離器が高段、低
段ともに必要となっていたり、あるいはそれらを用いて
もオイルの片寄りを完全になくすことはできず、長時間
の運転で油面の低下による圧縮機の焼き付きなどが生じ
るおそれがあった。
However, in the conventional example in which two compressors are used for two-stage compression or parallel operation, the lubricating oil of the compressor is not uniformly held on the low-stage side and the high-stage side. However, there is a need for an oil separator for both high and low stages because of the deviation of the oil, or even if they are used, it is not possible to completely eliminate the deviation of the oil. There was a risk that seizure of the compressor might occur due to the decrease.

【0006】また、一台の圧縮機で二段圧縮するものに
おいては一つのモータで運転するため、たとえば高温ヒ
ートポンプに用いた場合には、負荷側が高温となってい
る高圧縮比運転の場合には適していたものの、運転開始
時のように比較的低圧縮比で高能力が必要な場合におい
ては、モータの回転数を可変して加熱能力を増大させて
いたため、その上限がモータ回転数で制約され、大幅な
能力の増加は期待できず、立上りに時間を要していた。
In addition, since one compressor is used for two-stage compression and operates with one motor, when it is used for a high temperature heat pump, for example, in the case of high compression ratio operation in which the load side has a high temperature. Is suitable, but when high capacity is required at a relatively low compression ratio, such as at the start of operation, the motor speed was varied to increase the heating capacity, so the upper limit is the motor speed. Being constrained, it was not possible to expect a significant increase in capacity, and it took time to get up.

【0007】本発明は、簡単な構成で一段(単段)圧
縮、二段圧縮の切り換えを実現し、低能力から高能力ま
で広い能力可変幅を持ち、さらに油分離器を一つ設ける
のみでオイルの片寄りなどの発生しない、安全な運転の
できる密閉型ロータリー圧縮機を提供することを目的と
するものである。
The present invention realizes switching between one-stage (single-stage) compression and two-stage compression with a simple structure, has a wide variable capacity range from low capacity to high capacity, and only requires one oil separator. It is an object of the present invention to provide a hermetic rotary compressor that can be operated safely without oil deviation.

【0008】[0008]

【課題を解決するための手段】本発明の密閉型ロータリ
ー圧縮機は、密閉シェル内に低段側圧縮機構と高段側圧
縮機構と、それぞれを駆動する低段側モータと高段側モ
ータとを設け、少なくとも前記高段側圧縮機構は前記低
段側モータに対して前記低段側圧縮機構と反対側の位置
に設けられ、低段吸入管、高段吸入管、高段吐出管をそ
れぞれ前記密閉シェル外に開口し、低段吐出管を前記密
閉シェル内に開口し、また、配管Aを前記低段側モータ
に対し前記低段側圧縮機構と反対側の位置に設けて前記
密閉シェル内と前記密閉シェル外とを連通したことを特
徴とするものである。
A hermetic rotary compressor according to the present invention comprises a low-stage compression mechanism and a high-stage compression mechanism in a hermetic shell, and a low-stage motor and a high-stage motor for driving them. At least the high-stage compression mechanism is provided at a position opposite to the low-stage compression mechanism with respect to the low-stage motor, and includes a low-stage suction pipe, a high-stage suction pipe, and a high-stage discharge pipe, respectively. The outside of the closed shell is opened, the low-stage discharge pipe is opened into the closed shell, and the pipe A is provided at a position opposite to the low-stage side compression mechanism with respect to the low-stage side motor. The inside is communicated with the outside of the closed shell.

【0009】[0009]

【作用】本発明は上記した構成により、簡単な操作で低
能力時に有利な低段圧縮機単独運転、高段圧縮機単独運
転と、高能力時に有利な並列運転、さらに高圧縮比運転
時に有利な二段圧縮運転を行うことができ、能力可変幅
の広い、高圧縮比まで対応できる圧縮機構成を実現する
ことができる。
With the above-described structure, the present invention is advantageous in simple operation, low-stage compressor independent operation advantageous for low capacity, high-stage compressor independent operation, parallel operation advantageous for high capacity, and further advantageous for high compression ratio operation. It is possible to realize a compressor configuration capable of performing a wide two-stage compression operation, having a wide range of variable capacity, and capable of supporting a high compression ratio.

【0010】また、高圧縮比運転時には中間圧の低段吐
出ガスを密閉シェル内に吐出出来るので高段側のモータ
冷却が十分に行われ、安全な運転ができる。
Further, at the time of operation at a high compression ratio, the low-stage discharge gas at an intermediate pressure can be discharged into the closed shell, so that the motor at the high-stage side can be sufficiently cooled and safe operation can be performed.

【0011】また密閉シェルを一つにしたので、油面は
片寄ることなく、いずれの圧縮機構にも過不足なく油供
給でき、さらに、いずれの運転時にも吐出ガスは高圧ガ
ス管に設けた一つの油分離器を通過させて、そこで分離
した油を低圧ガス管へ戻すようにする事が出来るので、
簡単な構成で密閉シェル内の油面が安定し、安全な運転
ができる。
Also, since the closed shell is one, the oil level can be supplied to any compression mechanism without deviation and the discharge gas can be supplied to the high pressure gas pipe during any operation. It is possible to pass two oil separators and return the separated oil to the low pressure gas pipe,
With a simple structure, the oil level inside the closed shell is stable and safe operation is possible.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の一実施例であり、本発明の
密閉型ロータリー圧縮機を用いて冷凍サイクルを構成し
た場合を示している。図1において1は密閉型ロータリ
ー圧縮機、2はほぼ円筒形をなす密閉シェル、3は低段
側モータ、4は高段側モータ、5は低段側圧縮機構、6
は高段側圧縮機構であり、本実施例では低段側モータ3
と高段側モータ4が各圧縮機構の内側に対向した位置関
係にある。7は低段吸入管で密閉シェル2の外部に開口
している。8は低段吐出管で密閉シェル2内に開口して
いる。9は高段吸入管、10は高段吐出管でそれぞれ密
閉シェル2の外部に開口している。
FIG. 1 shows one embodiment of the present invention, showing a case where a refrigerating cycle is constituted by using the hermetic rotary compressor of the present invention. In FIG. 1, 1 is a hermetic rotary compressor, 2 is a substantially cylindrical hermetic shell, 3 is a low-stage motor, 4 is a high-stage motor, 5 is a low-stage compression mechanism, 6
Is a high-stage side compression mechanism, and in this embodiment, the low-stage side motor 3
And the high-stage side motor 4 are in a positional relationship facing the inside of each compression mechanism. A low-stage suction pipe 7 is open to the outside of the closed shell 2. Reference numeral 8 denotes a low-stage discharge pipe which opens into the closed shell 2. Reference numeral 9 is a high-stage suction pipe, and 10 is a high-stage discharge pipe, which are opened to the outside of the closed shell 2.

【0014】11は密閉シェル2の内外を連通する配管
Aでここにおいては、高段側圧縮機構6よりも密閉シェ
ル2の端面側に位置している。12は密閉シェルの内外
を連通する配管Bで、ここにおいては、低段側モータ3
と高段側モータ4の間に位置している。13は低圧ガス
管であり、分岐して一方は低段吸入管7と接続し、もう
一方は切換弁a14を介して高段吸入管9と接続してい
る。また、配管A11は分岐して、一方は中間冷却器1
5を介して切換弁a14に接続し、もう一方は逆止弁1
6を介して高圧ガス管17と接続している。
Reference numeral 11 denotes a pipe A which communicates the inside and outside of the closed shell 2 and is located here on the end face side of the closed shell 2 with respect to the high-stage compression mechanism 6. Reference numeral 12 is a pipe B that communicates the inside and outside of the closed shell. Here, the low-stage motor 3
And the high-stage side motor 4 are located between them. Reference numeral 13 is a low-pressure gas pipe, which is branched and connected to the low-stage suction pipe 7 on one side and connected to the high-stage suction pipe 9 via the switching valve a14 on the other side. Further, the pipe A11 is branched, and one of them is the intercooler 1
5 to the switching valve a14, and the other one is a check valve 1
It is connected to the high pressure gas pipe 17 via 6.

【0015】18は切換弁bで、高段吐出管10と配管
B12および高圧ガス管17を切り換えて接続できるよ
うになっている。19は油分離器であり、高圧ガス管1
7に設けており、ここで分離された油は、圧力差により
配管20を通って低圧ガス管13に戻るようになってい
る。
Reference numeral 18 denotes a switching valve b, which can switch and connect the high-stage discharge pipe 10, the pipe B12 and the high pressure gas pipe 17. Reference numeral 19 is an oil separator, which is a high-pressure gas pipe 1
7, the oil separated here returns to the low pressure gas pipe 13 through the pipe 20 due to the pressure difference.

【0016】21は凝縮器、22は絞り装置、23は蒸
発器であり、油分離器19を出た吐出ガスはこれらを通
って冷凍サイクルを構成し、低圧ガス管13に戻って再
び吸入される。
Reference numeral 21 is a condenser, 22 is a throttling device, and 23 is an evaporator. The discharge gas discharged from the oil separator 19 constitutes a refrigeration cycle through these, returns to the low-pressure gas pipe 13, and is sucked again. It

【0017】このような構成において、各モードにおけ
る運転方法について説明する。
The operation method in each mode in such a configuration will be described.

【0018】まず、凝縮器21の圧力と蒸発器23の圧
力との比が大きい高圧縮比の場合には、図2に示したよ
うな回路で切換弁を図のように操作し、二段圧縮運転を
行う。
First, when the ratio of the pressure of the condenser 21 and the pressure of the evaporator 23 is large and the compression ratio is high, the switching valve is operated as shown in the figure by the circuit shown in FIG. Perform compression operation.

【0019】すなわち、この場合には低圧ガス管13の
吸入ガスは、低段吸入管7→低段側圧縮機構5→低段吐
出管8の順に流れて、低圧圧縮され、密閉シェル2内に
吐出され、低段側モータ3、高段側モータ4を冷却して
後、配管A11より吐出され、中間冷却器15において
外部流体または内部冷媒と熱交換し(図示せず)冷却さ
れた後、切換弁a14を通って高段吸入管9より吸入さ
れて高段側圧縮機構6で高圧まで圧縮される。
That is, in this case, the suction gas of the low-pressure gas pipe 13 flows in the order of the low-stage suction pipe 7 → the low-stage side compression mechanism 5 → the low-stage discharge pipe 8 to be compressed at a low pressure to enter the closed shell 2. After being discharged and cooling the low-stage side motor 3 and the high-stage side motor 4, after being discharged from the pipe A11 and exchanged heat with an external fluid or an internal refrigerant in the intercooler 15 (not shown), It is sucked from the high-stage suction pipe 9 through the switching valve a14 and compressed to a high pressure by the high-stage side compression mechanism 6.

【0020】高圧まで圧縮されたガスは高段吐出管10
より吐出し、切換弁b18を通って高圧ガス管17に流
入し、さらに油分離器19で油を分離し、冷媒ガスは凝
縮器21、絞り装置22、蒸発器23を通って再び低圧
ガス管13に戻る。一方、分離された油は配管20を通
って低圧ガス管13に戻り、再び吸入される。
The gas compressed to a high pressure is supplied to the high-stage discharge pipe 10
Is further discharged, flows into the high-pressure gas pipe 17 through the switching valve b18, further separates oil in the oil separator 19, and the refrigerant gas passes through the condenser 21, the expansion device 22, and the evaporator 23, and again into the low-pressure gas pipe. Return to 13. On the other hand, the separated oil returns to the low pressure gas pipe 13 through the pipe 20 and is sucked again.

【0021】このように、高圧縮比の場合には2段圧縮
の回路にすることによって、低段、高段それぞれの圧縮
機構の断熱効率が1段で圧縮する場合に比較して大きく
向上しサイクル効率が向上する。また、低段側モータ
3、高段側モータ4を中間圧力の比較的温度の低い低段
吐出ガスで冷却することができるので、高圧縮比におい
てもモータの過熱される心配はない。また、油は高圧ガ
ス配管17に設けた油分離器19一つのみで確実に低圧
ガス管13に戻すことができるので、密閉シェル2内の
油量は確保され、安全性の高い圧縮機構成となるもので
ある。
As described above, when the compression ratio is high, the two-stage compression circuit greatly improves the adiabatic efficiency of the low-stage compression mechanism and the high-stage compression mechanism as compared with the case where the compression mechanism is performed by one stage. Cycle efficiency is improved. Further, since the low-stage motor 3 and the high-stage motor 4 can be cooled by the low-stage discharge gas having a relatively low intermediate pressure, the motor is not overheated even at a high compression ratio. Further, since the oil can be reliably returned to the low pressure gas pipe 13 by only one oil separator 19 provided in the high pressure gas pipe 17, the amount of oil in the closed shell 2 is secured, and the compressor structure with high safety is provided. It will be.

【0022】次に、たとえば冷凍サイクルの運転開始時
のようにあまり圧縮比が大きくなく、むしろ能力を多く
必要とする場合には並列運転を行い、図3に示したよう
な回路で切換弁を図のように操作する。
Next, when the compression ratio is not so large as when starting the refrigerating cycle and the capacity is rather high, parallel operation is performed and the switching valve is operated by the circuit as shown in FIG. Operate as shown.

【0023】すなわち、この場合には、低圧ガス管13
の吸入ガスは分岐され、低段側は低段吸入管7→低段側
圧縮機構5→低段吐出管8の順に流れて密閉シェル2内
に吐出され、低段側モータ3、高段側モータ4を冷却し
て後、配管A11より吐出され、逆止弁16を通って高
圧ガス管17に流れる。
That is, in this case, the low-pressure gas pipe 13
Of the intake gas is branched, and the low-stage side flows in the order of the low-stage intake pipe 7 → the low-stage side compression mechanism 5 → the low-stage discharge pipe 8 and is discharged into the closed shell 2. The low-stage side motor 3 and the high-stage side After cooling the motor 4, it is discharged from the pipe A11 and flows through the check valve 16 into the high pressure gas pipe 17.

【0024】一方、高段側は低圧ガス管13で分岐され
た吸入ガスが切換弁a14を通って高段吸入管9より吸
入されて高段側圧縮機構6で圧縮され、高段吐出管10
より吐出し、切換弁b18を通って低段側の吐出ガスと
合流し、油分離器19に流入する。ここで油を分離し、
冷媒ガスは凝縮器21、絞り装置22、蒸発器23の順
に流れてサイクルを構成し、再び低圧ガス管13に戻
る。一方、分離された油は配管20を通って低圧ガス管
13に戻るため、密閉シェル2内の油面は確保され、安
全性の高い圧縮機構成となる。
On the other hand, on the high-stage side, the suction gas branched by the low-pressure gas pipe 13 is sucked from the high-stage suction pipe 9 through the switching valve a14, compressed by the high-stage compression mechanism 6, and discharged by the high-stage discharge pipe 10.
Is further discharged, merges with the discharge gas on the lower stage side through the switching valve b18, and flows into the oil separator 19. Where the oil is separated,
The refrigerant gas flows in the order of the condenser 21, the expansion device 22, and the evaporator 23 to form a cycle, and then returns to the low-pressure gas pipe 13 again. On the other hand, the separated oil returns to the low-pressure gas pipe 13 through the pipe 20, so that the oil level in the closed shell 2 is ensured and the compressor structure has high safety.

【0025】このように、比較的、低圧縮比で能力を多
く必要とする場合は、低段側と高段側を並列で一段圧縮
運転することにより、能力が十分確保され、立上りなど
が向上するものである。また、たとえばインバータを用
いてモータの回転数を増加させることにより、さらに能
力向上できる。また、この場合には密閉シェル2内に吐
出される低段側の吐出ガスで低段側モータ3、高段側モ
ータ4の両方を冷却する場合を示したが、切換弁b18
を90゜左に回転して、高段吐出ガスを配管B12を通
して密閉シェル2内へ流すことにより、高段側モータ4
を低段、高段の両方の吐出ガスで冷却することもでき
る。
As described above, when a relatively high compression ratio and a large amount of capacity are required, the capacity is sufficiently secured and the start-up is improved by operating the low-stage side and the high-stage side in parallel in a single-stage compression operation. To do. Further, the capacity can be further improved by increasing the rotation speed of the motor by using, for example, an inverter. Further, in this case, the case where both the low-stage motor 3 and the high-stage motor 4 are cooled by the low-stage discharge gas discharged into the closed shell 2 has been shown.
Is rotated 90 degrees to the left and the high-stage discharge gas is caused to flow into the closed shell 2 through the pipe B12.
Can also be cooled by both low-stage and high-stage discharge gas.

【0026】次に、たとえば負荷が小さく、能力をあま
り必要としない場合には、図4に示したような回路で切
換弁を図のように操作することにより低段単独運転がで
き、また、図5に示したような回路で切換弁を図のよう
に操作することにより高段単独運転が出きる。
Next, in the case where the load is small and the capacity is not required so much, for example, by operating the switching valve in the circuit as shown in FIG. 4 as shown in the figure, low-stage independent operation can be performed, and By operating the switching valve as shown in the figure with the circuit as shown in FIG. 5, high-stage isolated operation can be performed.

【0027】図4の低段単独運転から説明すると、低圧
ガス管13の吸入ガスは低段吸入管7→低段側圧縮機構
5→低段吐出管8の順に流れて密閉シェル2内に吐出さ
れ、低段側モータ3を冷却して後、配管A11より吐出
され、逆止弁16を通って高圧ガス管17に流れ、油分
離器19に流入する。ここで油を分離し、冷媒ガスは凝
縮器21、絞り装置22、蒸発器23の順に流れてサイ
クルを構成し、再び低圧ガス管13に戻る。一方、分離
された油は配管20を通って低圧ガス管13に戻る。こ
の場合、高段側は運転しておらず、また高段吸入管9は
低圧になっているので、冷媒の溜まりなどは起こらな
い。
Explaining from the low-stage independent operation of FIG. 4, the suction gas of the low-pressure gas pipe 13 flows in the order of the low-stage suction pipe 7 → the low-stage side compression mechanism 5 → the low-stage discharge pipe 8 to be discharged into the closed shell 2. After cooling the low-stage motor 3, it is discharged from the pipe A11, flows through the check valve 16 into the high-pressure gas pipe 17, and then flows into the oil separator 19. Here, oil is separated, and the refrigerant gas flows in the order of the condenser 21, the expansion device 22, and the evaporator 23 to form a cycle, and then returns to the low-pressure gas pipe 13 again. On the other hand, the separated oil returns to the low pressure gas pipe 13 through the pipe 20. In this case, since the high-stage side is not operating and the high-stage suction pipe 9 is at a low pressure, the accumulation of the refrigerant does not occur.

【0028】次に、図5の高段単独運転を説明すると、
低圧ガス管13の吸入ガスは切換弁a14→高段吸入管
9→高段側圧縮機構6→高段吐出管10の順に流れ、さ
らに切換弁b18→配管B12を通って密閉シェル2内
に流れ込む。ここで高段側モータ4を冷却して後、配管
A11より吐出し、逆止弁16を通って高圧ガス管17
→油分離器19に流入する。ここで油を分離し、冷媒ガ
スは凝縮器21、絞り装置22、蒸発器23の順に流れ
てサイクルを構成し、再び低圧ガス管13に戻る。一
方、分離された油は配管20を通って低圧ガス管13に
戻る。この場合、低段側は運転しておらず、また低段吸
入管7は低圧になっているので、冷媒の溜まりなどは起
こらない。また、低段、高段いずれの単独運転時の場合
にも油は分離されて低圧ガス管13に戻るため、密閉シ
ェル2内の油面は確保される。
Next, the high-stage isolated operation of FIG. 5 will be described.
The suction gas of the low-pressure gas pipe 13 flows in the order of the switching valve a14 → high-stage suction pipe 9 → high-stage side compression mechanism 6 → high-stage discharge pipe 10, and further flows into the closed shell 2 through the switching valve b18 → pipe B12. .. After cooling the high-stage side motor 4 here, the high-stage motor 4 is discharged from the pipe A11, passed through the check valve 16, and passed through the high-pressure gas pipe 17
→ Flows into the oil separator 19. Here, the oil is separated, and the refrigerant gas flows in the order of the condenser 21, the expansion device 22, and the evaporator 23 to form a cycle, and then returns to the low pressure gas pipe 13 again. On the other hand, the separated oil returns to the low pressure gas pipe 13 through the pipe 20. In this case, the low-stage side is not operating and the low-stage suction pipe 7 is at a low pressure, so that the accumulation of the refrigerant does not occur. Further, the oil is separated and returns to the low-pressure gas pipe 13 in both the low-stage operation and the high-stage operation, so that the oil level in the closed shell 2 is secured.

【0029】このように、能力を多く必要としない場合
には、低段側と高段側を切り換えて単独で運転すること
により、小能力でも各圧縮機構の能力に見合った効率の
高い運転が出きるものであり、さらにインバータと組み
合わせて能力の調整が良好になることは明白であり、ま
た、たとえば高段側のみの運転に、さらに低段を並列で
運転することも可能であることは言うまでもない。
As described above, when a large amount of capacity is not required, the low-stage side and the high-stage side are switched to operate independently, so that even a small capacity can be operated with high efficiency corresponding to the capacity of each compression mechanism. It is obvious that it is possible to adjust the capacity better by combining it with the inverter, and it is also possible to operate the lower stage in parallel to the operation only on the higher stage side, for example. Needless to say.

【0030】[0030]

【発明の効果】以上の説明より明らかなように、本発明
の密閉型ロータリー圧縮機は、密閉シェル内に低段側圧
縮機構と高段側圧縮機構と、それぞれを駆動する低段側
モータと高段側モータとを設け、少なくとも前記高段側
圧縮機構は前記低段側モータに対して前記低段側圧縮機
構と反対側の位置に設け、低段吸入管、高段吸入管、高
段吐出管をそれぞれ前記密閉シェル外に開口し、低段吐
出管を前記密閉シェル内に開口し、また、配管Aを前記
低段側モータに対し前記低段側圧縮機構と反対側の位置
に設けて前記密閉シェル内と前記密閉シェル外とを連通
したので、簡単な操作で低能力時に有利な低段圧縮機単
独運転、高段圧縮機単独運転と、高能力時に有利な並列
運転、さらに高圧縮比運転時に有利な二段圧縮運転を行
うことができ、能力可変幅の広い、高圧縮比まで対応で
きる圧縮機構成を実現することができる。
As is apparent from the above description, the hermetic rotary compressor of the present invention includes a low-stage compression mechanism and a high-stage compression mechanism in a hermetic shell, and a low-stage motor for driving each of them. A high-stage side motor, at least the high-stage side compression mechanism is provided at a position opposite to the low-stage side compression mechanism with respect to the low-stage side motor, and a low-stage suction pipe, a high-stage suction pipe, and a high-stage suction pipe are provided. The discharge pipes are opened outside the closed shell, the low-stage discharge pipes are opened inside the closed shell, and the pipe A is provided at a position opposite to the low-stage compression mechanism with respect to the low-stage motor. Since the inside of the closed shell and the outside of the closed shell are communicated with each other, a simple operation makes it possible to operate the low-stage compressor alone, which is advantageous when the capacity is low, a high-stage compressor alone operation, and the parallel operation which is advantageous when the capacity is high. It is possible to perform an advantageous two-stage compression operation during compression ratio operation. Wide variable width, it is possible to realize a compressor structure which can accommodate up to a high compression ratio.

【0031】また、高圧縮比運転時には中間圧の低段吐
出ガスを密閉シェル内に吐出出来るので高段側のモータ
冷却が十分に行われ、安全な運転ができる。
Further, at the time of high compression ratio operation, the intermediate pressure low-stage discharge gas can be discharged into the closed shell, so that the motor at the high-stage side is sufficiently cooled and safe operation can be performed.

【0032】また密閉シェルを一つにしたので、油面は
片寄ることなく、いずれの圧縮機構にも過不足なく油供
給でき、さらに、いずれの運転時にも吐出ガスは高圧ガ
ス管に設けた一つの油分離器を通過させて、そこで分離
した油を吸入ガス管へ戻すようにしているので、簡単な
構成で密閉シェル内の油面が安定し、安全な運転ができ
るなど、実用上多大な効果を発揮するものである。
Since only one closed shell is used, the oil surface is not offset and the oil can be supplied to any compression mechanism without excess or deficiency. Further, the discharge gas is provided in the high pressure gas pipe during any operation. Since it passes through two oil separators and returns the separated oil to the suction gas pipe, the oil level in the closed shell is stable with a simple structure, and safe operation is possible. It is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の密閉型ロータリー圧縮機と
それを用いた冷凍サイクルの構成図である。
FIG. 1 is a configuration diagram of a hermetic rotary compressor according to an embodiment of the present invention and a refrigeration cycle using the same.

【図2】本発明の一実施例の密閉型ロータリー圧縮機と
それを用いた二段圧縮運転の冷媒および油の流れ図であ
る。
FIG. 2 is a flow chart of refrigerant and oil in a hermetic rotary compressor of one embodiment of the present invention and a two-stage compression operation using the same.

【図3】本発明の一実施例の密閉型ロータリー圧縮機と
それを用いた並列運転の冷媒および油の流れ図である。
FIG. 3 is a flow chart of a hermetic rotary compressor according to an embodiment of the present invention and refrigerant and oil in parallel operation using the hermetic rotary compressor.

【図4】本発明の一実施例の密閉型ロータリー圧縮機と
それを用いた低段単独運転の冷媒および油の流れ図であ
る。
FIG. 4 is a flow chart of a hermetic rotary compressor of one embodiment of the present invention and a refrigerant and oil in low-stage independent operation using the same.

【図5】本発明の一実施例の密閉型ロータリー圧縮機と
それを用いた高段単独運転の冷媒および油の流れ図であ
る。
FIG. 5 is a flow chart of a hermetic rotary compressor of one embodiment of the present invention and a refrigerant and oil in a high-stage independent operation using the same.

【符号の説明】[Explanation of symbols]

1 密閉型ロータリー圧縮機 2 密閉シェル 3 低段側モータ 4 高段側モータ 5 低段側圧縮機構 6 高段側圧縮機構 7 低段吸入管 8 低段吐出管 9 高段吸入管 10 高段吐出管 11 配管A 12 配管B 13 低圧ガス管 14 切換弁a 15 中間冷却器 16 逆止弁 17 高圧ガス管 18 切換弁b 19 油分離器 1 Hermetic rotary compressor 2 Hermetic shell 3 Low-stage motor 4 High-stage motor 5 Low-stage compression mechanism 6 High-stage compression mechanism 7 Low-stage suction pipe 8 Low-stage discharge pipe 9 High-stage suction pipe 10 High-stage discharge Pipe 11 Pipe A 12 Pipe B 13 Low pressure gas pipe 14 Switching valve a 15 Intercooler 16 Check valve 17 High pressure gas pipe 18 Switching valve b 19 Oil separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戎 晃司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Ebi 1006 Kadoma, Kadoma City, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機の密閉シェル内に低段側圧縮機構と
高段側圧縮機構と、それぞれを駆動する低段側モータと
高段側モータとが設けられ、少なくとも前記高段側圧縮
機構は前記低段側モータに対して前記低段側圧縮機構と
反対側の位置に設けられ、前記低段側圧縮機構の低段吸
入管、前記高段側圧縮機構の高段吸入管、及び高段吐出
管がそれぞれ前記密閉シェル外に開口され、前記低段側
圧縮機構の低段吐出管が前記密閉シェル内に開口され、
また、配管Aが、前記低段側モータに対し前記低段側圧
縮機構と反対側の位置に設けられて、前記密閉シェル内
と前記密閉シェル外とが連通していることを特徴とする
密閉型ロータリー圧縮機。
1. A low-stage side compression mechanism and a high-stage side compression mechanism, and a low-stage side motor and a high-stage side motor for driving the low-stage side compression mechanism and the high-stage side compression mechanism are provided in a hermetic shell of a compressor, and at least the high-stage side compression mechanism. Is provided at a position opposite to the low-stage side compression mechanism with respect to the low-stage side motor, and includes a low-stage suction pipe of the low-stage side compression mechanism, a high-stage suction pipe of the high-stage side compression mechanism, and a high-stage suction pipe. Stage discharge pipes are respectively opened to the outside of the closed shell, the low stage discharge pipes of the low stage side compression mechanism are opened to inside the closed shell,
Further, the pipe A is provided at a position opposite to the low-stage side compression mechanism with respect to the low-stage side motor, and the inside of the hermetic shell and the outside of the hermetic shell communicate with each other. Type rotary compressor.
【請求項2】低段吸入管が低圧ガス管に接続され、前記
低圧ガス管は分岐して切換弁aを介して前記高段吸入管
に接続され、また、前記配管Aは分岐し、一方は高圧ガ
ス管に接続され、もう一方は前記切換弁aに接続され、
前記高段吸入管が前記低圧ガス管と前記配管Aとに切り
換えて接続できるようになっており、さらに前記高段側
モータに対し前記配管Aと反対側の位置の前記密閉シェ
ルに配管Bが設けられ、前記高段吐出管とその配管Bと
が切換弁bを介して接続され、前記高段吐出管が前記配
管Bと前記高圧ガス管とに切り換えて接続できるように
なっていることを特徴とする請求項1記載の密閉型ロー
タリー圧縮機。
2. A low-stage suction pipe is connected to a low-pressure gas pipe, the low-pressure gas pipe is branched to be connected to the high-stage suction pipe via a switching valve a, and the pipe A is branched to one side. Is connected to the high pressure gas pipe, and the other is connected to the switching valve a,
The high-stage suction pipe can be switched between the low-pressure gas pipe and the pipe A, and the pipe B can be connected to the closed shell at a position opposite to the pipe A with respect to the high-stage motor. The high-stage discharge pipe and the pipe B thereof are connected via a switching valve b, and the high-stage discharge pipe can be switched and connected to the pipe B and the high-pressure gas pipe. The hermetic rotary compressor according to claim 1, which is characterized in that.
【請求項3】配管Aと前記高圧ガス配管との接続途中に
逆止弁が設けられたことを特徴とする請求項2記載の密
閉型ロータリー圧縮機。
3. The hermetic rotary compressor according to claim 2, wherein a check valve is provided midway between the pipe A and the high-pressure gas pipe.
【請求項4】高圧ガス管に油分離器が設けられ、前記低
圧ガス管に油を戻す回路が設けられたことを特徴とする
請求項2記載の密閉型ロータリー圧縮機。
4. The hermetic rotary compressor according to claim 2, wherein the high pressure gas pipe is provided with an oil separator, and the low pressure gas pipe is provided with a circuit for returning oil.
JP20288591A 1991-08-13 1991-08-13 Sealed type rotary compressor Pending JPH0544678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20288591A JPH0544678A (en) 1991-08-13 1991-08-13 Sealed type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20288591A JPH0544678A (en) 1991-08-13 1991-08-13 Sealed type rotary compressor

Publications (1)

Publication Number Publication Date
JPH0544678A true JPH0544678A (en) 1993-02-23

Family

ID=16464816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20288591A Pending JPH0544678A (en) 1991-08-13 1991-08-13 Sealed type rotary compressor

Country Status (1)

Country Link
JP (1) JPH0544678A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056623A1 (en) * 2010-10-29 2012-05-03 株式会社デンソー Two-stage pressure boosting type refrigeration cycle device
JP2017166401A (en) * 2016-03-16 2017-09-21 株式会社日立産機システム Multistage compressor
WO2020065505A1 (en) * 2018-09-25 2020-04-02 Atlas Copco Airpower, Naamloze Vennootschap Oil-injected multistage compressor device and method for controlling such a compressor device
CN114738277A (en) * 2022-05-13 2022-07-12 重庆超力高科技股份有限公司 Two-stage scroll assembly and two-stage scroll compressor
US11519412B2 (en) 2018-09-25 2022-12-06 Atlas Copco Airpower. Naamloze Vennootschap Oil-injected multistage compressor device and method for controlling a compressor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056623A1 (en) * 2010-10-29 2012-05-03 株式会社デンソー Two-stage pressure boosting type refrigeration cycle device
JP2012097936A (en) * 2010-10-29 2012-05-24 Denso Corp Two-stage pressure boosting type refrigeration cycle
CN103180677A (en) * 2010-10-29 2013-06-26 株式会社电装 Two-stage pressure boosting type refrigeration cycle device
US9389005B2 (en) 2010-10-29 2016-07-12 Denso Corporation Two-stage compression refrigeration cycle device
JP2017166401A (en) * 2016-03-16 2017-09-21 株式会社日立産機システム Multistage compressor
WO2020065505A1 (en) * 2018-09-25 2020-04-02 Atlas Copco Airpower, Naamloze Vennootschap Oil-injected multistage compressor device and method for controlling such a compressor device
BE1026652B1 (en) * 2018-09-25 2020-04-28 Atlas Copco Airpower Nv Oil-injected multi-stage compressor device and method for controlling such a compressor device
US11371507B2 (en) 2018-09-25 2022-06-28 Atlas Copco Airpower, Naamloze Vennootschap Oil-injected multistage compressor device and method for controlling such a compressor device
US11519412B2 (en) 2018-09-25 2022-12-06 Atlas Copco Airpower. Naamloze Vennootschap Oil-injected multistage compressor device and method for controlling a compressor device
CN114738277A (en) * 2022-05-13 2022-07-12 重庆超力高科技股份有限公司 Two-stage scroll assembly and two-stage scroll compressor

Similar Documents

Publication Publication Date Title
KR960002562B1 (en) Refrigerating cycle apparatus with a compressor having simultaneously driving two compressor means
US6189335B1 (en) Multi-stage compressing refrigeration device and refrigerator using the device
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
EP2497955B1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
CN1896650A (en) Refrigeration control
JP2701658B2 (en) Air conditioner
JP4348788B2 (en) Refrigeration equipment
JP4214021B2 (en) Engine heat pump
CN107191372B (en) Rotary compressor and refrigerating device with same
JPH02230995A (en) Compressor for heat pump and operating method thereof
CN1220016C (en) Flow control of extruder
JP2001235245A (en) Freezer
JPH0544678A (en) Sealed type rotary compressor
JP4300712B2 (en) refrigerator
JP2003065615A (en) Refrigerating machine
JP2003021089A (en) Two-stage compression refrigerating machine, and its operating method
JP3619657B2 (en) Multistage compression refrigeration equipment
JP2004278824A (en) Refrigeration cycle device and air conditioner
CN207004814U (en) Rotary compressor and there is its refrigerating plant
JP2513700B2 (en) Air conditioner
JPH03267592A (en) Hermetic rotary compressor
JPH0211886A (en) Refrigerating cycle device
JPH11324951A (en) Air conditioner
JPH04313647A (en) Heat pump type air conditioner
JPH03260391A (en) Closed type rotary compressor