JPH0518613A - Device of refri gerating cycle - Google Patents

Device of refri gerating cycle

Info

Publication number
JPH0518613A
JPH0518613A JP3172458A JP17245891A JPH0518613A JP H0518613 A JPH0518613 A JP H0518613A JP 3172458 A JP3172458 A JP 3172458A JP 17245891 A JP17245891 A JP 17245891A JP H0518613 A JPH0518613 A JP H0518613A
Authority
JP
Japan
Prior art keywords
gas
compressor
refrigerant
refrigeration cycle
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3172458A
Other languages
Japanese (ja)
Other versions
JP2646894B2 (en
Inventor
Yoshihiro Tanabe
義浩 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17245891A priority Critical patent/JP2646894B2/en
Publication of JPH0518613A publication Critical patent/JPH0518613A/en
Application granted granted Critical
Publication of JP2646894B2 publication Critical patent/JP2646894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To secure sufficiently a room cooling operation and space heating capability by providing a plurality of pouring-in ports that are connected to one of the compression chambers of a compressor from the piping of an economizer. CONSTITUTION:During the room cooling operation the heat exchanger 4 on the side of use is used as an evaporator and the heat exhchanger 8 on the side of no using as a condenser by switching a four-way valve 3. When the diameter of the coolant pour-in port that is most suitable for rated operation is used in low speed operation, the gas coolant that is poured in from a gas separator 6 is excessive in comparison with the case of rated operation so that diameters 13a, 13c of the pour-in diameter that are small are used. Solenoids 11a, 11b are, therefore, open and solenoids 11b, 11c are closed. During the rated operation diameters of coolant pour-in, 13b, 13d are used which are suitable for this operation. Therefore, solenoid valves 11a, 11c are closed and 11b, 11d are open. In the case of high speed operation, the volume of the coolant that is poured in is short as compared with the case of rated drive so that two large and small pour-in ports are used simultaneously. Therefore, the solenoid valve 11 is fully open.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、インバータ駆動イン
ジェクション圧縮機を備えた冷凍サイクル装置の高効率
化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus having an injection compressor driven by an inverter and having high efficiency.

【0002】[0002]

【従来の技術】図6は、例えば特開昭62−23364
5号公報で示された、従来のエコノマイザ付ガスインジ
ェクション式冷凍サイクルを使用した空気調和装置であ
り、非利用側熱交換器(室外側熱交換器)8、圧縮機
1、利用側熱交換器(室内側熱交換器)4、第1減圧器
5、冷媒を気相と液相に分離する気液分離器6及び、第
2減圧器7をこの順序に接続して構成する冷媒回路、上
記気液分離器6の気相部と上記圧縮機1の中間圧領域を
接続するエコノマイザ配管10を備え、この配管10の
長さは、冷房、暖房の能力増加、成績係数増加がモリエ
ル線図で決まる値よりも大きくなるような値に設定する
ようにした冷凍サイクル装置である。図7にスクロール
式ガスインジェクション圧縮機を備えたときの冷媒回路
の構成図を示している。スクロール式圧縮機1は同形状
の圧縮室1a、1bがあり、エコノマイザ配管10a、
10bから各圧縮室1a、1bごとに冷媒注入口13
a、13bを設けている。
2. Description of the Related Art FIG. 6 shows, for example, Japanese Unexamined Patent Publication No. 62-23364.
It is an air conditioner using the conventional gas injection type refrigeration cycle with an economizer, which is disclosed in Japanese Patent No. 5 publication, and includes a non-use side heat exchanger (outdoor heat exchanger) 8, a compressor 1, a use side heat exchanger. (Indoor heat exchanger) 4, first pressure reducer 5, gas-liquid separator 6 for separating the refrigerant into a gas phase and a liquid phase, and a second pressure reducer 7 are connected in this order to form a refrigerant circuit, An economizer pipe 10 that connects the gas phase portion of the gas-liquid separator 6 and the intermediate pressure region of the compressor 1 is provided. The length of this pipe 10 is the Mollier diagram showing that the cooling and heating capacity increases and the coefficient of performance increases. This is a refrigeration cycle device that is set to a value that is larger than the determined value. FIG. 7 shows a configuration diagram of a refrigerant circuit provided with a scroll gas injection compressor. The scroll compressor 1 has compression chambers 1a and 1b of the same shape, and the economizer pipe 10a,
Refrigerant inlet 13 for each compression chamber 1a, 1b from 10b
a and 13b are provided.

【0003】次に動作の説明をする。まず暖房運転時の
動作について説明する。圧縮機1で圧縮された高温高圧
のガス冷媒は吐出配管2から四方弁3を経て利用側熱交
換器4へ導かれ、ここでガス冷媒は凝縮し液化する。つ
まり利用側熱交換器4は凝縮器となる。この際凝縮熱を
利用側熱交換器4より放出し、暖房運転を行う。その後
液冷媒は第1減圧器5を通り、低温中圧の気液二相のガ
ス冷媒になり、気液分離器6に導かれる。ここで気相と
液相に分離した冷媒の液相のみが第2減圧器7を通り、
ここで低温低圧の気液二相のになった冷媒は非利用側熱
交換器8へ導かれ、ここで気液二相のガス冷媒は、外気
から熱をもらい蒸発しガス化する。つまり非利用側熱交
換器8は蒸発器となる。その後、アキュムレータ9を通
り圧縮機1の吸入口へ導かれる。さらに、気液分離器内
のガス冷媒は、エコノマイザ配管10を通り圧縮機1の
圧縮室内が気液分離器圧力のなるまで冷媒が注入する。
したがって、圧縮機1から吐出された冷媒の循環量は圧
縮機1へ吸入される冷媒循環量より、気液分離器から注
入されるガス冷媒量だけ増加することになる。
Next, the operation will be described. First, the operation during heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is guided from the discharge pipe 2 through the four-way valve 3 to the utilization side heat exchanger 4, where the gas refrigerant is condensed and liquefied. That is, the utilization side heat exchanger 4 becomes a condenser. At this time, the heat of condensation is released from the heat exchanger 4 on the utilization side to perform the heating operation. After that, the liquid refrigerant passes through the first pressure reducer 5, becomes a low-temperature medium-pressure gas-liquid two-phase gas refrigerant, and is guided to the gas-liquid separator 6. Here, only the liquid phase of the refrigerant separated into the gas phase and the liquid phase passes through the second pressure reducer 7,
The low-temperature low-pressure gas-liquid two-phase refrigerant is guided to the non-use side heat exchanger 8, where the gas-liquid two-phase gas refrigerant receives heat from the outside air to evaporate and gasify. That is, the non-use side heat exchanger 8 becomes an evaporator. Then, it is guided to the suction port of the compressor 1 through the accumulator 9. Further, the gas refrigerant in the gas-liquid separator is injected through the economizer pipe 10 until the pressure in the compression chamber of the compressor 1 reaches the gas-liquid separator pressure.
Therefore, the circulation amount of the refrigerant discharged from the compressor 1 is larger than the circulation amount of the refrigerant sucked into the compressor 1 by the amount of the gas refrigerant injected from the gas-liquid separator.

【0004】次に、冷房運転時の動作について説明す
る。この場合、四方弁3を切り換えることにより、利用
側熱交換器4を蒸発器、非利用側熱交換器8を凝縮器と
して使用する。以降の動作は暖房運転時の動作と同様な
のでここでは説明を省略する。
Next, the operation during the cooling operation will be described. In this case, by switching the four-way valve 3, the use side heat exchanger 4 is used as an evaporator and the non-use side heat exchanger 8 is used as a condenser. Since the subsequent operation is the same as the operation during the heating operation, the description is omitted here.

【0005】また実開昭63−150096号公報は多
気筒圧縮機を使用した空気調和装置であり、多気筒圧縮
機の各圧縮室に各々ガスインジェクションポートを設け
ている。また、各圧縮室のガスインジェクションポート
に電磁弁を設け電磁弁の開閉により能力制御を行ってい
る。
Japanese Utility Model Laid-Open No. 63-150096 is an air conditioner using a multi-cylinder compressor, and each compression chamber of the multi-cylinder compressor is provided with a gas injection port. Further, a solenoid valve is provided at the gas injection port of each compression chamber to control the capacity by opening and closing the solenoid valve.

【0006】また特開昭55−20370号公報は、多
気筒圧縮機を使用した空気調和装置であり、多気筒圧縮
機の各圧縮室に各々液インジェクションポートを設けて
いる。また、各圧縮室の吸入口と各圧縮室の液インジェ
クションポートに電磁弁を設け電磁弁の開閉により能力
制御を行っている。
Further, Japanese Patent Laid-Open No. 55-20370 discloses an air conditioner using a multi-cylinder compressor, in which each compression chamber of the multi-cylinder compressor is provided with a liquid injection port. Further, a solenoid valve is provided at the suction port of each compression chamber and the liquid injection port of each compression chamber to control the capacity by opening and closing the solenoid valve.

【0007】また特開昭55−14935号公報は2つ
のインジェクションポートを設けたロータリ式圧縮機で
あり第1のポートをガスインジェクションを第2のポー
トを液インジェクションに使用している。
Japanese Laid-Open Patent Publication No. 55-14935 discloses a rotary compressor provided with two injection ports, which uses a first port for gas injection and a second port for liquid injection.

【0008】また特開昭59−147955号公報は2
つのインジェクションポートを設け、各気液分離器から
圧縮機へガスインジェクションさせる回路を設けてい
る。
Further, Japanese Patent Application Laid-Open No. 59-147955 discloses 2
One injection port is provided, and a circuit for gas injection from each gas-liquid separator to the compressor is provided.

【0009】[0009]

【発明が解決しようとする課題】従来の冷凍サイクル装
置は以上の様に構成されているので、インバータ駆動冷
凍サイクル装置として使用する場合、圧縮機1を低速運
転を行うと、気液分離器6からエコノマイザ配管10を
通り、圧縮機1の圧縮室へ注入される冷媒量は過剰にな
り気液分離器6へ逆流が生じる。また高速運転時は注入
される冷媒量が不足する。この注入冷媒量不足を対策す
るため、注入口径を拡大しようとしても構造的な制約に
より不可能であった。これらの事から、十分に暖房・冷
房能力が得られず、かつ成績係数が低下するという問題
点があった。
Since the conventional refrigeration cycle apparatus is constructed as described above, when the compressor 1 is operated at a low speed when used as an inverter-driven refrigeration cycle apparatus, the gas-liquid separator 6 is used. The amount of the refrigerant injected into the compression chamber of the compressor 1 through the economizer pipe 10 becomes excessive and a backflow occurs to the gas-liquid separator 6. In addition, the amount of injected refrigerant is insufficient during high-speed operation. Even if an attempt is made to increase the injection port diameter in order to cope with this shortage of the injected refrigerant amount, it has been impossible due to structural restrictions. For these reasons, there was a problem that heating and cooling capacity could not be obtained sufficiently and the coefficient of performance decreased.

【0010】また、実開昭63−150096号公報
は、各圧縮室にガスインジェクションを行うポートが一
つしか設けていないので、特開昭62−233645号
公報と同様インバータ駆動の圧縮機として使用すると、
運転速度の変化に伴い最適の冷媒量をインジェクション
することができず、十分な暖房・冷房能力が得られず、
かつ成績係数が低下する問題点があった。
In Japanese Utility Model Laid-Open No. 63-150096, since each compression chamber has only one port for gas injection, it is used as an inverter-driven compressor as in Japanese Patent Laid-Open No. 62-233645. Then,
Due to changes in operating speed, it was not possible to inject the optimum amount of refrigerant, and sufficient heating / cooling capacity could not be obtained.
Moreover, there was a problem that the coefficient of performance decreased.

【0011】さらに、特開昭55−20370号公報
は、能力制御をロータリ式の複数のシリンダ圧縮機を運
転切り換え及びインジェクションの有、無によって行っ
ており、段階的な能力変化しか行えず、十分な快適性が
得られない問題点があった。
Further, in Japanese Patent Laid-Open No. 55-20370, the capacity control is performed by switching the operation of a plurality of rotary cylinder compressors and with or without injection, so that only a stepwise capacity change can be performed. There was a problem that the comfortable comfort could not be obtained.

【0012】また、特開昭59−147955号公報
は、各圧縮室に液インジェクションを行うポートが一つ
しか設けていない。そのため、室内・室外温度等の変化
により、空調負荷が変化し凝縮圧力・蒸発圧力が変動す
ると、液インジェクション量が変化する。この時、イン
ジェクション不足の場合は、冷房・暖房能力が減少し、
インジェクション過剰になると、圧縮機は液圧縮運転状
態になり、圧縮機が停止し、さらに圧縮機破損につなが
る危険性があるという問題点があった。
In Japanese Patent Laid-Open No. 59-147955, only one port for liquid injection is provided in each compression chamber. Therefore, when the air-conditioning load changes and the condensing pressure / evaporating pressure fluctuates due to changes in indoor / outdoor temperature, etc., the liquid injection amount changes. At this time, if the injection is insufficient, the cooling / heating capacity decreases,
If the injection becomes excessive, there is a problem that the compressor is in a liquid compression operation state, the compressor stops, and there is a risk of damage to the compressor.

【0013】また、特開昭55−14935号公報は、
能力増加を目的にガスインジェクション、吐出温度の冷
却を目的として液インジェクションをおこなっている。
従って、インジェクションによる能力増加及び効率増加
は1つのインジェクションポートにより行っているた
め、圧縮機をインバータ駆動にし、速度可変で運転する
と、特開昭62−233645号公報と同様、運転速度
の変化に伴い最適の冷媒量をインジェクションすること
ができず、十分な暖房・冷房能力が得られず、かつ成績
係数が低下する問題点があった。また、低速運転を行う
と液インジェクションポートから注入される液冷媒量が
増加し液圧縮運転を行う危険性があり、信頼性に欠ける
問題点があった。
Further, JP-A-55-14935 discloses that
Gas injection is performed to increase the capacity, and liquid injection is performed to cool the discharge temperature.
Therefore, since the capacity increase and the efficiency increase by the injection are performed by one injection port, if the compressor is driven by an inverter and the speed is changed, the operation speed changes in accordance with the change of the operation speed as in JP-A-62-233645. There was a problem that the optimum amount of refrigerant could not be injected, sufficient heating / cooling capacity could not be obtained, and the coefficient of performance decreased. Further, when the low speed operation is performed, the amount of the liquid refrigerant injected from the liquid injection port is increased, and there is a risk of performing the liquid compression operation, and there is a problem of lack of reliability.

【0014】さらに、特開昭55−14935号公報
は、ロータリ式圧縮機に限定しているが、液およびガス
インジェクションを行う場合は、構造的にインジェクシ
ョン時間が長くとれないため、インジェクションポート
径を大きく設ける必要がある。そのため、圧縮室内の無
効容積が増加するため、効率が悪化する。したがって、
インジェクション時間が長くとれるスクロール式圧縮機
を使用した方が、高いインジェクション効果が得られ
る。
Further, Japanese Patent Laid-Open Publication No. 55-14935 is limited to the rotary compressor, but when liquid and gas injection is performed, the injection time is long because the injection time is structurally long. It needs to be large. Therefore, the ineffective volume in the compression chamber increases, and the efficiency deteriorates. Therefore,
Higher injection effect can be obtained by using a scroll compressor that can take a long injection time.

【0015】さらに、特開昭59−147955号公報
は、複数の気液分離器を設け、圧力の異なるガス冷媒を
圧縮機にインジェクションしているので、これをインバ
ータ駆動の圧縮機で運転すると、低速運転時、凝縮圧力
(高圧)と蒸発圧力(低圧)との圧力差が小さくなり、
気液分離器間の圧力がほぼ等しくなるため、気液分離器
が一つだけ設けた場合と効果はほぼ等しくなる。さら
に、インジェクション冷媒の流量制御機構を設けていな
いので、低速運転時はインジェクション冷媒の過剰によ
り、冷媒の逆流が生じる。また、高速運転時はインジェ
クション冷媒の不足により、十分な暖房及び冷房能力が
えられなくなり、また効率の増加も少なくなるという問
題点があった。
Further, in Japanese Patent Laid-Open No. 59-147955, a plurality of gas-liquid separators are provided and gas refrigerants having different pressures are injected into a compressor. Therefore, when this is driven by an inverter-driven compressor, At low speed operation, the pressure difference between the condensation pressure (high pressure) and the evaporation pressure (low pressure) becomes small,
Since the pressures between the gas-liquid separators are almost equal, the effect is almost the same as when only one gas-liquid separator is provided. Further, since the flow rate control mechanism of the injection refrigerant is not provided, the reverse flow of the refrigerant occurs due to the excess of the injection refrigerant during the low speed operation. Further, during high-speed operation, there is a problem that sufficient heating and cooling capacity cannot be obtained due to the shortage of injection refrigerant, and the increase in efficiency is also small.

【0016】本発明は、インバータ駆動ガスインジェク
ション式冷凍サイクル装置において低速運転時及び高速
運転時に十分に冷房運転や暖房能力が確保でき、かつ成
績係数の高い冷凍サイクル装置を提供することを目的と
する。
An object of the present invention is to provide a refrigeration cycle device having a high coefficient of performance, which can ensure sufficient cooling operation and heating capacity during low speed operation and high speed operation in an inverter driven gas injection type refrigeration cycle device. .

【0017】[0017]

【課題を解決するための手段】この発明に係る請求項1
の冷凍サイクル装置は、圧縮機、凝縮器、第1減圧器、
気液分離器(エコノマイザ)、及び第2減圧器、蒸発器
をこの順序に接続した冷凍サイクルと、気液分離器の気
相部と前記圧縮機の中間圧領域を接続するエコノマイザ
配管とを備えた冷凍サイクル装置において、前記エコノ
マイザ配管から前記圧縮機の一つの圧縮室へ接続される
複数個の注入口を備える。
[Means for Solving the Problems] Claim 1 according to the present invention
The refrigeration cycle device includes a compressor, a condenser, a first pressure reducer,
A gas-liquid separator (economizer), a second decompressor, and a refrigeration cycle in which an evaporator is connected in this order, and an economizer pipe connecting the gas phase part of the gas-liquid separator and the intermediate pressure region of the compressor. The refrigeration cycle apparatus further comprises a plurality of inlets connected from the economizer pipe to one compression chamber of the compressor.

【0018】この発明に係る請求項2の冷凍サイクル装
置は、請求項1の冷凍サイクル装置において、圧縮機の
一つの圧縮室へ接続される複数個の注入口の口径を異な
るようにした。
A refrigeration cycle apparatus according to a second aspect of the present invention is the refrigeration cycle apparatus according to the first aspect, wherein a plurality of inlets connected to one compression chamber of the compressor have different diameters.

【0019】[0019]

【作用】この発明における請求項1の冷凍サイクル装置
は、複数個の注入口により、注入断面積が大きくとれ多
量の冷媒を圧縮室に注入することができる。
In the refrigeration cycle apparatus according to the first aspect of the present invention, the plurality of inlets makes it possible to inject a large amount of refrigerant with a large injection cross-sectional area into the compression chamber.

【0020】この発明における請求項2の冷凍サイクル
装置は、複数個の注入口の口径を異なるようにしたこと
により、注入口の数を少なくすることができる。
In the refrigeration cycle apparatus according to the second aspect of the present invention, the number of inlets can be reduced by making the diameters of the plurality of inlets different.

【0021】[0021]

【実施例】【Example】

実施例1.図1はエコノマイザ付ガスインジェクション
式冷凍サイクルを使用した冷凍サイクル装置の概略図で
あり、非利用側熱交換器8、圧縮機1、利用側熱交換器
4、第1減圧器5、冷媒を気相と液相に分離する気液分
離器6及び、第2減圧器7をこの順序に接続して構成す
る冷媒回路、上記気液分離器6の気相部と上記圧縮機の
中間圧領域を接続するエコノマイザ配管10を備えてい
る。図2にスクロール式ガスインジェクション圧縮機を
備えたときの冷媒回路の構成図を示している。スクロー
ル式圧縮機は二つの圧縮室があり、エコノマイザ配管か
ら各圧縮室ごとに注入口径の異なる2個の冷媒注入口1
3を設け、途中に逆止弁12と電磁弁11を設けてい
る。また、冷媒注入口13aと13cの口径は、13b
と13dより小さくしてある。
Example 1. FIG. 1 is a schematic diagram of a refrigeration cycle apparatus using a gas injection type refrigeration cycle with an economizer, in which a non-use side heat exchanger 8, a compressor 1, a use side heat exchanger 4, a first pressure reducer 5 and a refrigerant are vaporized. A gas-liquid separator 6 for separating into a liquid phase and a liquid phase, and a refrigerant circuit configured by connecting a second pressure reducer 7 in this order, an intermediate pressure region of the gas phase portion of the gas-liquid separator 6 and the compressor. An economizer pipe 10 for connection is provided. FIG. 2 shows a configuration diagram of a refrigerant circuit provided with a scroll gas injection compressor. The scroll compressor has two compression chambers, and two refrigerant inlets 1 with different inlet diameters for each compression chamber from the economizer pipe.
3, a check valve 12 and a solenoid valve 11 are provided in the middle. Further, the diameters of the refrigerant inlets 13a and 13c are 13b.
And smaller than 13d.

【0022】次に暖房運転時の動作について説明する。
圧縮機1で圧縮された高温高圧のガス冷媒は吐出配管2
から四方弁3を経て利用側熱交換器4へ導かれ、ここで
ガス冷媒は凝縮し液化する。つまり利用側熱交換器4は
凝縮器となる。この際凝縮熱を利用側熱交換器4より放
出し、暖房運転を行う。その後液冷媒は第1減圧器5を
通り、低温中圧の気液二相のガス冷媒になり、気液分離
器6に導かれる。ここで気相と液相に分離した冷媒の液
相のみが第2減圧器7を通り、ここで低温低圧の気液二
相のになった冷媒は非利用側熱交換器8へ導かれ、ここ
で気液二相のガス冷媒は、外気から熱をもらい蒸発しガ
ス化する。つまり非利用側熱交換器8は蒸発器となる。
その後、アキュムレータ9を通り圧縮機1へ導かれる。
さらに、気液分離器6内のガス冷媒は、エコノマイザ配
管10を通り圧縮機1の圧縮室内が気液分離器圧力のな
るまで冷媒が注入する。したがって、圧縮機1から吐出
された冷媒の循環量は圧縮機1へ吸入される冷媒循環量
より、気液分離器6から注入されるガス冷媒だけ増加す
ることになる。
Next, the operation during the heating operation will be described.
The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged through the discharge pipe 2
Through the four-way valve 3 to the utilization side heat exchanger 4, where the gas refrigerant is condensed and liquefied. That is, the utilization side heat exchanger 4 becomes a condenser. At this time, the heat of condensation is released from the heat exchanger 4 on the utilization side to perform the heating operation. After that, the liquid refrigerant passes through the first pressure reducer 5, becomes a low-temperature medium-pressure gas-liquid two-phase gas refrigerant, and is guided to the gas-liquid separator 6. Here, only the liquid phase of the refrigerant separated into the gas phase and the liquid phase passes through the second pressure reducer 7, and the low-temperature low-pressure gas-liquid two-phase refrigerant is guided to the non-use side heat exchanger 8. Here, the gas-liquid two-phase gas refrigerant receives heat from the outside air and evaporates to be gasified. That is, the non-use side heat exchanger 8 becomes an evaporator.
Then, it is guided to the compressor 1 through the accumulator 9.
Further, the gas refrigerant in the gas-liquid separator 6 is injected through the economizer pipe 10 until the pressure in the compression chamber of the compressor 1 reaches the gas-liquid separator pressure. Therefore, the circulation amount of the refrigerant discharged from the compressor 1 is larger than the circulation amount of the refrigerant sucked into the compressor 1 by the amount of the gas refrigerant injected from the gas-liquid separator 6.

【0023】次に、冷房運転時の動作について説明す
る。この場合、四方弁3を切り換えることにより、利用
側熱交換器4を蒸発器、非利用側熱交換器8を凝縮器と
使用する。以降の動作は暖房運転時の動作と同様なので
ここでは説明を省略する。
Next, the operation during the cooling operation will be described. In this case, by switching the four-way valve 3, the use side heat exchanger 4 is used as an evaporator and the non-use side heat exchanger 8 is used as a condenser. Since the subsequent operation is the same as the operation during the heating operation, the description is omitted here.

【0024】低速運転で定格運転に最適な冷媒注入口の
口径を使用した場合、前記運転動作の説明において、気
液分離器6から注入されるガス冷媒は定格運転に比べ過
剰になるため、この場合注入口径の小さいもの13a、
13cを使用する。従って電磁弁11a、11dは開、
11b、11cは閉状態にある。定格運転時は、この運
転に適した冷媒注入口径のもの13b、13dを使用す
る。従って電磁弁11a、11cは閉、11b、11d
は開状態にある。高速運転の場合は、定格運転時に比べ
注入冷媒量が不足するため、大小2つの注入口を同時に
使用する制御をおこなう。従って電磁弁11は全て開の
状態にある。
When the optimum diameter of the refrigerant injection port for the rated operation is used in the low speed operation, the gas refrigerant injected from the gas-liquid separator 6 becomes excessive in comparison with the rated operation in the above description of the operation operation. In case of small injection port 13a,
Use 13c. Therefore, the solenoid valves 11a and 11d are opened,
11b and 11c are in a closed state. During the rated operation, the refrigerant injection port diameters 13b and 13d suitable for this operation are used. Therefore, the solenoid valves 11a, 11c are closed, 11b, 11d
Is open. In the case of high-speed operation, the amount of injected refrigerant is insufficient as compared with the case of rated operation, so control is performed to use two large and small injection ports at the same time. Therefore, the solenoid valve 11 is all open.

【0025】なお、冷媒注入口径と中間圧力(気液分離
器内圧力)の関係を図3に示しておく。
The relationship between the refrigerant inlet diameter and the intermediate pressure (pressure inside the gas-liquid separator) is shown in FIG.

【0026】実施例2.実施例1では、気液分離器から
のガス冷媒量を、運転周波数ごとに注入口径の異なる注
入口により制御を行ったが、同一口径の複数個の注入口
を設けて、制御を行っても、注入口の数は増えるが、そ
のほかは同様の効果が得られる。
Example 2. In Example 1, the amount of gas refrigerant from the gas-liquid separator was controlled by the inlets having different inlet diameters for each operating frequency. However, even if a plurality of inlets having the same diameter are provided and controlled. , The number of injection ports is increased, but other similar effects can be obtained.

【0027】実施例3.実施例1では、圧縮室内冷媒の
逆流を防止するための逆止弁を気液分離器と注入冷媒量
制御用の電磁弁との間に設けたが、圧縮室内の無効容積
を少なくするように注入口の直前に設けてもよい。図1
にスクロール式圧縮機を使用した時の冷凍サイクル装置
の例を示した。
Example 3. In the first embodiment, the check valve for preventing the reverse flow of the refrigerant in the compression chamber is provided between the gas-liquid separator and the solenoid valve for controlling the amount of injected refrigerant, but the ineffective volume in the compression chamber is reduced. It may be provided just before the inlet. Figure 1
An example of a refrigeration cycle device using a scroll compressor is shown in Fig.

【0028】なお、本実施例では注入口を複数個で説明
したが、例えば3個、4個でも上記実施例と同様の効果
を奏する。
Although a plurality of injection ports have been described in the present embodiment, the same effect as in the above embodiment can be obtained with three or four injection ports, for example.

【0029】[0029]

【発明の効果】この発明は次に記載する効果を奏する。
請求項1の冷凍サイクル装置は、圧縮機、凝縮器、第1
減圧器、気液分離器(エコノマイザ)、及び第2減圧
器、蒸発器をこの順序に接続した冷凍サイクルと、気液
分離器の気相部と前記圧縮機の中間圧領域を接続するエ
コノマイザ配管とを備えた冷凍サイクル装置において、
前記エコノマイザ配管から前記圧縮機の一つの圧縮室へ
接続される複数個の注入口を備えた構成にしたので、圧
縮機の構造上の制約を受けずに、冷媒注入量を増加でき
る。
The present invention has the following effects.
The refrigeration cycle apparatus according to claim 1 includes a compressor, a condenser, and a first
A refrigeration cycle in which a pressure reducer, a gas-liquid separator (economizer), a second pressure reducer, and an evaporator are connected in this order, and an economizer pipe connecting the gas phase part of the gas-liquid separator and the intermediate pressure region of the compressor. In a refrigeration cycle device equipped with
Since the structure is provided with a plurality of inlets connected from the economizer pipe to one compression chamber of the compressor, the refrigerant injection amount can be increased without being restricted by the structure of the compressor.

【0030】請求項2の冷凍サイクル装置は、請求項1
の冷凍サイクル装置において、圧縮機の一つの圧縮室へ
接続される複数個の注入口の口径を異なるようにした構
成にしたので、注入口の数を少なくすることができる。
The refrigeration cycle apparatus of claim 2 is the same as that of claim 1.
In the refrigeration cycle apparatus, since the plurality of inlets connected to one compression chamber of the compressor have different diameters, the number of inlets can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による冷凍サイクル装置の
構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.

【図2】この発明の実施例1による冷凍サイクル装置の
スクロール圧縮機を使用した時の構成図である。
FIG. 2 is a configuration diagram when a scroll compressor of the refrigeration cycle device according to the first embodiment of the present invention is used.

【図3】この発明の実施例1による冷凍サイクル装置の
冷媒注入口径と中間圧力の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a refrigerant inlet diameter and an intermediate pressure of the refrigeration cycle device according to Embodiment 1 of the present invention.

【図4】この発明の実施例1による冷凍サイクル装置の
モリエル線図である。
FIG. 4 is a Mollier diagram of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.

【図5】この発明の実施例3による冷凍サイクル装置の
構成図である。
FIG. 5 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図6】従来の冷凍サイクル装置の構成図である。FIG. 6 is a configuration diagram of a conventional refrigeration cycle apparatus.

【図7】従来の冷凍サイクル装置のスクロール圧縮機を
使用した時の構成図である。
FIG. 7 is a configuration diagram when a scroll compressor of a conventional refrigeration cycle device is used.

【符号の説明】[Explanation of symbols]

1 圧縮機 4 利用側熱交換器 5 第1減圧器 6 気液分離器 7 第2減圧器 8 非利用側熱交換器 10 エコノマイザ配管 13a、13b 注入口 1 compressor 4 User side heat exchanger 5 First decompressor 6 gas-liquid separator 7 Second decompressor 8 Non-use side heat exchanger 10 Economizer piping 13a, 13b inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、第1減圧器、気液分離
器(エコノマイザ)、及び第2減圧器、蒸発器をこの順
序に接続した冷凍サイクルと、気液分離器の気相部と前
記圧縮機の中間圧領域を接続するエコノマイザ配管とを
備えた冷凍サイクル装置において、前記エコノマイザ配
管から前記圧縮機の一つの圧縮室へ接続される複数個の
注入口を備えたことを特徴とする冷凍サイクル装置。
1. A refrigeration cycle in which a compressor, a condenser, a first pressure reducer, a gas-liquid separator (economizer), a second pressure reducer, and an evaporator are connected in this order, and a gas phase part of the gas-liquid separator. In a refrigeration cycle apparatus comprising: and an economizer pipe connecting the intermediate pressure region of the compressor, a plurality of inlets connected from the economizer pipe to one compression chamber of the compressor are provided. Refrigeration cycle device.
【請求項2】 圧縮機の一つの圧縮室へ接続される複数
個の注入口の口径を異なるようにしたことを特徴とする
冷凍サイクル装置。
2. A refrigeration cycle apparatus, wherein a plurality of inlets connected to one compression chamber of the compressor have different diameters.
JP17245891A 1991-07-12 1991-07-12 Refrigeration cycle device Expired - Lifetime JP2646894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17245891A JP2646894B2 (en) 1991-07-12 1991-07-12 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17245891A JP2646894B2 (en) 1991-07-12 1991-07-12 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH0518613A true JPH0518613A (en) 1993-01-26
JP2646894B2 JP2646894B2 (en) 1997-08-27

Family

ID=15942370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17245891A Expired - Lifetime JP2646894B2 (en) 1991-07-12 1991-07-12 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2646894B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
WO2009147852A1 (en) * 2008-06-03 2009-12-10 ダイキン工業株式会社 Freezing device
JP2010002116A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Refrigerating device
EP2166229A1 (en) * 2007-06-11 2010-03-24 Daikin Industries, Ltd. Compressor, and refrigerating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
EP2166229A1 (en) * 2007-06-11 2010-03-24 Daikin Industries, Ltd. Compressor, and refrigerating apparatus
EP2166229A4 (en) * 2007-06-11 2014-12-10 Daikin Ind Ltd Compressor, and refrigerating apparatus
WO2009147852A1 (en) * 2008-06-03 2009-12-10 ダイキン工業株式会社 Freezing device
JP2010002116A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
JP2646894B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
WO2005061970A1 (en) Refrigerator
JP2012154616A (en) Air conditioner
JP2701658B2 (en) Air conditioner
JP2001235245A (en) Freezer
JP3903409B2 (en) Two-stage compression refrigerator
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP2001056156A (en) Air conditioning apparatus
JP6735896B2 (en) Refrigeration cycle equipment
JP2646894B2 (en) Refrigeration cycle device
JP2000346474A (en) Refrigerator
KR100470476B1 (en) Cooling system
CN111486609B (en) Air conditioning system and control method
CN210425610U (en) Refrigeration system
JP3723244B2 (en) Air conditioner
JP2001349629A (en) Heat pump device
JP2001066007A (en) Air conditioner
CN221099026U (en) Refrigerating system and refrigerator
JP2001201194A (en) Cold storage system with deep freezer
CN114087798B (en) Control method of direct expansion type fresh air conditioning system
CN215808984U (en) Air conditioning system
KR100389640B1 (en) System for controlling air conditioner and method thereof
JP2646914B2 (en) Refrigeration equipment
JPH04263742A (en) Refrigerator
CN108592435B (en) Refrigerating system capable of realizing variable flow single-stage compression cycle and double-stage compression cycle
KR100510849B1 (en) Condensation Structure of Refrigeration System

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080509

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15