JPH03267592A - Hermetic rotary compressor - Google Patents

Hermetic rotary compressor

Info

Publication number
JPH03267592A
JPH03267592A JP6770990A JP6770990A JPH03267592A JP H03267592 A JPH03267592 A JP H03267592A JP 6770990 A JP6770990 A JP 6770990A JP 6770990 A JP6770990 A JP 6770990A JP H03267592 A JPH03267592 A JP H03267592A
Authority
JP
Japan
Prior art keywords
stage
discharge pipe
low
stage side
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6770990A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
和生 中谷
Minoru Tagashira
田頭 實
Mitsuhiro Ikoma
生駒 光博
Shozo Funakura
正三 船倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6770990A priority Critical patent/JPH03267592A/en
Publication of JPH03267592A publication Critical patent/JPH03267592A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To enable appropriate switching between a serial two-stage operation and a parallel one-stage operation by driving compressors on the lower stage side and the higher stage side by separate motors and by providing an inlet pipe and a discharge pipe of the lower stage side and an inlet pipe of the higher stage side outside a hermetic shell, and a discharge pipe of the higher stage side in the hermetic shell. CONSTITUTION:In a hermetic shell 2, a lower stage side compression mechanism 4 and a high pressure side compression mechanism 5 driven by a lower stage side motor 3L and a higher stage side motor 3H are provided. An inlet pipe 4d and a discharge pipe 4e of the lower stage side and a high pressure side inlet pipe 5d are led to the outside of the hermetic shell 2, respectively, and a higher stage side discharge pipe 5e is opened in the hermetic shell 2. In the case of a high compression ratio where the pressure ratio between a condenser 11 and an evaporator 15 is large, direction of three-way valves 17 and 18 is set as shown for a serial two-stage operation, and when the compression ratio is not large, the three-way valves 17 and 18 are rotated by 90 deg. in the arrow direction as shown for a parallel operation. Or only the higher stage side is operated. Thus, simple manipulation enables switching to an appropriate operation according to load.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 冷凍装置等の循環冷媒を低段側圧縮機構と高
段側圧縮機構で圧縮する密閉型ロータリー圧縮機に関す
a 従来の技術 従来 低温冷凍装置や高温ヒートポンプのように冷凍サ
イクルの蒸発圧力と凝縮圧力との比(圧縮比)が大きい
場合に番ヨ  圧縮機の吐出温度上昇の防止 および圧
縮機効率を向上させるためへ従来の1段の圧縮機を2台
直列に設けた2段圧縮装置が使用されていも この場合
 低段側圧縮機の吐出ガスは高圧の液冷媒や中間圧の二
相冷媒と直柩 あるいは間接的に熱交換して冷却された
黴高段側圧縮機に吸引され そこで高圧まで圧線吐出さ
れも こうすることによって高段側圧縮機の吸入ガス温
度を低下させてその吐出温度上昇を防止するものであa
 また 低段側 高段側圧縮機での圧縮比を適当に設定
することによって各段の圧縮機効率の良い条件で運転す
ることができ、総合的にみて冷凍サイクル効率が向上す
るものであa −人 −台の圧縮機で二段圧縮できる圧縮機も考えられ
ており、たとえば特公昭53−9410号記載の密閉型
ロータリー二段圧縮機Cヨ  密閉シェル内に低段側と
高段側圧縮機構が備わり、低段側の吸入管、吐出徹 高
段側の吐出管が密閉シェル外へ 高段側の吸入管が密閉
シェル内に開放しており、密閉シェル内を中間圧にした
状態で一つのモータで二段圧縮運転することが可能であ
ムこれを冷凍サイクルに使用した場合に↓よ 低段側圧
縮機構で吐出した冷媒は密閉シェル外に一旦出て、高圧
の液冷媒や中間圧の二相冷媒と画風 あるいは間接的に
熱交換して冷却された抵 密閉シェル内に入り高段側圧
縮機構に吸引されて高圧まで圧縮され 密閉シェル外に
吐出され 二台の圧縮機を用いた場合と同様な二段圧縮
の効果を出すことができも 発明が解決しようとする課題 しかしなか収 上記のような従来例で(よ 低段で吸入
されて圧縮吐出されるガスを高段に吸入させ黴 いわゆ
る直列の圧縮機構成のみであったそのたム たとえば高
温ヒートポンプに用いた場合にζよ 負荷側が高温とな
っている高圧縮比運転の場合には適していたものへ 運
転開始時のように比較的低圧縮比で高能力が必要な場合
においては モータの回転数を可変して加熱能力を増大
させていたた数 その上限がモータ回転数で制約され 
大幅な増大はできなかった また これを二台の圧縮機
を用いた二段圧縮機の場合にはさらに装置が大きくなっ
たり、あるいは圧縮機オイルの低段値 高段側への分配
のために オイル分離器やオイル戻しなども必要となっ
てい九 本発明は 簡単な構成で二段圧縮を実現でき、しかも高
能力が必要な場合にも十分対応できる密閉型ロータリー
圧縮機を提供するものであ4課題を解決するための手段 本発明の密閉型ロータリー圧縮機ζよ 低段側圧縮機構
と高段側圧縮機構とそれらを別々に駆動するモータを設
置す、低段吸入管、 低段吐出管、 高段吸入管をそれ
ぞれ密閉シェル外に開口し また高段吐出管を密閉シェ
ル内に開口するとともへ 密閉シェル内と密閉シェル外
とを連通ずる吐出配管を設けたことを特徴とするもので
あり、望ましくは低段側圧縮機構と高段側圧縮機構とは
モータをはさんで対向した位置関係にあり、さらに高段
吐出管と吐出配管とはモータをはさんで対向した位置関
係にあり、さらには吐出配管と前記低段吐出管とを三方
弁を介して連通可能にし 低段吸入管と前記高段吸入管
とを三方弁を介して連通可能にしたことを特徴とするも
のであり、さらに望ましくは 低段吐出管に設けた三方
弁と吐出配管との間に逆止弁を設けたことを特徴とする
ものであも作用 本発明は上記した構成により、高圧縮比運転時に圧縮機
の効率が有利になる2段圧縮運転(低段側と高段側を直
列接続する運転)と高能力時に有利な並列1段圧縮運転
(低段側と高段側を並列に接続する運転)を二つの三方
弁を切り替える操作のみで実現することができ、さらく
 1台の圧縮機のみを運転する小能力運転も可能となム
 また両運転時ともに密閉シェル内を高段側の吐出圧力
すなわち最も高い圧力とすることができ、密閉シェル内
の潤滑オイルが低比 高段両方の圧縮機構にスムーズに
補給されも 実施例 以下、本発明の一実施例を添付図面に基づいて説明すも 図は本発明の一実施例であり、本発明の密閉型ロータリ
ー圧縮機を用いて冷凍サイクルを構成した場合を示して
いも 第1図において1は密閉型ロータリー圧縮阪 2
はほぼ円筒形をなす密閉シェ/k 3Lは密閉シェル2
に取り付けられた低段側モータで回転軸は密閉シェル2
の中心軸上にほぼ一致して設けられてい、L  3Hは
モータ3Lと同機 密閉シェル2に取り付けられた高段
側モータで回転軸は密閉シェル2の中心軸上にほぼ一致
して設けられていム 4および5はモータ3L3Hをは
さむように密閉シェル2の両端に取り付けられた低段側
圧縮機構および高段側圧縮機構であり、それぞれモータ
3L、3Hによって別々に駆動することができ、44a
、5aはそれぞれ前記モータ3L、3Hの回転軸に一体
的にかつ偏心して設けたローター紘 4b、5bはそれ
ぞれ前記ローター軸4a、5aに装着したピストン、 
4c、5cはそれぞれのベーン、 6a、  6b、 
 7a。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a hermetic rotary compressor that compresses circulating refrigerant in a refrigeration system or the like using a low-stage compression mechanism and a high-stage compression mechanism. When the ratio of evaporation pressure to condensation pressure (compression ratio) in the refrigeration cycle is large, such as in equipment or high-temperature heat pumps, the conventional one-stage Even if a two-stage compression device with two compressors installed in series is used, in this case the discharge gas of the lower-stage compressor exchanges heat directly or indirectly with high-pressure liquid refrigerant or intermediate-pressure two-phase refrigerant. Even if the cooled mold is sucked into the high-stage compressor and discharged there to a high pressure, this reduces the suction gas temperature of the high-stage compressor and prevents the discharge temperature from rising.a
In addition, by appropriately setting the compression ratios of the low-stage and high-stage compressors, each stage of the compressor can be operated under conditions with good efficiency, which improves the refrigeration cycle efficiency overall. Compressors capable of two-stage compression using two compressors have also been considered, such as the hermetic rotary two-stage compressor described in Japanese Patent Publication No. 53-9410. Equipped with a mechanism, the suction pipe on the low stage side and the discharge pipe on the high stage side are opened to the outside of the sealed shell, and the suction pipe on the high stage side is opened into the sealed shell, and the inside of the sealed shell is maintained at intermediate pressure. It is possible to perform two-stage compression operation with one motor, and when this is used in a refrigeration cycle, Two-phase refrigerant at high pressure or by indirect heat exchange to cool the refrigerant enters the hermetic shell, is sucked into the high-stage compression mechanism, is compressed to high pressure, and is discharged outside the hermetic shell, using two compressors. Although it is possible to achieve the same two-stage compression effect as in the case where the gas is inhaled in the lower stage and compressed and discharged in the higher stage, the problem that the invention aims to solve is that For example, when used in a high-temperature heat pump, it is suitable for high compression ratio operation where the load side is at a high temperature. When high capacity is required at a relatively low compression ratio, the heating capacity is increased by varying the motor rotation speed.The upper limit is limited by the motor rotation speed.
In addition, in the case of a two-stage compressor using two compressors, the equipment would become even larger, or the lower stage of the compressor oil could be distributed to the higher stage. An oil separator, oil return, etc. are also required.9 The present invention provides a hermetic rotary compressor that can realize two-stage compression with a simple configuration and can also be used in cases where high capacity is required. 4 Means for Solving the Problems The hermetic rotary compressor ζ of the present invention includes a low-stage suction pipe and a low-stage discharge pipe in which a low-stage compression mechanism, a high-stage compression mechanism, and motors for driving them separately are installed. , the high-stage suction pipes are each opened to the outside of the sealed shell, and the high-stage discharge pipe is opened to the inside of the sealed shell, and a discharge pipe is provided that communicates the inside of the sealed shell with the outside of the sealed shell. Preferably, the low-stage compression mechanism and the high-stage compression mechanism are in a positional relationship facing each other with the motor in between, and the high-stage discharge pipe and the discharge piping are in a positional relationship facing each other with the motor in between. Further, the discharge pipe and the low-stage discharge pipe can communicate with each other via a three-way valve, and the low-stage suction pipe and the high-stage suction pipe can communicate with each other through a three-way valve. More preferably, a check valve is provided between the three-way valve provided in the low stage discharge pipe and the discharge pipe. Two-stage compression operation (operation in which the low-stage side and high-stage side are connected in series) is advantageous for machine efficiency, and parallel one-stage compression operation (operation in which the low-stage side and high-stage side are connected in parallel) is advantageous when the capacity is high. ) can be achieved by simply switching between two three-way valves, and it is also possible to operate at a low capacity by operating only one compressor. The lubricating oil inside the sealed shell is smoothly supplied to both the low-ratio and high-stage compression mechanisms. The figure also shows one embodiment of the present invention, and shows a case in which a refrigeration cycle is constructed using the hermetic rotary compressor of the present invention.
is a nearly cylindrical sealed shell/k 3L is a sealed shell 2
The rotating shaft is the lower stage motor attached to the sealed shell 2.
L3H is the high-stage motor attached to the sealed shell 2, and its rotating shaft is located almost coincident with the central axis of the sealed shell 2. 4 and 5 are a low-stage compression mechanism and a high-stage compression mechanism attached to both ends of the sealed shell 2 so as to sandwich the motor 3L3H, and can be driven separately by the motors 3L and 3H, respectively.
, 5a are rotor holes provided integrally and eccentrically with the rotating shafts of the motors 3L and 3H, respectively; 4b and 5b are pistons mounted on the rotor shafts 4a and 5a, respectively;
4c, 5c are respective vanes, 6a, 6b,
7a.

7 b、  はそれぞれの上 下軸弘8,9はシリンダ
ーであり、上下軸弘 シリンダーによって各圧縮機構の
ガス吸入室 圧縮室をそれぞれ構成していも さらに4
dは低段側圧縮機構4の吸入管(以後低段吸入管)、 
4eは低段側圧縮機構4の吐出管(以後低段吐出管)、
 5dは高段側圧縮機構5の吸入管(以後高段吸入管)
であり、それぞれ密閉シェル2の外部に導出してい45
eは高段側圧縮機構5の吐出管(以後高段吐出管)で、
密閉シェル2内に開口して連通していも また 11は
凝縮器で入口は密閉シェル2に設けた吐出配管12と接
続され その出口は分岐され 一方は中間熱交換器13
を通って主絞り装置14、さらに蒸発器15を通って低
段吸入管4dに接続されていも また もう一方は副絞
り装置16を介して中間熱交換器13に接続されてい6
.17.18は三方弁であり三方弁17は低段吐出管4
eと中間熱交換器13を接続する配管上に設けられ低段
吐出管4eと吐出配管12または低段吐出管4eと中間
熱交換器13を切り替えて接続できるようになっていも
 また 三方弁17と吐出配管12の間には三方弁17
から吐出配管12へのみ流れる逆止弁19が設けられて
いも 、また 三方弁18は高段吸入管5dと中間熱交
換器13を接続する配管上に設けられ 高段吸入管5d
と中間熱交換器13または高段吸入管5dと低段吸入管
4dを切り替えて接続できるようになっていa中間熱交
換器13へは三方弁17を出た配管と副絞り装置16を
出た配管が接続されており、凝縮器11を出て主絞り装
置14に接続される配管とここで間接的に熱交換されて
抵 三方弁18へ流出する配管構成になっており、いわ
ゆる2段圧縮1段膨張のサイクルを成していも このような構成において、その運転方法について説明す
も まず、凝縮器11の圧力と蒸発器15の圧力との比が大
きい高圧縮比の場合に1友 三方弁17゜18を図に示
した方向に設定しモータ3L、3Hを運転して直列2段
圧縮運転を行う。この場合、低段吸入管4dより吸入し
たガスは低段側圧縮機構4で凝縮器11と蒸発器15の
間の中間圧力まで圧縮されて低段吐出管4eより密閉シ
ェル2の外に出て三方弁17を介して中間熱交換器13
に流入すa ここで副絞り装置16より出た気液二相冷
媒(後述)と合流して吐出ガスは冷却され三方弁18を
介して高段吸入管5dに吸入されも高段側圧縮機構5で
は中間圧力から高圧まで圧縮され 高段吐出管5eより
密閉シェル2内に吐出されモータ3L、3Hの間隙を通
過しながらモータ3L、3Hのコイルを冷却し 吐出配
管12より吐出されも このガスは凝縮器11で液化し
一部は中間熱交換器13へ高圧のまま流入し 残りは先
述のように副絞り装置16で中間圧まで絞られて気液二
相の状態で中間熱交換器13に流入し 直接流入した高
圧の液冷媒を間接的に冷却すると同時く 低段吐出ガス
を直接冷却すも 冷却された高圧の液冷媒は主絞り装置
14で低圧まで絞られ蒸発器15で吸熱気化し 再び低
段吸入管4dに吸入されも このようにして直列2段圧縮が行われ 特に高圧縮比の
場合に低段、高段それぞれの圧縮機構の断熱効率が1段
で圧縮する場合に比較して大きく向上し 高圧液冷媒の
エンタルピ減少の効果も含まれて効率の高い冷凍サイク
ルが実現できも さらには 低比 高段をそれぞれ別々
のモータで運転できるので、中間圧力の調整などサイク
ルの制御が容易になム また 本発明の構成では密閉シ
エル2内を凝縮器11の圧力(高圧)にすることができ
るので、低段側圧縮機構4は言うまでもなく、高段側圧
縮機構5においてもピストン5aとベーン5Cの間など
の金属接触部に密閉シェル2内の潤滑オイルがスムーズ
に補給され 焼き付きなどの問題は起こらな1.%  
また モータ3H,3Lを密閉シェル2内の中央に 低
段圧縮機構4、高段圧縮機構5をモータ3H,3Lをは
さむようにそれぞれ位置させ、さらに高段吐出管5eと
吐出配管12とをモータ3H,3Lをはさんで対向させ
たので、少ない配管数で2段運転時に両モータを冷却す
ることができも −X  たとえば冷凍サイクルの運転開始時のようにあ
まり圧縮比が大きくなく、むしろ能力を多く必要とする
場合には 三方弁17.18を図中の矢印の方向に90
度回転ずム こうすることにより、低段吸入管4dと高
段吸入管5dとが連通し また低段吐出管4eと高段吐
出管5eとが連通すも したがって、蒸発器15を出た
冷媒ガスは低段吸入管4dと高段吸入管5dとに並列に
吸入され 低段側圧縮機構4で圧縮された冷媒は低段吐
出管4e、三方弁17、逆止弁19を介して吐出配管1
2に流れも また 高段側圧縮機構5で圧縮された冷媒
は高段吐出管5eより密閉シェル2内に出てモータ3の
間隙を通ってモータ3を冷却しながら吐出配管12より
流出し ここで低段側圧縮機構4より出た冷媒と合流し
て凝縮器11に流入す411縮器11で液化した冷媒は
三方弁17.18が中間熱交換器13の方に対して閉状
態であるため副絞り装置16の方へは流れず、中間熱交
換器13を介してすべて主絞り装置14より蒸発器15
に流れ 再び低段吸入管4d、高段吸入管5dに吸入さ
れも このようにして1段圧縮を行うことができるので、冷媒
流れからも明らかなようく 低段と高段の2つの圧縮機
構で並列に運転でき、圧縮吐出するガス量を多くするこ
とができるので冷凍サイクルの能力を大幅に増大するこ
とができも またたとえばインバータを用いてモータ3
L、3Hの回転数を増加させることにより、さらに能力
向上できることは明白であa また 低段側モータ3Lを停止し 高段側モータ3Hの
みを運転して高段側圧縮機構5のみで運転することも可
能であも この場合には高段側圧縮機構5で圧縮された
ガスは高段側モータ3Hを冷却しながら吐出配管12よ
り密閉シェル2の外に出る力(逆止弁19によって低段
側圧縮機構4に吐出ガスが流入するようなことはなく、
能力低下や冷媒の溜まり込みなどは起こらず、能力の小
さい運転条件にも対応できも さら凶 低段側圧縮機構4と高段側圧縮機構5とはモー
タ3H,3Lをはさんで対向した位置にし 高段吐出管
5eと吐出配管12とはモータ3H,3Lをはさんで対
向した位置としたので、少ない配管数で1段時の場合に
も各モータ3)L 3Lを冷却することができも また これらの1段運転の場合にも密閉シェル2内を凝
縮器11の圧力(高圧)にすることができるので、低段
側圧縮機構4、高段側圧縮機構5においてピストン4a
、5aとベーン4c、5cの間などの金属接触部に密閉
シェル2内の潤滑オイルがスムーズに補給され 焼き付
きなどの問題は起こらなl、% このように三方弁17.18を切り替えるという簡単な
操作のみで直列2段圧縮と並列1段圧縮が切り替えられ
 高圧縮比や小能力隊 高能力時などの場合に応じて適
切で安全な運転ができムな耘 三方弁17から吐出配管
12方向へのみ流れる逆止弁19をその間の配管上に設
けているので、直列2段圧縮から並列1段圧縮に切り替
える場合へ 凝縮器11から三方弁17を通って低段吐
出管4eに冷媒が逆流するのを防止できるので、低段側
圧縮機構4の吐出弁(図示せず)に急激な圧力が加わる
ことなく信頼性が向上するものであム 発明の効果 以上の説明より明らかなよう番二  本発明の密閉型ロ
ータリー圧縮機ζよ 低段側圧縮機構と高段側圧縮機構
とそれらを別々に駆動するモータを設へ低段吸入管、 
低段吐出管、 高段吸入管をそれぞれ密閉シェル外に開
口し また高段吐出管を密閉シェル内に開口するととも
へ 密閉シェル内と密閉シェル外とを連通ずる吐出配管
を設け、望ましくは低段側圧縮機構と高段側圧縮機構と
はモータをはさんで対向した位置関係にあり、さらに高
段吐出管と吐出配管とはモータをはさんで対向した位置
関係にあり、さらには吐出配管と前記低段吐出管とを三
方弁を介して連通可能にし 低段吸入管と前記高段吸入
管とを三方弁を介して連通可能にし さらに望ましくは
 低段吐出管に設けた三方弁と吐出配管との間に逆止弁
を設けたので、三方弁を切り替えるという簡単な操作の
みで直列2段圧縮と並列1段圧縮が切り替えられ 両運
転時において少ない配管数でモータを冷却で叡 また高
圧縮比の時の高効率運転や立上り時の高能力運転など、
場合に応じて適切な運転ができ、しかも両運転時におい
て密閉シェル内を凝縮器圧力にすることができるので圧
縮機構部の潤滑がスムーズに行え 信頼性の高い圧縮機
を実現できもまた 低段吐出管に設けた三方弁と前記吐
出配管との間に逆止弁を設けることにより、直列2段圧
縮から並列1段圧縮に切り替える場合L  低段吐出管
に冷媒が逆流することがなくなり、低段側圧縮機構の吐
出弁に急激な圧力が加わることなくさらに信頼性が向上
するものであム
7b and 8 and 9 are cylinders, respectively.
d is a suction pipe of the low-stage compression mechanism 4 (hereinafter referred to as low-stage suction pipe);
4e is a discharge pipe of the low-stage compression mechanism 4 (hereinafter referred to as low-stage discharge pipe);
5d is the suction pipe of the high-stage compression mechanism 5 (hereinafter referred to as the high-stage suction pipe)
45, each of which is led out to the outside of the sealed shell 2.
e is a discharge pipe of the high-stage compression mechanism 5 (hereinafter referred to as the high-stage discharge pipe);
11 is a condenser, the inlet of which is connected to the discharge pipe 12 provided in the sealed shell 2, and the outlet thereof is branched, with one end being an intermediate heat exchanger 13.
One is connected to the main throttle device 14 through the evaporator 15, and the other is connected to the intermediate heat exchanger 13 through the auxiliary throttle device 16.
.. 17 and 18 are three-way valves, and the three-way valve 17 is the low-stage discharge pipe 4.
The three-way valve 17 is provided on the piping connecting the intermediate heat exchanger 13 and the low-stage discharge pipe 4e, so that the low-stage discharge pipe 4e and the discharge pipe 12 or the low-stage discharge pipe 4e and the intermediate heat exchanger 13 can be connected by switching. A three-way valve 17 is provided between the
Even if a check valve 19 is provided for flow from the high-stage suction pipe 5d only to the discharge pipe 12, the three-way valve 18 is provided on the pipe connecting the high-stage suction pipe 5d and the intermediate heat exchanger 13.
The intermediate heat exchanger 13 or the high-stage suction pipe 5d and the low-stage suction pipe 4d can be switched and connected to the intermediate heat exchanger 13 via the pipe exiting the three-way valve 17 and the sub-throttle device 16. The condenser 11 exits the condenser 11 and connects to the main throttling device 14, where heat is exchanged indirectly and flows out to the three-way valve 18, resulting in a so-called two-stage compression system. Although the one-stage expansion cycle is formed, in such a configuration, the operation method will be explained first, but first of all, in the case of a high compression ratio where the ratio between the pressure of the condenser 11 and the pressure of the evaporator 15 is large, one-stage expansion cycle is performed. The valves 17 and 18 are set in the directions shown in the figure, and the motors 3L and 3H are operated to perform a series two-stage compression operation. In this case, the gas sucked in through the low-stage suction pipe 4d is compressed by the low-stage compression mechanism 4 to an intermediate pressure between the condenser 11 and the evaporator 15, and then exits from the sealed shell 2 through the low-stage discharge pipe 4e. Intermediate heat exchanger 13 via three-way valve 17
Here, the discharge gas is cooled by joining with the gas-liquid two-phase refrigerant (described later) discharged from the sub-throttle device 16, and is sucked into the high-stage suction pipe 5d via the three-way valve 18. In 5, the gas is compressed from intermediate pressure to high pressure, is discharged into the sealed shell 2 from the high-stage discharge pipe 5e, cools the coils of the motors 3L and 3H while passing through the gap between the motors 3L and 3H, and is discharged from the discharge pipe 12. is liquefied in the condenser 11, and part of it flows into the intermediate heat exchanger 13 at high pressure, and the rest is throttled to intermediate pressure in the sub-throttle device 16 as described above, and enters the intermediate heat exchanger 13 in a gas-liquid two-phase state. The cooled high-pressure liquid refrigerant is throttled down to low pressure by the main throttling device 14 and converted into endothermic air by the evaporator 15. Even if it is sucked into the low-stage suction pipe 4d again, two-stage compression is performed in series in this way. Especially when the compression ratio is high, the adiabatic efficiency of the compression mechanisms of the low-stage and high-stage compression mechanisms is compared to that when compression is performed in one stage. This includes the effect of reducing the enthalpy of high-pressure liquid refrigerant, making it possible to realize a highly efficient refrigeration cycle.Furthermore, since the low-ratio and high-ratio stages can be operated by separate motors, cycle control such as adjusting intermediate pressure can be achieved. In addition, with the configuration of the present invention, the pressure (high pressure) of the condenser 11 can be maintained inside the hermetic shell 2, so it goes without saying that the piston can be used not only in the low-stage compression mechanism 4 but also in the high-stage compression mechanism 5. The lubricating oil in the sealed shell 2 is smoothly supplied to metal contact parts such as between the vane 5a and the vane 5C, and problems such as seizure do not occur.1. %
In addition, the motors 3H and 3L are positioned in the center of the sealed shell 2, the low stage compression mechanism 4 and the high stage compression mechanism 5 are positioned so as to sandwich the motors 3H and 3L, respectively, and the high stage discharge pipe 5e and the discharge pipe 12 are connected to the motors. Since 3H and 3L are placed facing each other, it is possible to cool both motors during two-stage operation with a small number of piping. If a large amount of water is required, turn the three-way valve 17.
By doing so, the low-stage suction pipe 4d and the high-stage suction pipe 5d communicate with each other, and the low-stage discharge pipe 4e and the high-stage discharge pipe 5e communicate with each other. Gas is sucked into the low-stage suction pipe 4d and the high-stage suction pipe 5d in parallel, and the refrigerant compressed by the low-stage compression mechanism 4 is discharged from the discharge pipe via the low-stage discharge pipe 4e, the three-way valve 17, and the check valve 19. 1
The refrigerant compressed by the high-stage compression mechanism 5 enters the sealed shell 2 through the high-stage discharge pipe 5e, passes through the gap in the motor 3, cools the motor 3, and flows out from the discharge pipe 12. The refrigerant liquefied in the condenser 11 joins with the refrigerant discharged from the low-stage compression mechanism 4 and flows into the condenser 11.The three-way valves 17 and 18 of the refrigerant are closed to the intermediate heat exchanger 13. Therefore, the flow does not flow toward the sub-throttle device 16, but flows from the main throttle device 14 to the evaporator 15 via the intermediate heat exchanger 13.
Even if the refrigerant is sucked into the low-stage suction pipe 4d and the high-stage suction pipe 5d again, one-stage compression can be performed in this way.As is clear from the refrigerant flow, there are two compression mechanisms, low-stage and high-stage. The capacity of the refrigeration cycle can be greatly increased because the amount of compressed and discharged gas can be increased.
It is clear that the capacity can be further improved by increasing the rotation speed of L and 3H. Also, the low stage motor 3L is stopped and only the high stage motor 3H is operated, so that only the high stage compression mechanism 5 is operated. Although it is possible, in this case, the gas compressed by the high-stage compression mechanism 5 will flow out of the closed shell 2 from the discharge pipe 12 while cooling the high-stage motor 3H. No discharge gas flows into the stage side compression mechanism 4,
No reduction in capacity or accumulation of refrigerant occurs, and it is possible to cope with operating conditions with low capacity.The low-stage compression mechanism 4 and the high-stage compression mechanism 5 are located opposite each other with the motors 3H and 3L in between. Since the high stage discharge pipe 5e and the discharge pipe 12 are positioned opposite to each other with the motors 3H and 3L in between, each motor 3)L and 3L can be cooled even in the case of one stage with a small number of pipes. Also, in the case of these one-stage operations, the pressure (high pressure) in the condenser 11 can be maintained in the sealed shell 2, so that the piston 4a in the low-stage compression mechanism 4 and the high-stage compression mechanism 5 is
, 5a and the vanes 4c, 5c, etc., the lubricating oil in the sealed shell 2 is smoothly supplied, and problems such as seizure do not occur.l,% In this way, the simple operation of switching the three-way valve 17. The series two-stage compression and the parallel one-stage compression can be switched with just an operation, allowing appropriate and safe operation depending on the situation such as high compression ratios, small capacity units, high capacity, etc. From the three-way valve 17 to the discharge pipe 12 direction Since a check valve 19 is provided on the piping between them, the refrigerant flows back from the condenser 11 through the three-way valve 17 to the low-stage discharge pipe 4e when switching from two-stage series compression to one-stage parallel compression. This prevents the sudden pressure from being applied to the discharge valve (not shown) of the low-stage compression mechanism 4, thereby improving reliability. The hermetic rotary compressor ζ of the invention is equipped with a low-stage compression mechanism, a high-stage compression mechanism, and motors that drive them separately; a low-stage suction pipe;
The low-stage discharge pipe and the high-stage suction pipe are each opened outside the sealed shell, and the high-stage discharge pipe is opened inside the sealed shell.Discharge piping is provided to communicate between the inside of the sealed shell and the outside of the sealed shell, preferably with a low The stage-side compression mechanism and the high-stage compression mechanism are in a positional relationship facing each other with the motor in between, and the high-stage discharge pipe and the discharge piping are in a positional relationship facing each other with the motor in between. and the low-stage discharge pipe can communicate with each other through a three-way valve, and the low-stage suction pipe and the high-stage suction pipe can communicate with each other through a three-way valve, and more preferably, the three-way valve provided on the low-stage discharge pipe and the discharge pipe can communicate with each other through a three-way valve. Since a check valve is installed between the pipes, it is possible to switch between series two-stage compression and parallel one-stage compression with the simple operation of switching the three-way valve. High efficiency operation at compression ratio, high capacity operation at startup, etc.
Appropriate operation can be performed depending on the situation, and since the condenser pressure can be maintained inside the sealed shell during both operations, the compression mechanism can be smoothly lubricated, resulting in a highly reliable compressor. By providing a check valve between the three-way valve installed in the discharge pipe and the discharge pipe, when switching from series two-stage compression to parallel one-stage compression, refrigerant will not flow back into the low-stage discharge pipe, resulting in low This further improves reliability by preventing sudden pressure from being applied to the discharge valve of the stage-side compression mechanism.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (5)

【特許請求の範囲】[Claims] (1)圧縮機の密閉シェル内に低段側圧縮機構と高段側
圧縮機構とそれらを別々に駆動するモータを設け、低段
吸入管、低段吐出管、高段吸入管をそれぞれ前記密閉シ
ェル外に開口し、また高段吐出管を前記密閉シェル内に
それぞれ開口するとともに、前記密閉シェル内と前記密
閉シェル外とを連通する吐出配管を設けたことを特徴と
する密閉型ロータリー圧縮機。
(1) A low-stage compression mechanism, a high-stage compression mechanism, and motors that drive them separately are provided in the sealed shell of the compressor, and the low-stage suction pipe, low-stage discharge pipe, and high-stage suction pipe are each sealed as described above. A hermetic rotary compressor, characterized in that a high-stage discharge pipe is opened to the outside of the shell, and a high-stage discharge pipe is opened to the inside of the hermetic shell, and a discharge pipe is provided that communicates the inside of the hermetic shell and the outside of the hermetic shell. .
(2)請求項1において低段側圧縮機構と高段側圧縮機
構とはモータをはさんで対向した位置関係にあることを
特徴とする密閉型ロータリー圧縮機。
(2) The hermetic rotary compressor according to claim 1, wherein the low-stage compression mechanism and the high-stage compression mechanism are positioned opposite to each other with the motor in between.
(3)請求項1において高段吐出管と吐出配管とはモー
タをはさんで対向した位置関係にあることを特徴とする
・密閉型ロータリー圧縮機。
(3) The hermetic rotary compressor according to claim 1, characterized in that the high-stage discharge pipe and the discharge pipe are positioned opposite to each other with the motor in between.
(4)請求項1において低段吐出管に三方弁を設け、前
記吐出配管と前記低段吐出管とを前記三方弁を介して連
通可能にし、さらに、前記高段吸入管に三方弁を設け、
前記低段吸入管と前記高段吸入管とを前記三方弁を介し
て連通可能にしたことを特徴とする密閉型ロータリー圧
縮機。
(4) In claim 1, a three-way valve is provided in the low-stage discharge pipe to enable communication between the discharge pipe and the low-stage discharge pipe via the three-way valve, and a three-way valve is further provided in the high-stage suction pipe. ,
A hermetic rotary compressor, characterized in that the low-stage suction pipe and the high-stage suction pipe can communicate with each other via the three-way valve.
(5)請求項4において低段吐出管に設けた三方弁と前
記吐出配管との間に逆止弁を設けたことを特徴とする密
閉型ロータリー圧縮機。
(5) The hermetic rotary compressor according to claim 4, further comprising a check valve provided between the three-way valve provided in the low-stage discharge pipe and the discharge pipe.
JP6770990A 1990-03-16 1990-03-16 Hermetic rotary compressor Pending JPH03267592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6770990A JPH03267592A (en) 1990-03-16 1990-03-16 Hermetic rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6770990A JPH03267592A (en) 1990-03-16 1990-03-16 Hermetic rotary compressor

Publications (1)

Publication Number Publication Date
JPH03267592A true JPH03267592A (en) 1991-11-28

Family

ID=13352760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6770990A Pending JPH03267592A (en) 1990-03-16 1990-03-16 Hermetic rotary compressor

Country Status (1)

Country Link
JP (1) JPH03267592A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577390A (en) * 1994-11-14 1996-11-26 Carrier Corporation Compressor for single or multi-stage operation
US5626027A (en) * 1994-12-21 1997-05-06 Carrier Corporation Capacity control for multi-stage compressors
EP1654504A1 (en) * 2003-07-14 2006-05-10 Carrier Corporation Refrigerant compression system with selective subcooling
EP1722173A2 (en) * 2005-05-10 2006-11-15 Hussmann Corporation Two-Stage linear compressor
EP1739372A2 (en) * 2005-06-24 2007-01-03 Hussmann Corporation Two stage linear compressor
US7628027B2 (en) 2005-07-19 2009-12-08 Hussmann Corporation Refrigeration system with mechanical subcooling
JP2010085001A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Refrigerating device
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577390A (en) * 1994-11-14 1996-11-26 Carrier Corporation Compressor for single or multi-stage operation
US5626027A (en) * 1994-12-21 1997-05-06 Carrier Corporation Capacity control for multi-stage compressors
EP1654504A1 (en) * 2003-07-14 2006-05-10 Carrier Corporation Refrigerant compression system with selective subcooling
EP1722173A2 (en) * 2005-05-10 2006-11-15 Hussmann Corporation Two-Stage linear compressor
EP1722173A3 (en) * 2005-05-10 2007-09-19 Hussmann Corporation Two-Stage linear compressor
EP1739372A2 (en) * 2005-06-24 2007-01-03 Hussmann Corporation Two stage linear compressor
EP1739372A3 (en) * 2005-06-24 2008-02-27 Hussmann Corporation Two stage linear compressor
US7478539B2 (en) 2005-06-24 2009-01-20 Hussmann Corporation Two-stage linear compressor
US7628027B2 (en) 2005-07-19 2009-12-08 Hussmann Corporation Refrigeration system with mechanical subcooling
JP2010085001A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Refrigerating device
JP2010133606A (en) * 2008-12-03 2010-06-17 Denso Corp Ejector type refrigerating cycle

Similar Documents

Publication Publication Date Title
US10378539B2 (en) System including high-side and low-side compressors
JP4658347B2 (en) Supercritical vapor compression refrigeration cycle
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
WO2001022008A1 (en) Multi-stage compression refrigerating device
JP5014880B2 (en) Single screw multistage compressor and refrigeration / cooling system using the same
JP2701658B2 (en) Air conditioner
JP2000087892A (en) Two-stage compressor and air conditioner
CN107191372B (en) Rotary compressor and refrigerating device with same
JP2000054975A (en) Two-stage compressor
JP2003121018A (en) Refrigerating apparatus
JPH02230995A (en) Compressor for heat pump and operating method thereof
JPH03267592A (en) Hermetic rotary compressor
KR20060030521A (en) Scroll-type fluid machine
CN207004814U (en) Rotary compressor and there is its refrigerating plant
JP3966547B2 (en) Screw-type multistage compressor switchable between multistage compression and single-stage compression, and refrigeration / cooling system using the same
JPH03260391A (en) Closed type rotary compressor
JP2012093017A (en) Refrigerating cycle device
JP2007113447A (en) Expander integrated compressor and refrigeration cycle device
JPH02133757A (en) Two-stage compression refrigerating cycle
JP5330776B2 (en) Multistage compressor
JPH0544678A (en) Sealed type rotary compressor
CN219199534U (en) Oilless cascade refrigeration system
JPH10196568A (en) Compressor and air conditioner
JPH086699B2 (en) Hermetic rotary compressor
JPH0518613A (en) Device of refri gerating cycle