JP4300712B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4300712B2
JP4300712B2 JP2001073278A JP2001073278A JP4300712B2 JP 4300712 B2 JP4300712 B2 JP 4300712B2 JP 2001073278 A JP2001073278 A JP 2001073278A JP 2001073278 A JP2001073278 A JP 2001073278A JP 4300712 B2 JP4300712 B2 JP 4300712B2
Authority
JP
Japan
Prior art keywords
compression element
refrigerator
passage
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001073278A
Other languages
Japanese (ja)
Other versions
JP2001330360A (en
Inventor
和広 遠藤
弘勝 香曽我部
健一 大島
茂也 川南
明彦 石山
功 早瀬
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001073278A priority Critical patent/JP4300712B2/en
Publication of JP2001330360A publication Critical patent/JP2001330360A/en
Application granted granted Critical
Publication of JP4300712B2 publication Critical patent/JP4300712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の蒸発器、圧縮要素を有する圧縮機を備えた冷蔵庫及び冷凍空調装置に関するものである。
【0002】
【従来の技術】
家庭の電気代に占める冷蔵庫の割合は大きいので、家庭の電気代を低減するためには冷蔵庫の消費電力を低減することが重要な課題となっている。これを解決する技術として、蒸発温度が異なる2個の蒸発器、2個の圧縮要素を有し、2個の蒸発器の各出口を2個の圧縮要素の各吸入通路にそれぞれ接続した冷蔵庫が考えられている。このような従来技術の一例は、特開平5−223368号公報に開示されている。
【0003】
上記従来技術に開示された冷蔵庫は、蒸発温度の異なる、冷凍室を冷却する冷凍室蒸発器と冷蔵室を冷却する冷蔵室蒸発器を並列関係に接続し、2段圧縮を行う2個の圧縮要素を備えている。低段圧縮要素の吸入通路は、冷凍室蒸発器出口と接続し、低段圧縮要素の吐出通路は、冷蔵室蒸発器出口と合流し、高段圧縮要素の吸入通路と接続し、高段圧縮要素の吐出通路は凝縮器入口と接続している。
【0004】
上記低段圧縮要素は、冷凍室蒸発器から流出したガス冷媒を冷凍室蒸発器の蒸発圧力レベルの低圧から、冷蔵室蒸発器の蒸発圧力レベルの中間圧まで圧縮し、高段圧縮要素は、低段圧縮要素により中間圧まで圧縮されたガス冷媒と、冷蔵室蒸発器から流出したガス冷媒を共に、中間圧から凝縮器の凝縮圧力レベルの高圧まで圧縮するものである。
【0005】
このような従来技術では、冷凍室蒸発器と比較して、蒸発温度が高い冷蔵室蒸発器から流出したガス冷媒を、さらに減圧し低圧から圧縮するのではなく、中間圧から圧縮するものであり、低段圧縮の圧縮動力を低減して、冷蔵庫の消費電力を大幅に低減しようとしている。
【0006】
また、上記のように、冷凍室と冷蔵室に各々の蒸発器をもつ冷蔵庫は、蒸発器1個で、冷凍室と冷蔵室の両方を冷気の強制循環により冷却する冷蔵庫に比べて、冷蔵室蒸発器の蒸発温度を高くすることができるので、冷蔵室への吐出冷気温度を高くでき、湿度を高く維持するものである。
【0007】
【発明が解決しようとする課題】
一般に、冷蔵庫の冷凍室温度は、−18℃以下である一方、冷蔵室温度は、0℃より高い5℃以下であることが求められている。上記の特開平5−223368号公報に開示された従来技術では、2個の圧縮要素と蒸発温度の異なる2個の蒸発器を用いて、冷凍室と冷蔵室を同時に冷却し、大幅な消費電力の低減を図る構成が示されている。
【0008】
しかしながら、上記従来技術による冷凍室と冷蔵室とを並行して冷却する運転では、冷蔵室温度は所定以下であっても、冷凍室温度が所定以上のときに冷凍室を冷却するため、冷蔵室が必要以上に冷却されてしまうという問題があり、冷蔵室内の貯蔵物に悪影響を与えてしまうという点については何ら考慮されていなかった。このような問題を解決するために、冷蔵室の食品が凍結しないように冷蔵室内を温める電気ヒータを設けると、消費電力の増加をもたらしてしまうという問題があった。
【0009】
また、こうした問題を解決するためには、各室を単独で冷却することが必要であるが、このような機能を達成するための圧縮機や冷凍サイクルの構造については、この従来技術では考慮されていなかった。特に、各室を単独に冷却する運転と同時に運転する運転とを切替える場合に効率良く運転させる冷蔵庫の構成について、従来技術では考慮されていなかった。
【0010】
本発明の目的は、複数の貯蔵室を個別に冷却する冷却器を備え効率良く庫内を冷却する冷蔵庫または冷凍空調装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的は、
第1の貯蔵室を冷却する第1の冷却器と、第2の貯蔵室を冷却する第2の冷却器と、第1及び第2の圧縮要素を有する圧縮機と、凝縮器とが接続された冷凍サイクルを備えた冷蔵庫において、
前記第1の圧縮要素からの吐出通路と前記凝縮器の入口とに接続された冷媒管と、
前記凝縮器の出口と第1の冷却器及び第2の冷却器とに接続された冷媒管と、
前記第1の冷却器と前記第1の圧縮要素とに接続された第1の吸入通路と、
前記第2の冷却器と前記第2の圧縮要素とに接続された第2の吸入通路と、
前記第1及び第2の吸入通路とに接続された通路に設けられ前記第1の吸入通路から第2の吸入通路への冷媒の流れを止める第1の弁手段と、
前記第1の圧縮要素からの吐出通路と前記第2の圧縮要素からの吐出通路とに接続された通路に設けられ前記第1の圧縮要素の吐出通路から前記第2の圧縮要素の吐出通路への冷媒の流れを止める第2の弁手段と、
前記第2圧縮要素からの吐出通路と前記第1の吸入通路との接続通路と、
前記第1の冷却器と前記第1の吸入通路とを通る冷媒の流れと前記第2の圧縮要素から前記第1の圧縮要素に流れる冷媒の流れを調節する調節手段を備え、
前記調節手段は、
前記凝縮器と前記第1及び第2の冷却器とを接続する冷媒管上に設けられ前記第1及び第2の冷却器に冷媒管を分岐する分岐部と、
この分岐部と前記第1の冷却器との間の冷媒管上に設けられこの管内の冷媒の流れを調節する第1の調節手段と、
前記第2の圧縮要素からの吐出通路と前記第1の吸入通路との接続通路上に設けられこの通路内の冷媒の流れを調節する第2の調節手段と、
前記第1及び第2の調節手段を調節する制御手段と、
を備え、
前記第2の調節手段と前記第1の吸入通路との接続通路上に設けられた熱交換器と、を備える
ことにより達成される。
【0022】
【発明の実施の形態】
以下、本発明の実施例を図1ないし図21を参照して説明する。
〔実施例 1〕
図1は、本発明の第1の実施例に係る冷蔵庫の冷凍サイクルの概略を示すサイクルの構成図である。図2は、図1に示す実施例の冷凍サイクルを用いた冷蔵庫の概略を示す縦断面図である。図3は、図1に示す実施例の冷凍サイクルに設けられた圧縮機の内部構造を示す縦断面図である。図4は、図3に示した圧縮機部品である第2のシリンダ、仕切り板、第1のシリンダ、副軸受、第1の吐出室カバーの構造を示す斜視図である。図5は、図3に示した圧縮機部品である弁を示す斜視図である。図6は、図3に示した圧縮機部品である主軸受、第2の吐出室副カバー、第2の吐出室主カバーの構造を示す斜視図である。図7は、図3に示した圧縮機のX−X断面の第2のシリンダ部分を示す図である。図8は、図3に示す実施例の圧縮機が2段圧縮を行うときの一回転中の圧縮室圧力と密閉容器内圧力との差を示すグラフである。図9は、図3に示す実施例の圧縮機が単段圧縮を行うときの一回転中の圧縮室圧力と密閉容器内圧力との差を示すグラフである。図10は、図2に示す実施例の冷蔵庫の運転制御フローを示すフローチャートである。
【0023】
図1において、10は圧縮機、40は密閉容器で、密閉容器40内に二つの圧縮要素(低段圧縮要素11、高段圧縮要素12)を有している。本実施の例では、後述するように、これら二つの圧縮要素が直列に接続される場合には、冷凍サイクルを流れる冷媒はこれらの圧縮要素を順に通流して個々の圧縮要素により2回に亙り圧縮される。また、二つの圧縮要素が並列に接続された場合には、サイクルを流れる冷媒は、凝縮から蒸発器を通った後、個々の圧縮要素に分かれて並列に(同時並行に)流入して、個々の圧縮要素で1回圧縮された後吐出され、冷媒通路に沿って合流して流れる。つまり、低段圧縮要素11に流入するとともに高段圧縮要素12にも分かれて流入する。
【0024】
また、本実施の例では、低段圧縮要素11と高段圧縮要素12の押しのけ量は、同等またはほぼ同等に設定されている。
【0025】
11a、11bはそれぞれ低段圧縮要素11の吸入通路、吐出通路で、12a、12bはそれぞれ高段圧縮要素12の吸入通路、吐出通路である。12cは高段圧縮要素12の吸入通路12aを密閉容器40内に連通する密閉容器内圧力形成通路である。
【0026】
13aは吸入側逆止弁で、密閉容器40内に、かつ、低段圧縮要素11の吸入通路11aと高段圧縮要素12の吸入通路12aの間に配置される。高段圧縮要素12の吸入通路12aでのガス冷媒圧力が、低段圧縮要素11の吸入通路11aのガス冷媒圧力より高い場合、弁は閉じた状態となり、高段圧縮要素12の吸入通路12aでのガス冷媒圧力が、低段圧縮要素11の吸入通路11aのガス冷媒圧力より低い場合、弁は開いた状態となり、低段圧縮要素11の吸入通路11a側のガス冷媒が高段圧縮要素12の吸入通路12a側に流入する。
【0027】
13bは吐出側逆止弁で、密閉容器40内に、かつ、低段圧縮要素11の吐出通路11bと高段圧縮要素12の吐出通路12bの間に配置される。高段圧縮要素12の吐出通路12bでのガス冷媒圧力が、低段圧縮要素11の吐出通路11bのガス冷媒圧力より高い場合、弁は閉じた状態となり、高段圧縮要素12の吐出通路12bでのガス冷媒圧力が、低段圧縮要素11の吐出通路11bのガス冷媒圧力より低い場合、弁は開いた状態となり、低段圧縮要素11の吐出通路11b側のガス冷媒が高段圧縮要素12の吐出通路12b側に流入する。
【0028】
高段圧縮要素12の冷媒の吐出通路12bは、凝縮器20の入口に接続される。また、凝縮器20の出口につながる冷媒管路は、二つに分岐され、片方は、減圧装置としての第1のキャピラリ21、冷凍室用蒸発器22、低段圧縮要素11の吸入通路11aと順次接続される。分岐された他方の冷媒管は、第1の電磁弁23、減圧装置としての第2のキャピラリ24、冷蔵室用蒸発器25、高段圧縮要素12の吸入通路12aと順次接続される。
【0029】
電磁弁23は、電圧が印加されることにより弁の開閉作用が行われ冷媒管内部の冷媒の流れを調節するものである。電圧の非通電時は開いた状態で、冷蔵室用蒸発器25への冷媒の流れを通過させ、通電時は閉じた状態で、冷蔵室用蒸発器25への冷媒の流れを阻止する。
【0030】
第1のキャピラリ21は、冷凍室用蒸発器22の出口と低段圧縮要素11の吸入通路11aの間と熱交換可能に接して配置される。また、第2のキャピラリ24は、冷蔵室用蒸発器25の出口と高段圧縮要素12の吸入通路12aの間と熱交換可能に接して配置される。これにより、キャピラリ21、24の冷媒は、減圧しながら冷却されるため、それぞれの蒸発器22、25の入口エンタルピが低下し、蒸発器の冷凍効果を増加させることができる。一方、蒸発器22、25の出口と吸入通路11a、12a間の冷媒は加熱されるため、配管の露付きを防止できる。
【0031】
26は第2の電磁弁、27は中間冷却器で、電磁弁26、中間冷却器27を介して、低段圧縮要素11の吐出通路11bと高段圧縮要素12の吸入通路12aは接続される。
【0032】
第2の電磁弁26は、第1の電磁弁23と同様に電圧をかけることにより弁の開閉作用を行い、非通電時は開いた状態で、低段圧縮要素11の吐出通路11bから高段圧縮要素12の吸入通路12aへのガス冷媒の流れを通過させ、通電時は閉じた状態で、低段圧縮要素11の吐出通路11bから高段圧縮要素12の吸入通路12aへのガス冷媒の流れを阻止する。
【0033】
中間冷却器27は、低段圧縮要素11の吐出通路11bのガス冷媒と空気を熱交換させ、ガス冷媒を冷却する。
【0034】
30は凝縮器ファン、31は冷凍室用蒸発器ファン、32は冷蔵室用蒸発器ファンである。
【0035】
図2に、図1の冷凍サイクルを用いた冷蔵庫の断面概略図を示す。図1と同等部分には同一符号を付す。1は冷蔵庫本体、2は冷凍室、3は冷蔵室、4は冷凍室用蒸発器22の風路形成板、5は冷蔵室用蒸発器25の風路形成板である。6は冷凍室用蒸発器22の除霜用電気ヒータ、7は冷蔵室用蒸発器25の除霜用電気ヒータであり、各々、所定の周期で通電、非通電が行われ、蒸発器の除霜を行う。8は冷凍室2内の温度を検知する温度センサ、9は冷蔵室3内の温度を検知する温度センサである。冷凍室2、冷蔵室3内の矢印は、気流の向きを示す。
【0036】
圧縮機10、凝縮器20、電磁弁23、26、中間冷却器27、凝縮器ファン30は、冷蔵庫本体1の底部に配置され、キャピラリ21、24は冷蔵庫本体1の背面断熱材内に配置(図示せず)される。
【0037】
温度センサ8,9で温度が検知され、これらの出力が冷蔵庫の制御装置101に入力される。制御装置101では、温度センサ8,9の出力に基づいて各貯蔵室2,3の冷却運転の要否を判断して決定する。圧縮機10及び機械室のファン30、各貯蔵室のファン31,32の回転数を設定し、これらの回転数を調節するためインバータ102,103,104,105に指令を与える。同時に、電磁弁23,26に開閉動作の指令を与える。
【0038】
また、制御装置101は、冷蔵庫1に設けられたスイッチやボタン106からの使用者の指令を検知した場合には、温度センサ8,9の出力に係わらず、インバータ102〜105、電磁弁23,26に指令を与えて強制的に冷蔵庫の運転を設定するようにしても良い。このような運転は、使用者が短時間で冷却、冷凍を行いたい場合に適切である。使用者が短時間での冷凍を指令した場合には、冷凍室の冷却能力を増大させるため、冷蔵室用の蒸発器25への冷媒の供給を止めて冷凍室用の蒸発器22のみに冷媒を供給して冷凍室を単独で冷却することとし、2つの圧縮要素11,12に並列に冷媒が流れるように電磁弁23,26を設定する。本実施例では、電磁弁23,26を閉じる。
【0039】
一方、このような短時間の冷却運転が不要である場合、例えば冷凍室内の温度と設定温度との差が小さい場合には、より効率の良い運転をするために、たとえ冷凍室を単独に冷却する場合でも、圧縮要素11,12に順に冷媒が流れる2段圧縮となるように電磁弁23,26を設定しても良い。本実施例の場合には、電磁弁23を閉じ、電磁弁26を開く。ただし、この運転を行う場合、本実施例では圧縮要素11,12の押しのけ量はほぼ同じであるので、低段側の圧縮要素11においては、ほとんど圧縮仕事をしないため、2段圧縮による圧縮機の効率向上が期待できない。そこで、各室単独で冷却運転を行う場合での効率を向上させるために、圧縮要素11,12の押しのけ量を異ならせ圧縮要素12の容積を小さくしても良い。
【0040】
図3は、図1の圧縮機10の縦断面図である。圧縮機10は2シリンダ形ロータリ圧縮機で、密閉容器40内に電動機部と圧縮機構部が収納されている。
【0041】
電動機部は、密閉容器40に焼きばめ等で固定されたステータ41とクランク軸42に固定されたロータ43とで構成されている。
【0042】
圧縮機構部は、図1の低段圧縮要素11と高段圧縮要素12に該当する2個の圧縮要素を有している。高段圧縮要素は、クランク軸42を支持する主軸受44、第2のシリンダ45、仕切り板46、クランク軸42の偏心部42aにかん入されたローラ部52aとベーン部52bからなるローラ52(後出の図7参照)、ベーン部52bの往復運動と揺動運動を可能にするベーン部52bを挟み込む滑動部材54a、54b(後出の図7参照)により構成されている。低段圧縮要素は、前記仕切り板46、第1のシリンダ47、クランク軸42を支持する副軸受48、クランク軸42の偏心部42bにかん入されたローラ部とベーン部(図示せず)からなるローラ53、ローラ53のベーン部の往復運動と揺動運動を可能にするベーン部を挟み込む滑動部材(図示せず)により構成されている。前記主軸受44は、溶接等で密閉容器40に固定されている。
【0043】
クランク軸42の二つの偏心部42a、42bは、互いに回転方向に180°の位相差を有して形成され、ローラ52、53は、クランク軸42の回転にともなって、それぞれのシリンダ45、47内を偏心回転運動するようになっている。また、各ローラ52、53のベーン部は、各シリンダ45、47内を吸入室と圧縮室に区分する働きをしている。クランク軸42の回転にともない、二つの圧縮要素において、180°間隔でガス冷媒の圧縮が交互に行われる。
【0044】
11a’は図1の低段圧縮要素11の吸入通路11aを一部構成する低段圧縮要素吸入管、11b’は図1の低段圧縮要素11の吐出通路11bを一部構成する低段圧縮要素吐出管、12a’は図1の高段圧縮要素12の吸入通路12aを一部構成する高段圧縮要素吸入管、12b’は図1の低段圧縮要素12の吐出通路12bを一部構成する高段圧縮要素吐出管である。
【0045】
49は副軸受48とともに第1の吐出室を形成する第1の吐出室カバー、50、51はそれぞれ主軸受44とともに第1の吐出室を形成する第2の吐出室副カバー、第2の吐出室主カバーである。
【0046】
図4(a)、(b)、(c)、(d)、(e)は、それぞれ、図3に示した圧縮機10の部品である第2のシリンダ45、仕切り板46、第1のシリンダ47、副軸受48、第1の吐出室カバー49を電動機部と反対側から見た斜視図である。
【0047】
図4(a)に示す第2のシリンダ45において、ひょうたん形の空間45mの片方の空間は、ローラ51のベーン部を挟み込む滑動部材54a、54bが組込まれ、他方の空間はベーン部とシリンダとの干渉を防止するための空間である(後出の図7参照)。45eは図1の低段圧縮要素11の吸入通路11aと吸入側逆止弁13aを接続する通路を一部形成する孔、45fは図1の低段圧縮要素11の吐出通路11bと吐出側逆止弁13bを接続する通路を一部形成する孔、45gは図1の高段圧縮要素12の吸入通路12aを一部形成する凹部及び切り欠きである。
【0048】
45uはシリンダ45を主軸受44にボルトで固定するための2個の孔、45vは、仕切り板46、第1のシリンダ47を第2のシリンダ45にボルトで固定するための2個のめねじ孔、45wは、仕切り板46、第1のシリンダ47、副軸受48、第1の吐出室カバー49とともに主軸受44にボルトで締結するための4個の孔である。
【0049】
図4(b)に示す仕切り板46において、46eは図1の低段圧縮要素11の吸入通路11aと吸入側逆止弁13aを接続する通路を一部形成する孔、46fは図1の低段圧縮要素11の吐出通路11bと吐出側逆止弁13bを接続する通路を一部形成する孔、46gは図1の高段圧縮要素12の吸入通路12aを一部形成する孔である。
【0050】
46vは、第1のシリンダ47とともに第2のシリンダ45にボルトで固定するための2個の孔、46wは、第2のシリンダ45、第1のシリンダ47、副軸受48、第1の吐出室カバー49とともに主軸受44にボルトで締結するための4個の孔である。
【0051】
図4(c)に示す第1のシリンダ47において、47mは図4(a)の45mと同等部である。47eは図1の低段圧縮要素11の吸入通路11aを一部形成する切り欠き、47fは図1の低段圧縮要素11の吐出通路11bと吐出側逆止弁13bを接続する通路を一部形成する孔、47gは図1の高段圧縮要素12の吸入通路12aを一部形成する孔である。
【0052】
47vは仕切り板46とともに第2のシリンダ45にボルトで固定するための2個の孔、47wは第2のシリンダ45、仕切り板46、第1のシリンダ47、副軸受48、第1の吐出室カバー49とともに主軸受44にボルトで締結するための4個の孔である。
【0053】
図4(d)に示す副軸受48において、48eは図1の低段圧縮要素11の吸入通路11aを一部形成する孔、48tは低段圧縮要素吐出弁の弁座等を形成するための凹部で、48dは吐出孔、48d’は図5(a)に示すリード弁61、図5(b)に示す弁押さえ62を副軸受48にボルトで固定するためのめねじ孔である。ここでのリード弁61は吐出弁として働く。48fは第1の吐出室カバー49とともに図1の低段圧縮要素11の吐出通路11bを一部構成する凹部で、吐出室を形成し、流路断面積が変化することにより消音器として働く。48f’は図1の低段圧縮要素11の吐出通路11bと吐出側逆止弁13bを接続する通路を一部形成する孔、48gは図1の高段圧縮要素12の吸入通路12aを一部形成する孔である。
【0054】
48wは4個のボルト締結用の孔である。48kは、ローラ53のベーン部の往復運動等を利用した給油ポンプにより、クランク軸42に潤滑油を給油するための給油孔である。
【0055】
図4(e)に示す第1の吐出室カバー49において、49eは図1の低段圧縮要素11の吸入通路11aを一部形成する孔で、図3の低段圧縮要素吸入管11a’と接続され、49fは図1の低段圧縮要素11の吐出通路11bを一部形成する孔で、図3の低段圧縮要素吐出管11b’と接続され、49gは図1の高段圧縮要素12の吸入通路11aを一部形成する孔で、図3の高段圧縮要素吸入管12a’と接続される。49wは、4個のボルト締結用の孔である。60は、給油通路である。
【0056】
図6(a)、(b)、(c)は、それぞれ、図3に示した圧縮機10の部品である主軸受44、第2の吐出室副カバー50、第2の吐出室主カバー51を電動機部側から見た斜視図である。
【0057】
図6(a)に示す主軸受44において、44tは高段圧縮要素吐出弁の弁座等を形成するための凹部で、44dは吐出孔、44d’は前出の図5(a)に示すリード弁61、図5(b)に示す弁押さえ62を主軸受44にボルトで固定するためのめねじ孔である。ここでのリード弁61は吐出弁として働く。
【0058】
44t’は図1に示す吸入側逆止弁13aの弁座等を形成するための凹部で、44eは逆止弁の孔、44e’は前出の図5(a)に示すリード弁61、図5(b)に示す弁押さえ62を主軸受44にボルトで固定するためのめねじ孔である。ここでのリード弁61は逆止弁として働く。すなわち、凹部44t’の空間のガス冷媒圧力が、孔44e内のガス冷媒圧力より高い場合、リード弁は弁座に密着し、弁は閉じた状態となり、凹部44t’の空間のガス冷媒圧力が、孔44e内のガス冷媒圧力より低い場合、リード弁は弁座から浮き、弁は開いた状態となる。
【0059】
44gは図1の高段圧縮要素12の吸入通路12aと吸入側逆止弁13aを接続する通路を一部形成する孔である。44g’は凹部で、第2の吐出室カバー50とともに、孔44gと逆止弁を構成する凹部44t’とを連通する流路を形成する。
【0060】
44t’’は図1に示す吐出側逆止弁13bの弁座等を形成するための凹部で、44fは逆止弁の孔、44f’は前出の図5(a)に示すリード弁61、図5(b)に示す弁押さえ62を主軸受44にボルトで固定するためのめねじ孔である。ここでのリード弁61は逆止弁として働く。すなわち、凹部44t’’の空間のガス冷媒圧力が、孔44f内のガス冷媒圧力より高い場合、リード弁は弁座に密着し、弁は閉じた状態となり、凹部44t’’の空間のガス冷媒圧力が、孔44f内のガス冷媒圧力より低い場合、リード弁は弁座から浮き、弁は開いた状態となる。
【0061】
44hは図1に示す高段圧縮要素12の吐出通路11bを一部形成し、図の背面側の孔は図3の高段圧縮要素吐出管12b’と接続される。
【0062】
44uは2個のめねじ孔であり、図の背面側に図4に示す第2のシリンダ45をボルトで固定するためのものである。44wは4個のめねじ孔であり、図の背面側に図4に示す第2のシリンダ45、仕切り板46、第1のシリンダ47、副軸受48、第1の吐出室カバー49をボルトで固定するためのものであり、そのうち2個は図の正面側に、第2の吐出室副カバー50、第2の吐出室主カバー51を固定するためにも用いられる。
【0063】
図6(b)に示す第2の吐出室副カバー50において、50cは図1の密閉容器内圧力形成通路12cを一部形成する孔で、主軸受44の凹部44t’、44g’孔44gと連通する。50hは凸部で主軸受44とともに図1の高段圧縮要素12の吐出通路12bを一部構成し、吐出室を形成し、50h’はこの吐出室を第2の吐出室副カバー50と後述の第2の吐出室主カバー51により構成される他の吐出室空間と連通する孔である。50h’’は図1の高段圧縮要素12の吐出通路12bと吐出側逆止弁13bを接続する通路を形成し、50h’’’はこの第2の吐出室副カバー50と後述の第2の吐出室主カバー51により構成される空間と前述の主軸受44の孔44hを連通する孔である。
【0064】
50wは第2の吐出室主カバー51とともに主軸受44にボルトで固定するための2個の孔である。
【0065】
図6(c)に示す第2の吐出室主カバー51において、51cは凸部で第2の吐出室カバー50とともに、図1の密閉容器内圧力形成通路12cを形成する通路で、孔51c’を介して図3の密閉容器40内と連通する。51hは凸部で、第2の吐出室副カバー50とともに空間を形成し、第2の吐出室副カバー50の孔50h’と孔50h’’’を接続する流路の断面積が変化することにより消音器の働きをする。
【0066】
51wは第2の吐出室副カバー50とともに主軸受44にボルトで固定するための2個の孔である。
【0067】
前述の図3の圧縮機10のガス冷媒通路の構成をまとめると以下のようになる。図1の低段圧縮要素11の吸入通路11aは、低段圧縮要素吸入管11a’、孔49e、孔48e、切り欠き47eから構成され、図1の吸入通路11aと吸入側逆止弁13aを接続する通路は、孔46e、孔45e、孔44eから構成され、図1の吐出通路11bは、凹部48t、凹部48f(第1の吐出室カバー49とともに形成される空間)、孔49f、低段圧縮要素吐出管11b’から構成され、図1の吐出通路11bと吐出側逆止弁13bを接続する通路は、孔48f’、孔47f、孔46f、孔45f、孔44fから構成される。
【0068】
また、図1の高段圧縮要素12の吸入通路12aは、高段圧縮要素吸入管12a’、孔49g、孔48g、孔47g、孔46g、凹部及び切り欠き45gから構成され、図1の吸入側逆止弁13aと吸入通路12aを接続する通路は、凹部44t’(第2の吐出室副カバー50とともに形成される空間)、凹部44g’(第2の吐出室副カバー50とともに形成される空間)、孔44gから構成され、図1の吐出通路12bは、凹部44t(第2の吐出室副カバー50とともに形成される空間)、凸部50h(主軸受44とともに形成される空間)、孔50h’、凸部51h(第2の吐出室副カバー50とともに形成される空間)、孔50h’’’、孔44h、高段圧縮要素吐出管12b’から構成され、図1の吐出側逆止弁13bと吐出通路12bを接続する通路は、凹部44t’’、孔50h’’から構成される。図1の密閉容器内圧力形成通路12cは、孔50c、凸部51c(第2の吐出室副カバー50とともに形成される空間)、孔51c‘から構成され、高段圧縮要素の吸入通路と密閉容器を連通し、密閉容器40内の圧力を高段圧縮要素の吸入ガス圧力に保つ働きをしている。
【0069】
図7は、図3に示した圧縮機10のX−X断面の第2のシリンダ部である。図において、44zは高段圧縮要素の端面を構成する主軸受44の端面部、63はその端面部44に設けられた油ポケット(凹部)であり、ローラ52の内側と作動室内とを交互に行き来する。ローラ52の内側には、前述したローラ53のベーン部の往復運動等を利用した給油ポンプによりクランク軸42に給油された潤滑油が貯溜しており、油ポケット63により、高段圧縮要素の作動室に間欠的に油を供給する。また、低段圧縮要素についても、副軸受48の端面部に同様の油ポケットが設けられており(図示せず)、低段圧縮要素の作動室に間欠的に油を供給している。
【0070】
以上のように構成する冷蔵庫においては、冷蔵室3と冷凍室2とが並行して(同時に)冷却される運転と、冷凍室が単独で冷却される運転が行われる。この冷凍室及び冷蔵室の同時(並行)冷却の運転と冷凍室単独の冷却運転の動作について、以下、説明する。
【0071】
冷凍室冷蔵室同時冷却運転時には、第1の電磁弁23、第2の電磁弁26をともに開く。圧縮機10の低段圧縮要素11、中間冷却器27、高段圧縮要素12、凝縮器20、第1のキャピラリ21、冷凍室用蒸発器22は、冷凍室冷却冷凍サイクルを形成するとともに、圧縮機10の高段圧縮要素12、凝縮器20、第2のキャピラリ24、冷蔵室用蒸発器25は、冷蔵室冷却冷凍サイクルを形成する。圧縮機10は、低段圧縮要素11、高段圧縮要素12を直列に接続した2段圧縮を行う。また、凝縮器ファン30、冷凍室用蒸発器ファン31、冷蔵室用蒸発器ファン32を運転する。この時、吸入側逆止弁13aにおいて、高段圧縮要素12の吸入通路12aでのガス冷媒圧力が、低段圧縮要素11の吸入通路11aでのガス冷媒圧力より高くなっているため、弁は閉じた状態となっている。また、吐出側逆止弁13bにおいても、高段圧縮要素12の吐出通路12bでのガス冷媒圧力が、低段圧縮要素11の吐出通路11bでのガス冷媒圧力より高くなっているため、弁は閉じた状態となっている。
【0072】
この時、例えば、冷凍室用蒸発器22の蒸発温度は、−26℃、冷蔵室用蒸発器25の蒸発温度は、−8℃というように異なる温度で冷媒が蒸発し、それぞれ冷凍室2、冷蔵室3の冷却を行う。凝縮器20出口の分岐において、冷凍室用蒸発器22と冷蔵室用蒸発器25にほぼ半分ずつ冷媒が分流される時、冷凍室2と冷蔵室3はほぼ同等の冷凍能力で冷却される。
【0073】
圧縮機10の低段圧縮要素11は、冷凍室用蒸発器22からのガス冷媒を冷凍室用蒸発器22の蒸発圧力レベルの低圧(冷凍サイクルの最低圧力)から、冷蔵室用蒸発器25の蒸発圧力レベルの中間圧まで圧縮し、高段圧縮要素12は、低段圧縮要素11により中間圧まで圧縮され、中間冷却器27により冷却されたガス冷媒を、冷蔵室用蒸発器25からのガス冷媒とともに、中間圧から凝縮器13の凝縮圧力レベルの高圧(冷凍サイクルの最高圧力)まで圧縮する。
【0074】
低段圧縮要素11と高段圧縮要素12の押しのけ量を、同等またはほぼ同等となるように設定したが、この理由は以下のためである。例えば、冷媒としてR134aまたはR600aを使用する場合、冷蔵室用蒸発器25の蒸発圧力が冷凍室用蒸発器22の蒸発圧力より高く、高段圧縮要素12の吸入ガス比容積が低段圧縮要素11の吸入ガス比容積のほぼ半分となるが、冷凍室と冷蔵室がほぼ同等の冷凍能力を必要とする場合、高段圧縮要素12の冷媒質量流量は、低段圧縮容量11の冷媒質量流量の約2倍となり、各圧縮要素11、12の吸入ガスの冷媒体積流量は、ほぼ同じになるためである。なお、実際の押しのけ量は、冷凍室と冷蔵室の必要冷凍能力、圧縮要素11、12のそれぞれ所定の吸入ガス圧力、温度条件等から設定される。二つの圧縮要素11、12の押しのけ量を同じとした場合、一部部品の共用ができ、部品点数が減り、コストの低減を図れる。
【0075】
圧縮機10の密閉容器40内圧力は、高段圧縮要素吸入ガス圧力、すなわち、中間圧(冷蔵室用蒸発器25の蒸発圧力レベル)となっている。図8に圧縮機10が2段圧縮を行うときの低段圧縮要素、高段圧縮要素の一回転中の圧縮室圧力と密閉容器内圧力の圧力差を、(a)高圧密閉容器、(b)中間圧密閉容器、(c)低圧密閉容器の場合について示す。回転角0°を低段圧縮要素、高段圧縮要素それぞれにおける圧縮開始のクランク回転角度とする。実線は圧縮室圧力、破線は密閉容器内圧力、斜線はその圧力差を示す。ここでの条件は、冷媒R134a、冷凍室用蒸発器の蒸発温度−26℃、冷蔵室用蒸発器の蒸発温度−8℃、凝縮器の凝縮温度33℃としている。図より、(b)中間圧密閉容器の場合が、一回転当たりの圧力差が小さく、圧縮過程の圧力差による漏洩ガス量の低減に効果があり、圧縮機の2段圧縮時の効率を向上させることができる。
【0076】
低段圧縮要素の作動室(吸入室、圧縮室)の密封のための作動室内への給油は、密閉容器と作動室の圧力差により作動室内に漏れ込む油と前述の副軸受48に設けられた油ポケット、および吸入ガスに含まれる油により行われる。また、高段圧縮要素の作動室の密封のための作動室内への給油は、前述の主軸受44に設けられた油ポケット63、吸入ガスに含まれる油により行われる。
【0077】
中間冷却器27は低段圧縮要素の吐出ガスを冷却し、高段圧縮要素の吸入ガス温度を低減させる働きをするが、これにより、高段圧縮要素の単位質量当たりの理論断熱圧縮仕事が減り、圧縮動力を低減することができる。
【0078】
冷凍室単独冷却運転時には、第1の電磁弁23、第2の電磁弁26をともに閉じる。電磁弁23が閉じられるため、冷蔵室用蒸発器25への冷媒の流れは阻止され、冷媒は冷凍室用蒸発器22へのみ流れる。
【0079】
この時、圧縮機10の低段圧縮要素11は、冷凍室用蒸発器22出口のガス冷媒を吸入し、圧縮作用を行う。低段圧縮要素11の吐出通路11bと接続する通路のうち、片方の電磁弁26側は閉じられているため、もう片方の吐出側逆止弁13bの反対側の高段圧縮要素12の吐出通路12b内のガス冷媒圧力より高い圧力まで、低段圧縮要素12のガス冷媒は圧縮され、逆止弁13bを通過する。一方、電磁弁23、26が閉じいて、吸入通路12aと連通する冷蔵室用蒸発器25、中間冷却器27には冷媒が供給されないため、高段圧縮要素12の吸入作用により、高段圧縮要素12の吸入通路12aのガス冷媒圧力は、次第に低下し、低段圧縮要素11の吸入通路11aのガス冷媒圧力より低下する状態となる。これにより、吸入側逆止弁13aは開く状態となり、低段圧縮要素11の吸入通路11a側のガス冷媒が高段圧縮要素12の吸入通路12a側に流入する。
【0080】
なお、冷蔵室用蒸発器25、中間冷却器27でのガス冷媒圧力は、吸入通路12a内のガス冷媒圧力と同じ、冷凍室用蒸発器22の蒸発圧力レベルであるが、冷蔵室用蒸発器25の温度は、冷蔵室3内の空気温度とほぼ等しくなり、中間冷却器27の温度は、冷蔵庫本体1の底部の空気温度とほぼ等しくなり、冷凍室用蒸発器22の蒸発温度より高くなる。このため、吸入通路12a内のガス冷媒が冷蔵室用蒸発器25、中間冷却器27で凝縮し滞留するという問題を防止できる。また、弁23は、蒸発器と凝縮器との間に設けられた冷媒管の分岐部と蒸発器との間に配置されている。弁26は中間冷却器27と圧縮要素11の吐出通路11bとの間に配置されている。このようにすることで、貯蔵室単独の冷却運転を行う際に、蒸発器25や冷却器27に残留している冷媒の量を低減して、運転の効率を高く保つことができる。
【0081】
この時、二つの圧縮要素11、12は、それぞれ、冷凍室用蒸発器22の蒸発圧力レベルから、凝縮器20の凝縮圧力レベルまで並列に圧縮作用を行う。したがって、圧縮機10の二つの圧縮要素11、12、凝縮器20、第1のキャピラリ21、冷凍室用蒸発器22からなる冷凍室単独冷却冷凍サイクルを形成する。また、凝縮器ファン30、冷凍室用蒸発器ファン31を運転し、冷蔵室用蒸発器ファン32は停止する。これにより、冷凍室2のみの冷却を行う。
【0082】
この時、圧縮機10の密閉容器40内圧力は、高段圧縮要素吸入ガス圧力、すなわち、低圧(冷凍室用蒸発器22の蒸発圧力レベル)となっている。図9に圧縮機10が単段圧縮を行うときの圧縮要素の一回転中の圧縮室圧力と密閉容器内圧力の圧力差を、(a)高圧密閉容器、(b)低圧密閉容器の場合について示す。実線は圧縮室圧力、破線は密閉容器内圧力、斜線はその圧力差を示す。ここでの条件は、冷媒R134a、冷凍室用蒸発器の蒸発温度−26℃、凝縮器の凝縮温度32℃としている。図より、(b)低圧密閉容器の場合が、一回転当たりの圧力差が小さく、圧縮過程の圧力差による漏洩ガス量の低減に効果があり、圧縮機の単段圧縮時の効率を向上させることができる。
【0083】
二つの圧縮要素の作動室(吸入室、圧縮室)の密封のための作動室内への給油は、それぞれ、前述の副軸受48、主軸受44に設けられた油ポケット及び吸入ガスに含まれる油により行われる。
【0084】
特公平4−54152号公報には、2つの圧縮室を密閉容器内に備えた2シリンダの回転式圧縮機を備え、圧縮機の圧縮室(圧縮要素)に連通した冷媒通路上に弁を設けて、各圧縮室への冷媒の流れを並列/直列に切替えるものが開示されている。
【0085】
すなわち、この従来技術では、一方の圧縮室(低圧用圧縮要素)の吸込管と、他方の圧縮室(高圧用圧縮要素)の吸込管とが逆止弁を介して接続され、高圧用圧縮要素の吐出管が密閉容器内に開放され、二方に分岐された低圧用圧縮要素の吐出管の一方が逆止弁を介して密閉容器内と連通され、他方が切替用電磁弁を介して高圧用圧縮要素の吸入管と接続されている。そして、運転条件によって変化する必要な能力や効率に応じて上記の切替電磁弁の作動させて、2つの圧縮要素に冷媒が並列に通流して1回圧縮される単段圧縮の運転と、2つの圧縮要素に冷媒が直列に通流して各圧縮要素で2回圧縮される2段圧縮の運転とを切替えて、広範囲の運転条件でより適切な能力を発揮させようとするものである。
【0086】
この従来技術の圧縮機は、容器内が高圧用圧縮要素から吐出される冷媒の圧力と等しくなるものであり、本実施例のように、上記低圧から上記中間圧にされるものではい。本実施例は、上記の構成により、各貯蔵室を複数の冷却器により冷却する際に、より適切な運転を選択して、冷蔵庫の冷却、運転の効率を向上させている。また、圧縮機の圧縮要素に通流させる冷媒の流れを切替える際に生じる、冷媒の流れの問題点を解決して、効率を向上させるものである。
【0087】
さらに、このような構成により、冷媒として可燃性冷媒である炭化水素系の冷媒を用いた場合、潤滑油への解け込む冷媒の量が低減され冷蔵庫の冷凍サイクルに用いられる全体の冷媒量を低減されるので、可燃性冷媒の漏洩による発火等の事故の可能性が低減される。
【0088】
図10に冷蔵庫の冷凍室冷蔵室同時冷却運転と冷凍室単独冷却運転の制御フローチャートを示す。以下の処理は、制御装置101が行う。
【0089】
冷蔵庫の運転スイッチがONならば(300Y)、冷蔵室温度センサ9に冷蔵室温度Trを検知させ(301)、冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かどうか判定する(302)。冷蔵室温度Trが冷蔵室冷却開始温度Trs以上ならば(302Y)、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32、圧縮機10の運転を開始(303)、冷凍室冷蔵室同時冷却運転を行う。
【0090】
タイマーをスタートさせ(304)、所定時間経過後に(305Y)、冷蔵室温度センサ9に冷蔵室温度Trを検知させ(306)、冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かどうか判定する(307)。冷蔵室冷却終了温度Tre以下でなければ(307N)、ステップ304に戻り、冷蔵室温度Trが冷蔵室冷却終了温度Tre以下になるまで、冷凍室冷蔵室同時冷却運転を続ける。
【0091】
冷蔵室温度Trが冷蔵室冷却終了温度Tre以下ならば(307Y)、冷凍室温度センサ8に冷凍室温度Tfを検知させ(308)、冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(309Y)、圧縮機10、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32の運転を停止し、冷凍室冷蔵室同時冷却運転を終了する(310)。
【0092】
タイマーをスタートさせ(311)、所定時間経過後(312)、ステップ300に戻る。ステップ302で、冷蔵室温度Trが冷蔵室冷却開始温度Trs未満ならば(302N)、次に、冷凍室温度センサ8に冷凍室温度Tfを検知させ(320)、冷凍室温度Tfが冷凍室冷却開始温度Tfs以上かどうか判定する(321)。冷凍室冷却開始温度Tfs未満ならば(321N)、ステップ311に移り、ステップ300に戻る。
【0093】
冷凍室温度Tfが冷凍室冷却開始温度Tfs以上ならば(321Y)、通電により電磁弁23,26を閉じ、凝縮器ファン30、冷凍室ファン31、圧縮機10の運転を開始(322)、冷凍室単独冷却運転を行う。
【0094】
タイマーをスタートさせ(323)、所定時間経過後に(324Y)、冷蔵室温度センサ9に冷蔵室温度Trを検知させ(325)、冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かどうか判定する(326)。冷蔵室冷却開始温度Trs以上ならば(326Y)、冷蔵室ファン32の運転を開始し、電磁弁23,26への通電をやめ、弁を開き(340)、冷凍室単独冷却運転から冷凍室冷蔵室同時冷却運転に移行し、ステップ304に移る。
【0095】
冷蔵室温度Trが冷蔵室冷却開始温度Trs未満ならば(326N)、冷凍室温度センサ8に冷凍室温度Tfを検知させ(327)、冷凍室温度Tfが冷凍室冷却終了温度Tfe以下かどうか判定する(328)。冷凍室温度Tfが冷凍室冷却終了温度Tfeより高ければ(328N)、ステップ323に戻り、冷凍室単独冷却運転を続ける。冷凍室冷却終了温度Tfe以下ならば(328Y)、圧縮機10、凝縮器ファン30、冷凍室ファン31の運転を停止し、電磁弁23,26への通電をやめて弁を開き、冷凍室単独冷却運転を終了し、ステップ311に進み、ステップ300に戻る。
【0096】
ステップ309において、冷凍室温度Tfが冷凍室冷却終了温度Tfeより高ければ(309N)、電磁弁23,26への通電を行い弁を閉じ、冷蔵室ファン32の運転を停止し、冷凍室冷蔵室同時冷却運転から冷凍室単独冷却運転に移行し、ステップ323に移る。
【0097】
上記の実施例の構成及び運転の制御により、冷蔵室食品の凍結防止のためのヒータ加熱を不要とし、冷凍室温度は、例えば−18℃以下、冷蔵室の温度は、例えば0℃より高い5℃以下とすることができ、冷凍室と冷蔵室の温度を適正に保つことができる。
【0098】
また、冷凍室及び冷蔵室の並行冷却運転時には、冷蔵室用蒸発器25からのガス冷媒を、さらに冷凍室用蒸発器22の蒸発圧力レベルの低圧まで減圧し、その低圧から圧縮するのではなく、冷蔵室用蒸発器の蒸発圧力レベルの中間圧から圧縮するため、圧縮動力を低減することができ、冷蔵庫の消費電力を大幅に低減することができる。
【0099】
さらに、圧縮機が二つの圧縮要素を有し、冷凍室及び冷蔵室の並行冷却運転時には、2段の圧縮御を行う構成としたため、各圧縮要素の圧縮室と吸入室との圧力差が小さくなり、圧縮過程の漏洩ガス量の低減に効果があり、圧縮機の効率が向上し、冷蔵庫の効率を向上させることができる。
【0100】
さらに、冷凍室単独の冷却運転時においては、圧縮機の二つの圧縮要素を並列に圧縮するように構成したため、冷凍室冷却のための押しのけ量が冷凍室冷蔵室同時冷却運転時の2倍となり、冷凍室冷凍能力を増加させることができる。
【0101】
また、冷凍室と冷蔵室に各々の蒸発器をもつ冷蔵庫は、蒸発器1個で、冷凍室と冷蔵室の両方を冷気の強制循環により冷却する冷蔵庫に比べて、冷蔵室用蒸発器の蒸発温度を高くすることができるので、冷蔵室への吐出冷気温度を高くでき、湿度を高く維持できるので、冷蔵室の食品の保存状態を良好にすることができる。
【0102】
また、冷蔵室用蒸発器への着霜量も低下するため、電気ヒータによる除霜の周期が延長され、消費電力の低減に有効である。
【0103】
また、冷凍室と冷蔵室の冷気が完全に分離されているため、冷凍室と冷蔵室間の臭い移りを防止できる。
【0104】
また、圧縮要素の吸入通路と圧縮機の密閉容器内とを連通する開口を備えているので、圧縮機の単段圧縮時には密閉容器内の圧力が低圧となり、2段圧縮時は密閉容器内の圧力が中間圧となる。このため、一回転当たりの圧縮室と密閉容器内圧力との圧力差が小さく、圧縮過程の圧力差による漏洩ガス量の低減に効果があり、圧縮機の効率を向上させることができる。
【0105】
また、圧縮機の密閉容器内圧力を低圧または中間圧としたため、潤滑油中に溶解する冷媒量を低減でき、可燃性冷媒である炭化水素系冷媒への対応も容易となる。
【0106】
また、逆止弁を密閉容器内に配置したため、圧縮機周りの配管をコンパクト化できる。
【0107】
また、2個の電磁弁23、26に同じ開閉動作を行なわせているため、制御装置101における2個の電磁弁の通電と非通電を一つの回路にすることができ、コストを抑えることができる。
【0108】
〔実施例 2〕
本発明の第2の実施例を図11及び図12を参照して説明する。
【0109】
図11は第2の実施例に係る冷蔵庫の冷凍サイクル構成図、図12は図11の冷凍サイクルの電磁弁の開閉動作を示す表である。同時に、実施例1に係る冷蔵庫についても、その動作を示している。図11において、図1と同等部分には同一符号を付し、その説明は省略する。
【0110】
図11において、圧縮機10’は図1の圧縮機10と同様に二つの圧縮要素(低段圧縮要素11、高段圧縮要素12)をもつ。70a、70bはそれぞれ、冷凍室用蒸発器22の入口側、出口側に設けられた電磁弁、71a、71bはそれぞれ、圧縮要素11、12の吸入通路11a、12a側、吐出通路11b、12b側に設けられた電磁弁である。6個の電磁弁23、26、70a、70b、71a、71bの開閉の組み合わせにより、冷凍室と冷蔵室の同時冷却、冷凍室の単独冷却、冷蔵室の単独冷却を行う。
【0111】
以上のように構成する冷蔵庫の冷凍サイクルにおいて、冷凍室冷蔵室同時冷却運転、冷凍室単独冷却運転及び冷蔵室単独冷却運転の動作について説明する。
【0112】
冷凍室冷蔵室同時冷却運転時には、図12に示すように、電磁弁23、26、70a、70bを開き、電磁弁71a、70bを閉じる。この時、圧縮機10’の低段圧縮要素11、中間冷却器27、高段圧縮要素12、凝縮器20、第1のキャピラリ21、冷凍室用蒸発器22は、冷凍室冷却冷凍サイクルを形成するとともに、圧縮機10’の高段圧縮要素12、凝縮器20、第2のキャピラリ24、冷蔵室用蒸発器25は、冷蔵室冷却冷凍サイクルを形成する。圧縮機10’は、低段圧縮要素11、高段圧縮要素12を直列に接続した2段圧縮を行う。また、凝縮器ファン30、冷凍室用蒸発器ファン31、冷蔵室用蒸発器ファン32を運転する。
【0113】
圧縮機10’の低段圧縮要素11は、冷凍室用蒸発器22からのガス冷媒を冷凍室用蒸発器22の蒸発圧力レベルの低圧(冷凍サイクルの最低圧力)から、冷蔵室用蒸発器25の蒸発圧力レベルの中間圧まで圧縮し、高段圧縮要素12は、低段圧縮要素11により中間圧まで圧縮され、中間冷却器27により冷却されたガス冷媒を、冷蔵室用蒸発器25からのガス冷媒とともに、中間圧から凝縮器13の凝縮圧力レベルの高圧(冷凍サイクルの最高圧力)まで圧縮する。
【0114】
以上の動作により、冷凍室と冷蔵室の同時冷却運転を行う。
【0115】
冷凍室単独冷却運転時には、図12に示すように、電磁弁70a、70b、71a、71bを開き、電磁弁23、26を閉じる。この時、二つの圧縮要素11、12は並列に接続される。電磁弁70aが開かれ、電磁弁23が閉じられているため、冷凍室用蒸発器22には冷媒が供給され、冷蔵室用蒸発器25には冷媒が供給されない。電磁弁23、26が閉じていて、高段圧縮要素12の吸入通路12aと連通する冷蔵室用蒸発器25、中間冷却器27には冷媒が供給されないため、高段圧縮要素12は開いている電磁弁71aを通して、冷凍室用蒸発器22からのガス冷媒を吸入、圧縮する。また、電磁弁26が閉じているため、低段圧縮要素11の吐出ガスは開いている電磁弁71bを通過し、高段圧縮要素12の吐出ガスと合流し、凝縮器20に入る。よって、二つの圧縮要素11、12、凝縮器20、第1のキャピラリ21、冷凍室用蒸発器22からなる冷凍室単独冷却冷凍サイクルを形成する。また、凝縮器ファン30、冷凍室用蒸発器ファン31を運転し、冷蔵室用蒸発器ファン32は停止する。これにより、冷凍室の単独冷却運転を行う。
【0116】
また、冷蔵室単独冷却運転時には、図12に示すように、電磁弁23、71a、71bを開き、電磁弁26、70a、70bを閉じる。この時、二つの圧縮要素11、12は並列に接続される。電磁弁23が開かれ、電磁弁70aが閉じられているため、冷蔵室用蒸発器25には冷媒が供給され、冷凍室用蒸発器22には冷媒が供給されない。電磁弁70bが閉じているため、低段圧縮要素11は開いている電磁弁71aを通して、冷蔵室用蒸発器25からのガス冷媒を吸入、圧縮する。また、電磁弁26が閉じているため、低段圧縮要素11の吐出ガスは開いている電磁弁71bを通過し、高段圧縮要素12の吐出ガスと合流し、凝縮器20に入る。よって、二つの圧縮要素11、12、凝縮器20、第2のキャピラリ24、冷蔵室用蒸発器25からなる冷蔵室単独冷却冷凍サイクルを形成する。また、凝縮器ファン30、冷蔵室用蒸発器ファン32を運転し、冷凍室用蒸発器ファン31は停止する。これにより、冷蔵室の単独冷却運転を行う。
【0117】
なお、中間冷却器27でのガス冷媒圧力は、吸入通路12a内のガス冷媒圧力と同じ、冷蔵室用蒸発器25の蒸発圧力レベルであるが、中間冷却器27の温度は、冷蔵庫本体1の底部の空気温度とほぼ等しくなるため、冷蔵室用蒸発器25の蒸発温度より高く、したがって、ガス冷媒が中間冷却器27で凝縮し滞留するという問題を防止できる。また、電磁弁70a、70bが閉じているため、冷凍サイクルを循環しているガス冷媒が冷凍室用蒸発器22に冷却され、凝縮し滞留するという問題を防止できる。
【0118】
本実施例では、冷凍室と冷蔵室の同時(並行)の冷却運転、冷凍室単独の冷却運転及び冷蔵室単独の冷却運転を切り替え可能としたため、第1の実施例と同様に、冷蔵室食品の凍結防止のためのヒータ加熱を不要とし、例えば、冷凍室温度は−18℃以下、冷蔵室温度は0℃より高い5℃以下とすることができ、冷凍室と冷蔵室の温度を適正に保つことができる。
【0119】
また、第1の実施例に比べて、冷蔵室の単独冷却運転も可能としたため、冷蔵室だけ冷却を必要とする場合に、第1の実施例のように冷凍室も同時に冷却するのではなく、冷蔵室だけの冷却が可能なため、冷凍室の余剰な冷却を防止することができる。
【0120】
また、冷凍室冷蔵室同時冷却運転時には、冷蔵室用蒸発器からのガス冷媒を、さらに冷凍室用蒸発器の蒸発圧力レベルの低圧まで減圧し、その低圧から圧縮するのではなく、冷蔵室用蒸発器の蒸発圧力レベルの中間圧から圧縮するため、圧縮動力を低減することができ、冷蔵庫の消費電力を大幅に低減することができる。
【0121】
さらに、圧縮機を二つの圧縮要素をもち、冷凍室冷蔵室同時冷却運転時には、2段圧縮御を行う構成としたため、各圧縮要素の圧縮室と吸入室との圧力差が小さくなり、圧縮過程の漏洩ガス量の低減に効果があり、圧縮機の効率向上し、冷蔵庫の効率を向上させることができる。
【0122】
さらに、冷凍室(または冷蔵室)単独冷却運転時においては、圧縮機の二つの圧縮要素を並列に圧縮するように構成したため、冷凍室(または冷蔵室)冷却のための押しのけ量が冷凍室冷蔵室同時冷却運転時の2倍(または4倍)となり、冷凍室(または冷蔵室)冷凍能力を増加させることができる。
【0123】
また、冷凍室と冷蔵室に各々の蒸発器をもつ冷蔵庫は、蒸発器1個で、冷凍室と冷蔵室の両方を冷気の強制循環により冷却する冷蔵庫に比べて、冷蔵室用蒸発器の蒸発温度を高くすることができるので、冷蔵室への吐出冷気温度を高くでき、湿度を高く維持できるので、冷蔵室の食品の保存状態を良好にすることができる。
【0124】
また、冷蔵室用蒸発器への着霜量も低下するため、電気ヒータによる除霜の周期が延長され、消費電力の低減に有効である。
【0125】
また、冷凍室と冷蔵室の冷気が完全に分離されているため、冷凍室と冷蔵室間の臭い移りを防止できる。
【0126】
〔実施例 3〕
本発明の第3の実施例を図13ないし図20を参照して説明する。
【0127】
図13は、本発明の第3の実施例に係る冷蔵庫の冷凍サイクルの概略を示す冷蔵庫の斜視図であり、その内部の構造を示す透視図である。図14は、図13に示す冷蔵庫の構造の概略を示す縦断面図である。図15は、図13示す冷蔵庫に設けられた冷蔵庫の操作を行うパネルの摸式図である。図16は、図13に示す冷蔵庫の冷凍サイクルの電磁弁の開閉動作を示す表である。図17乃至図20は、図13に示す冷蔵庫の運転の制御フローを示すフローチャートである。
【0128】
図13、図14において、図1〜図3と同等部分には同一符号を付し、その説明は省略する。本実施例の冷凍サイクル構成は、第1の実施例の図1に示す冷凍サイクル構成と同等であり、図1を参照する場合、符号10を10’’とする。
【0129】
本実施の例に示す冷蔵庫が図1に示す実施例の冷蔵庫と異なる点は、本実施例の冷蔵庫が冷蔵室3Aの下方に配置された野菜室3Bの後方に冷蔵室用蒸発器25及び冷蔵室用ファン32が配置されており、冷蔵室3A内の冷蔵庫後方側の壁面には、上記ファン32の駆動により冷蔵室3Aに供給される冷却器25で冷却された空気が流れる冷気の通路と、この通路内から冷蔵室3A内に設けられた棚によって区分けされる空間に前記冷気が流入する開口とを備えている点である。また、冷蔵室3Aの冷蔵庫前面側に配置された扉上には、使用者が操作可能な操作パネルが設けられ、この操作パネルの操作によって、使用者は冷蔵庫の運転を調節して所望の運転を行わせることができる。
【0130】
また、野菜室3Bの下方には、冷蔵庫内を上下に区画する断熱材を備えた断熱仕切壁が配置され、この断熱仕切壁の下方に冷凍室2が設けられている。この冷凍室は、上下に複数の室に区画され、それぞれの室内に上方が開放されて形成された容器2A,2Bが配置され、それらの前面には、冷蔵庫の前後方向に移動してそれぞれの室を開閉する扉が複数設けられている。そして、これらの扉の開閉動作による移動に伴って、前記容器が冷蔵庫前後方向に移動する。
【0131】
複数の室に区画された冷凍室2の後方には、冷凍室用蒸発器22と冷凍室用ファン31が配置されており、冷凍室用ファンの駆動により蒸発器22により冷却された空気が冷凍室2内に供給される。供給された冷気は、本実施例では、容器2A,2Bの開放された上方から容器内に流入するよう供給され、容器内側から容器の外側を流れ、または直接容器外側を流れて容器及び容器内を冷却して、容器2B後方に設けられた冷気の戻り口から蒸発器22に向かい流れ、蒸発器22で再度冷却される。
【0132】
図13において、圧縮機10’’には、図3に示す圧縮機10と同様に、二つの圧縮要素、低段圧縮要素(第1の圧縮要素)及び高段圧縮要素(第2の圧縮要素)、と二つの逆止弁とが密閉容器40’’内に配置されている。高段の圧縮要素の吐出管12b’’は、図3に示す圧縮機10と異なり、密閉容器40’’の側面から容器外側に延びるよう設けられている。このことにより、高温の吐出ガスができるだけ早く密閉容器40’’外に出されて、吐出ガスより温度の低いガスへの加熱の影響が減らされると共に、管11a’、11b’、12a’と離すことによりこれら配管の溶接の作業に必要な空間を確保して作業が容易になる。
【0133】
この図において、20Aは凝縮器であり、例えば、冷媒管上にフィンが挿入や巻き付け等によって設けられた構成を備え、冷蔵庫本体1’の背面側の底部に設けられ圧縮機10’’や中間冷却器27とともにこの凝縮20Aを収容する空間である機械室内に配置されている。また、20Bは前記凝縮の冷媒管と接続されたパイプで冷蔵庫本体1’の側面や背面等をなす外板である鋼板に接触して密着するように設けられている。このことにより、パイプ20B内を流れる冷媒は外板(鋼板)を介して外部の空間と熱交換して放熱を行なうことができる。
【0134】
上記の通り、中間冷却器27が機械室内に配置されており、本実施例では凝縮器20Aと同じフィン付パイプとして、凝縮器20Aと中間冷却器27とを一体の熱交換器として構成し一つにまとめて配置している。このことにより、冷蔵庫のコストが低減され、また、機械室の大きさを低減して冷蔵庫内の貯蔵室を大きく確保することができる。
【0135】
上記の通り、図14において、冷蔵庫1’は冷凍室を二つ(2A、2B)、冷蔵室3A、野菜室3Bをもつ。80、81はそれぞれ冷凍室用蒸発器22、冷蔵室用蒸発器25の表面温度を検知する温度センサである。101’は、本実施例の冷蔵庫の制御装置である。また、106’は冷蔵室3Aの扉に設けた操作パネルである。
【0136】
本実施例の冷蔵庫では、図3に示す冷蔵庫と同様、制御装置101’は、冷凍室用の温度センサ8、冷蔵室用の温度センサ9(野菜室用の温度センサは図示していないが設けても良い)あるいは上記冷凍室用蒸発器22の温度センサ80、冷蔵室用蒸発器の温度センサ81等からの信号が入力され、これらの信号に基づいて、圧縮機10’’,ファン30,31,31、蒸発器用ヒータ6,7、電磁弁23,26の動作を調節する。
【0137】
図15において、操作パネル106’は、急速冷却ボタン90、急速冷凍ボタン91、冷蔵室温度設定ボタン92、冷凍室温度設定ボタン93、急速冷却および急速冷凍の運転状態を示すLED90a、91a、設定された温度や検知された温度或いはこれらの差を示すLED92a、93aを備えている。これらのボタンの操作により、使用者は冷蔵庫に対して所望の運転を行うよう指令することができる。
【0138】
本実施例では、操作パネル106上の上記ボタン、或いは直接LEDを操作することで、冷蔵室温度および冷凍室温度を、それぞれ冷却の強・中・弱のによる設定で選択できる。冷却の設定が選択されると、選択された強・中・弱のいずれかに対応した冷蔵室3Aあるいは冷凍室2A,2Bそれぞれの、冷却を開始する温度及び冷却を終了する温度が設定される。本実施例では、強・中・弱の順に冷却を終了する温度が高くなるように設定される。この設定温度と前記センサ8,9により検知されて出力された信号とに基づいて、制御装置101’が冷蔵庫の運転及び動作を判断し、調節する。
【0139】
以上の構成を備えた冷蔵庫は、図16に示すように、電磁弁23、26の開閉の調節により、冷凍室及び冷蔵室の並行冷却運転A、冷凍室及び冷蔵室並行冷却運転B、冷凍室単独の冷却運転の三つの運転モードで運転される。本実施例において、冷媒としてR134aまたはR600aを用い、冷凍室用蒸発器22の蒸発温度を−26℃、冷蔵室用蒸発器25の蒸発温度を−8℃とすると、冷媒のガスの比容積の関係から、第1の運転モードである電磁弁23、26をともに開いた状態での冷蔵庫及び冷凍サイクルの運転では、冷凍室2A,2Bの冷凍能力と冷蔵室3Aの冷凍能力の比は約1対1となる。
【0140】
また、第2の運転モードである電磁弁23を開状態とし、電磁弁26を閉状態として冷蔵庫及び冷凍サイクルの運転状態では、冷凍室2A,2Bの冷凍能力と冷蔵室3Aの冷凍能力の比は約1対2となる。これらの第1,2の運転モードでは、冷蔵室3Aと冷凍室2A,2Bとが並行して(同時に)冷却される。これら第1、第2の運転モードは、冷蔵室3A及び冷凍室2A,2Bに必要な冷却能力の大きさの比が異ならせて冷蔵室及び冷凍室を同時に(並行して)冷却する運転である。
【0141】
さらに、第3の運転モードである電磁弁23、26をともに閉じた状態で行われる冷凍室単独の冷却運転は冷凍室のみが冷却され、冷蔵室の冷却は行なわない。
【0142】
上記の冷凍室及び冷蔵室の並行した冷却運転Aは、第1の実施例で述べた冷凍室及び冷蔵室の同時(並行)冷却運転と同じである。また、冷凍室単独の冷却運転は第1の実施例で述べた冷凍室の単独冷却運転と同じである。したがって、第3の実施例では、第1の実施例に比べて、冷蔵室冷凍能力が冷凍室冷凍能力の約2倍となる運転モードが追加されることにより、冷蔵庫の冷凍室負荷と冷蔵室負荷に対応した運転が可能となり、使用者の要求にさらに細かく対応が可能となり、無駄な冷却を抑えるとともに冷却の効率を向上して、消費電力を低減することが可能となる。
【0143】
冷凍室及び冷蔵室の同時冷却運転Aと冷凍室単独冷却運転については、実施例1で詳細に述べているのでここでは省略し、冷凍室冷蔵室同時冷却運転Bについて、改めて図1,13,14及び16を参照して、以下に説明する。
【0144】
冷凍室及び冷蔵室の並行冷却運転Bでは、電磁弁23が開状態であるために、冷凍室用蒸発器22と冷蔵室用蒸発器25の両方に冷媒が供給され通流する。圧縮機10’’の第1の圧縮要素(低段圧縮要素)11は冷凍室用蒸発器22出口のガス冷媒を吸入し圧縮を行なう。しかし、電磁弁26が閉じられているため、中間冷却器27には冷媒は流れず、吐出側逆止弁13bの反対側の第2の圧縮要素(高段圧縮要素)12の吐出通路12b内のガス冷媒圧力より高い圧力まで、第1の圧縮要素11のガス冷媒は圧縮され、逆止弁13bを通過する。一方、高段圧縮要素12は冷蔵室用蒸発器25出口のガス冷媒を吸入し圧縮を行なう。この時、冷蔵室用蒸発器25の蒸発圧力は冷凍室用蒸発器22の蒸発圧力より高いため、逆止弁13aは閉じた状態となる。
【0145】
すなわち、圧縮機10’’の低段圧縮要素11は、冷凍室用蒸発器22からのガス冷媒を冷凍室用蒸発器22の蒸発圧力レベルの低圧から、凝縮器13の凝縮圧力レベルの高圧まで圧縮し、凝縮器20、第1のキャピラリ21、冷凍室用蒸発器22とともに、冷凍室を冷却する冷凍サイクルを形成する。一方、高段圧縮要素12は冷蔵室用蒸発器25のからのガス冷媒を冷蔵室用蒸発器22の蒸発レベルの中間圧から、凝縮器13の凝縮圧力レベルの高圧まで圧縮し、凝縮器20、第2のキャピラリ24、冷蔵室用蒸発器22とともに、冷蔵室を冷却する冷凍サイクルを形成する。この時、圧縮機10’’の密閉容器40内圧力は高段圧縮要素12の吸入ガスの圧力である中間圧となっている。
【0146】
また、このとき、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32を運転する。本運転では、冷蔵室用蒸発器25からのガス冷媒を、さらに冷凍室用蒸発器22の蒸発圧力レベルの低圧まで減圧し、その低圧から圧縮するのではなく、冷蔵室用蒸発器の蒸発圧力レベルの中間圧から圧縮するため、圧縮動力を低減することができ、本運転中の冷蔵庫の消費電力を大幅に低減することができる。
【0147】
なお、中間冷却器27の温度は冷蔵庫本体底部の空気温度とほぼ等しくなり、冷蔵室用蒸発器25の蒸発温度より高くなるため、ガス冷媒が中間冷却器27内で凝縮し滞留するという問題はない。
【0148】
この時、例えば、冷媒としてR134aまたはR600aを用い、冷凍室蒸発温度−26℃、冷蔵室蒸発温度−8℃とすると、低段圧縮要素11と高段圧縮要素12の押しのけ量が同等またはほぼ同等で、高段圧縮要素12の吸入ガスの比容積が低段圧縮要素11の吸入ガスの比容積のほぼ半分となるため、高段圧縮要素12の冷媒質量流量は低段圧縮要素11の冷媒質量流量の約2倍となり、冷凍室冷凍能力と冷蔵室冷凍能力の比は約1対2となる。
【0149】
次に図17〜図20を参照して、本実施例での制御フローチャートを説明する。以下の処理は制御装置101’が行なう。操作パネル106’から使用者の指令を受け付けた場合については後述する。
【0150】
本制御では、その時々の運転状態に合わせて冷蔵室温度および冷凍室温度の組合せを4通りに分け、それぞれに対して、冷凍室及び冷蔵室の並行(同時)冷却運転A、冷凍室及び冷蔵室の並行(同時)冷却運転B、冷凍室の単独冷却運転および停止を行なわせるものである。この処理をフローチャートに沿って説明する。
【0151】
図17において、冷蔵庫の運転スイッチがONならば(400Y)、運転停止の状態で冷蔵室温度センサ9、冷凍室温度センサ8にそれぞれ冷蔵室温度Tr、冷凍室温度Tfを検知させ(401)、冷蔵室温度Trが冷蔵室の冷却開始温度Trs以上か否か、及び冷凍室温度Tfが冷凍室冷却開始温度Tfs以上か否かを判定する(402)。
【0152】
冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かつ冷凍室温度Tfが冷凍室冷却開始温度Tfs以上ならば(402a)、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32、圧縮機10の運転を開始し(403)、冷凍室冷凍能力と冷蔵室冷凍能力がほぼ同等な冷凍室及び冷蔵室の並行冷却運転Aを行い、符号へ移行する。
【0153】
また、冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かつ冷凍室温度Tfが冷凍室冷却開始温度Tfs未満ならば(402b)、電磁弁26へ通電を行ない弁を閉じ、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32、圧縮機10の運転を開始し(420)、冷蔵室冷凍能力が冷凍室冷凍能力の約2倍となる冷凍室及び冷蔵室の並行冷却運転Bを行ない、符号(D)へ移行する。
【0154】
また、冷蔵室温度Trが冷蔵室冷却開始温度Trs未満かつ冷凍室温度Tfが冷凍室冷却開始温度Tfs以上ならば(402b)、電磁弁23、26へ通電を行ない弁を閉じ、凝縮器ファン30、冷凍室ファン31、圧縮機10の運転を開始し(430)、冷凍室単独の冷却運転を行ない、符号(E)へ移行する。
【0155】
また、冷蔵室温度Trが冷蔵室冷却開始温度Trs未満かつ冷凍室温度Tfが冷凍室冷却開始温度Tfs未満ならば(402b)、運転停止の状態を継続し、符号(C)へ移行する。
【0156】
冷凍室及び冷蔵室並行冷却運転Aを行なっている場合、図18の符号(B)を経て、タイマーをスタートさせ(404)、所定時間経過後に(405Y)、温度センサ8、9に冷凍室温度Tfと冷蔵室温度Trを検知させ(406)、冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かどうかと、冷凍室温度Tfが冷凍室冷却終了温度Tfe以下かどうかを判定する(407)。
【0157】
冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(407a)、圧縮機10、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32の運転を停止し(408)、冷凍室及び冷蔵室の並行冷却運転Aを終了し、符号(C)へ移行する。
【0158】
また、冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かつ冷凍室温度Tfが冷凍室冷却終了温度Tfeより高ければ(407b)、電磁弁23、26を閉じ、冷蔵室ファン32の運転を停止し(440)、冷凍室及び冷蔵室の並行冷却運転Aから冷凍室単独冷却運転に移行し、符号(E)へ移る。
【0159】
また、冷蔵室温度Trが冷蔵室冷却終了温度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(407c)、電磁弁26を閉じ(441)、冷凍室冷蔵室同時冷却運転Aから冷凍室及び冷蔵室の並行冷却運転Bに移行し、符号(D)へ移る。
【0160】
また、冷蔵室温度Trが冷蔵室冷却終了温度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了温度Tfeより高いならば(407d)、冷凍室冷蔵室同時冷却運転Aを継続し、符号(B)へ戻る。
【0161】
運転停止状態の場合、符号(C)を経て、タイマーをスタートさせ(409)、所定時間経過後に(410Y)、符号(A)に戻る。
【0162】
冷凍室及び冷蔵室の並行冷却運転Bを行なっている場合、図19の符号(D)を経て、タイマーをスタートさせ(421)、所定時間経過後に(422Y)、温度センサ8、9に冷凍室温度Tfと冷蔵室温度Trを検知させ(423)、冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かどうかと、冷凍室温度Tfが冷凍室冷却終了温度Tfe以下かどうかを判定する(424)。
【0163】
冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(424a)、圧縮機10、凝縮器ファン30、冷凍室ファン31、冷蔵室ファン32の運転を停止し(408)、冷凍室及び冷蔵室の並行冷却運転Bを終了し、符号(C)へ移行する。
【0164】
また、冷蔵室温度Trが冷蔵室冷却終了温度Tre以下かつ冷凍室温度Tfが冷凍室冷却終了温度Tfeより高ければ(424b)、電磁弁23を閉じ、冷蔵室ファン32の運転を停止し(426)、冷凍室及び冷蔵室の並行冷却運転Bから冷凍室単独冷却運転に移行し、符号(E)へ移る。
【0165】
また、冷蔵室温度Trが冷蔵室冷却終了温度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(424c)、冷凍室及び冷蔵室の並行冷却運転Bを継続し、符号(D)に戻る。
【0166】
また、冷蔵室温度Trが冷蔵室冷却終了温度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了温度Tfeより高いならば(424d)、電磁弁26を開き(427)、冷凍室及び冷蔵室の並行冷却運転Bから冷凍室冷蔵室冷却運転Aに移行し、符号(B)へ移る。
【0167】
冷凍室単独の冷却運転を行なっている場合、図20の符号(E)を経て、タイマーをスタートさせ(431)、所定時間経過後に(432Y)、温度センサ8、9に冷凍室温度Tfと冷蔵室温度Trを検知させ(433)、冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かどうかと、冷凍室温度Tfが冷凍室冷却終了温度Tfe以下かどうかを判定する(434)。
【0168】
冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(434a)、冷蔵室ファン32の運転を開始し、電磁弁23を開き(435)、冷凍室単独冷却運転から冷凍室冷蔵室同時冷却運転Bに移行し、符号(D)へ移る。
【0169】
また、冷蔵室温度Trが冷蔵室冷却開始温度Trs以上かつ冷凍室温度Tfが冷凍室冷却終了温度Tfeより高ければ(434b)、冷蔵室ファン32の運転を開始し、電磁弁23、26を開き(436)、冷凍室単独冷却運転から冷凍室冷蔵室同時冷却運転Aに移行し、符号(B)へ移る。
【0170】
また、冷蔵室温度Trが冷蔵室冷却開始温度Trs未満かつ冷凍室温度Tfが冷凍室冷却終了温度Tfeより高ければ(434c)、冷凍室単独冷却運転を継続し、符号(E)に戻る。
【0171】
また、冷蔵室温度Trが冷蔵室冷却開始温度Trs未満かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe以下ならば(434d)、圧縮機10、凝縮器ファン30、冷凍室ファン31の運転を停止し、電磁弁23、26を開いて(437)、冷凍室単独運転を終了し、符号(C)へ移行する。
【0172】
圧縮機回転数の設定は、例えば、冷蔵室温度Trと冷蔵室冷却終了温度Treとの温度差と冷凍室温度Tfと冷凍室冷却終了温度Tfeとの温度差のうち大きい方の温度差にほぼ比例させて制御を行なう。
【0173】
除霜運転制御に関しては、例えば、冷凍室ファン31の運転時間を積算し、所定の時間になると、除霜用電気ヒータ6,7が通電され、各蒸発器22,26の霜取りを行ない、蒸発器の表面温度を温度センサ80,81で検知し、各蒸発器が所定の温度以上になったらそれぞれの電気ヒータ6,7への通電を停止し、霜取り運転を停止する。
【0174】
使用者により操作パネル106’の急速冷却ボタン90が操作されると、優先的に冷蔵室の冷却運転が行なわれる。この時、冷蔵室の冷却運転が強制的に強に設定され、これに沿って冷蔵室及び冷凍室の温度の設定がなされる。そして、冷蔵室の冷凍能力が冷凍室冷凍能力より大きい冷凍室及び冷蔵室の並行冷却運転Bを一定時間行なう。また、圧縮機の回転数は、冷蔵室温度Trと冷蔵室冷却終了温度Treとの温度差にほぼ比例させて設定され、この比例定数を通常より大きい値に設定される。このことにより、冷凍サイクルの冷却能力は通常運転の場合よりも大きくなり、冷蔵室内がより短時間で冷却され、また低い温度で冷却される。
【0175】
また、使用者により操作パネル106’の急速冷凍ボタン90が押されると、優先的に冷凍室の冷凍運転が行なわれる。この時、冷凍室の冷却運転が強制的に強に設定され、これに沿って冷凍室の温度の設定が行われる。そして冷凍室単独の冷却運転が所定の時間行なわれる。また、本実施例では、この運転の際の圧縮機の回転数は、圧縮機の最高回転数に設定される。
【0176】
以上のように、本実施例では三つの運転モードを通常の運転時に負荷に合わせて使い分けることにより、冷蔵庫の消費電力をより低減することができる。
【0177】
また、使用者の指令に合わせた運転モードを選択することにより、効率的な運転を行なうことができる。
【0178】
上記説明した実施例に係る冷蔵庫の効果について、以下に、そのデータを示す。図21は、上記本発明の実施例に係る冷蔵庫と従来技術による冷蔵庫の消費電力とを示すグラフである。図21に示すように、冷凍室のみの冷却が必要な時の消費電力は、冷凍室冷蔵室同時冷却運転のみの従来例では、本発明と比較して、冷蔵室冷却による消費電力(圧縮機入力、ファン入力等)と冷蔵室食品の凍結防止のためのヒータ消費電力(冷蔵室冷却能力と同等分)が余分に必要となる。したがって、この時、従来例に比べて、上記本発明の実施例では、例えば、約3分の1の消費電力で済み、大幅な消費電力低減が可能である。
【0179】
本発明の直接の対象は冷蔵庫であるが、蒸発温度の異なる複数の蒸発器をもち、複数の部屋を冷却する冷蔵庫以外の冷凍空調装置にも適用できる。
【0180】
また、第1の実施例の冷蔵庫は、図2に示すように冷蔵庫本体(箱体)が冷凍室と冷蔵室を一体とした構成としたが、本発明は、冷凍室と冷蔵室が別々の箱体となって複数の箱体から構成される冷蔵庫にも適用できる。
【0181】
また、第1の実施例では、圧縮機として、ローラ部とベーン部が一体に形成された(シリンダ内を運動するピストンのローラ部がベーン部を有している)2シリンダロータリ圧縮機を用いて説明したが、本発明は、2個以上の複数の圧縮要素を持つその他の圧縮機、例えば、ローラ部とベーン部が別体となったロータリ圧縮機やレシプロ圧縮機、スクロール圧縮機を用いても良い。また、1個の圧縮要素を持つ圧縮機を複数組み合わせて構成しても良い。
【0182】
【発明の効果】
以上説明したように、本発明によれば、効率良く庫内を冷却することができるとともに、圧縮動力を低減することができる。更に、冷媒が供給されていない熱交換器で、冷媒が凝縮し滞留するという問題を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る冷蔵庫の冷凍サイクルの構成を示す概略図である。
【図2】図1に示す実施例の冷凍サイクルを用いた冷蔵庫の概略を示す縦断面図である。
【図3】図1に示す冷凍サイクルを構成する圧縮機の構造を示す縦断面図である。
【図4】図3に示す圧縮機の部品である第2のシリンダ、仕切り板、第1のシリンダ、副軸受、第1の吐出室カバーの構造を示す斜視図である。
【図5】図3に示す圧縮機の部品である弁の構造を示す斜視図である。
【図6】図3に示す圧縮機の部品である主軸受、第2の吐出室副カバー、第2の吐出室主カバーの構造を示す斜視図である。
【図7】図3に示す圧縮機のX−X断面の第2のシリンダ部側の構造を示す断面図である。
【図8】図3に示す圧縮機が2段圧縮を行うときの一回転中の圧縮室圧力と密閉容器内圧力の圧力差を示すグラフである。
【図9】図3に示した圧縮機が単段圧縮を行うときの一回転中の圧縮室圧力と密閉容器内圧力の圧力差を示すグラフである。
【図10】図2の冷蔵庫の運転制御フローチャートである。
【図11】本発明の第2の実施例に係る冷蔵庫の冷凍サイクルの構成を示す概略図である。
【図12】図11の冷凍サイクルの電磁弁の開閉動作を示す表である。
【図13】本発明の第3の実施例に係る冷蔵庫の冷凍サイクルの概略を示す冷蔵庫の透視図である。
【図14】図13の冷蔵庫の概略を示す縦断面図である。
【図15】図14の冷蔵庫の操作パネルである。
【図16】図13の冷凍サイクルの電磁弁の開閉動作を示す表である。
【図17】図14の冷蔵庫の運転制御フローを示すフローチャートの一部である。
【図18】図14の冷蔵庫の運転制御フローを示すフローチャートの一部である。
【図19】図14の冷蔵庫の運転制御フローを示すフローチャートの一部である。
【図20】図14の冷蔵庫の運転制御フローを示すフローチャートの一部である。
【図21】本発明の実施例に係る冷蔵庫と従来技術による冷蔵庫の消費電力とを示すグラフである。
【符号の説明】
1,1’…冷蔵庫本体
2,2A,2B…冷凍室
3,3A…冷蔵室
3B…野菜室
6,7…除霜用電気ヒータ
8,9…温度センサ
10,10’,10’’…圧縮機
11…低段圧縮要素
11a’…低段圧縮要素吸入管
11b’…低段圧縮要素吐出管
12…高段圧縮要素
12a’…高段圧縮要素吸入管
12b’,12b’’…高段圧縮要素吐出管
12c…密閉容器内圧力形成通路
13a、13b…逆止弁
20,20A,20B…凝縮器
21, 24…キャピラリ
22…冷凍室蒸発器
23,26,70a、70b、71a、71b…電磁弁
25…冷蔵室蒸発器
27…中間冷却器
40…密閉容器
42…クランク軸
44…主軸受
45、 47…シリンダ
46…仕切り板
48…副軸受
49,50,51…吐出室カバー
52,53…ローラ
63…油ポケット
101,101’ …制御装置
102,103,104,105…インバータ
106,106’…操作スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator and a refrigeration air conditioner including a plurality of evaporators and a compressor having a compression element.
[0002]
[Prior art]
Since the ratio of the refrigerator to the household electricity bill is large, reducing the power consumption of the refrigerator is an important issue in order to reduce the household electricity bill. As a technique for solving this problem, there is a refrigerator having two evaporators and two compression elements having different evaporation temperatures and having outlets of the two evaporators connected to the suction passages of the two compression elements, respectively. It is considered. An example of such a prior art is disclosed in Japanese Patent Laid-Open No. 5-223368.
[0003]
The refrigerator disclosed in the above prior art is connected to a freezer compartment evaporator that cools the freezer compartment and a refrigerator compartment evaporator that cools the refrigerator compartment in parallel with different evaporation temperatures. It has elements. The suction passage of the low-stage compression element is connected to the freezer compartment evaporator outlet, and the discharge passage of the low-stage compression element is joined to the refrigerator compartment evaporator outlet and is connected to the suction passage of the high-stage compression element, so that the high-stage compression is performed. The discharge passage of the element is connected to the condenser inlet.
[0004]
The low-stage compression element compresses the gas refrigerant flowing out of the freezer evaporator from a low pressure at the evaporation pressure level of the freezer evaporator to an intermediate pressure at the evaporation pressure level of the freezer evaporator, The gas refrigerant compressed to the intermediate pressure by the low-stage compression element and the gas refrigerant flowing out of the refrigerator compartment evaporator are both compressed from the intermediate pressure to a high pressure at the condensation pressure level of the condenser.
[0005]
In such a conventional technique, the gas refrigerant flowing out of the refrigerating room evaporator having a higher evaporation temperature as compared with the freezing room evaporator is compressed from an intermediate pressure instead of being decompressed and compressed from a low pressure. It is trying to reduce the power consumption of the refrigerator by reducing the compression power of the low-stage compression.
[0006]
In addition, as described above, a refrigerator having an evaporator in each of the freezer compartment and the refrigerator compartment has a single evaporator, and a refrigerator compartment as compared with a refrigerator that cools both the refrigerator compartment and the refrigerator compartment by forced circulation of cold air. Since the evaporation temperature of the evaporator can be increased, the discharge cold air temperature to the refrigerator compartment can be increased and the humidity can be kept high.
[0007]
[Problems to be solved by the invention]
In general, the freezer temperature of a refrigerator is −18 ° C. or lower, while the refrigerator temperature is required to be 5 ° C. or lower higher than 0 ° C. In the prior art disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-223368, the freezing room and the refrigerating room are simultaneously cooled using two compression elements and two evaporators having different evaporation temperatures. The structure which aims at reduction of this is shown.
[0008]
However, in the operation of cooling the freezing room and the refrigerating room in parallel according to the above-described prior art, the freezing room is cooled when the freezing room temperature is equal to or higher than the predetermined temperature even when the freezing room temperature is lower than the predetermined temperature. However, no consideration was given to the point of being adversely affected by the storage in the refrigerator compartment. In order to solve such a problem, if an electric heater for warming the refrigerator compartment is provided so that the food in the refrigerator compartment is not frozen, there is a problem that the power consumption is increased.
[0009]
In order to solve these problems, it is necessary to cool each chamber independently. However, the structure of the compressor and the refrigeration cycle for achieving such a function is considered in this prior art. It wasn't. In particular, the configuration of a refrigerator that is operated efficiently when switching between an operation that cools each chamber independently and an operation that operates simultaneously with each chamber has not been considered in the prior art.
[0010]
An object of the present invention is to provide a refrigerator or a refrigeration air conditioner that includes a cooler that individually cools a plurality of storage rooms and efficiently cools the interior of the storage.
[0011]
[Means for Solving the Problems]
  The above purpose is
  A first cooler for cooling the first storage chamber, a second cooler for cooling the second storage chamber, a compressor having first and second compression elements, and a condenser are connected. In a refrigerator equipped with a freezing cycle,
  A refrigerant pipe connected to a discharge passage from the first compression element and an inlet of the condenser;
  A refrigerant pipe connected to the outlet of the condenser and the first cooler and the second cooler;
  A first suction passage connected to the first cooler and the first compression element;
  A second suction passage connected to the second cooler and the second compression element;
  First valve means provided in a passage connected to the first and second suction passages to stop the flow of refrigerant from the first suction passage to the second suction passage;
  Provided in a passage connected to a discharge passage from the first compression element and a discharge passage from the second compression element, and from a discharge passage of the first compression element to a discharge passage of the second compression element Second valve means for stopping the flow of the refrigerant;
  A connection passage between the discharge passage from the second compression element and the first suction passage;
  Adjusting means for adjusting the flow of refrigerant through the first cooler and the first suction passage and the flow of refrigerant flowing from the second compression element to the first compression element;
  The adjusting means is
  A branch portion provided on a refrigerant pipe connecting the condenser and the first and second coolers and branching the refrigerant pipe to the first and second coolers;
  First adjusting means provided on a refrigerant pipe between the branch portion and the first cooler for adjusting the flow of the refrigerant in the pipe;
  A second adjusting means provided on a connecting passage between the discharge passage from the second compression element and the first suction passage, for adjusting the flow of the refrigerant in the passage;
  Control means for adjusting the first and second adjusting means;
With
  A heat exchanger provided on a connection passage between the second adjustment means and the first suction passage.
Is achieved.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[Example 1]
FIG. 1 is a cycle configuration diagram showing an outline of a refrigeration cycle of a refrigerator according to a first embodiment of the present invention. FIG. 2 is a longitudinal sectional view schematically showing a refrigerator using the refrigeration cycle of the embodiment shown in FIG. FIG. 3 is a longitudinal sectional view showing the internal structure of the compressor provided in the refrigeration cycle of the embodiment shown in FIG. FIG. 4 is a perspective view showing the structure of the second cylinder, the partition plate, the first cylinder, the auxiliary bearing, and the first discharge chamber cover, which are the compressor parts shown in FIG. FIG. 5 is a perspective view showing a valve that is a compressor component shown in FIG. 3. FIG. 6 is a perspective view showing the structure of the main bearing, the second discharge chamber sub-cover, and the second discharge chamber main cover, which are the compressor parts shown in FIG. FIG. 7 is a view showing a second cylinder portion of the compressor shown in FIG. FIG. 8 is a graph showing the difference between the pressure in the compression chamber during one rotation and the pressure in the sealed container when the compressor of the embodiment shown in FIG. 3 performs two-stage compression. FIG. 9 is a graph showing the difference between the compression chamber pressure during one rotation and the pressure in the sealed container when the compressor of the embodiment shown in FIG. 3 performs single-stage compression. FIG. 10 is a flowchart showing an operation control flow of the refrigerator of the embodiment shown in FIG.
[0023]
  In FIG. 1, reference numeral 10 denotes a compressor, and reference numeral 40 denotes an airtight container. The airtight container 40 has two compression elements (a low-stage compression element 11 and a high-stage compression element 12). In the present embodiment, as will be described later, when these two compression elements are connected in series, the refrigerant flowing through the refrigeration cycle passes through these compression elements in turn and is spread twice by each compression element. Compressed. In addition, when two compression elements are connected in parallel, the refrigerant flowing through the cycle is condensed.vesselAfter passing through the evaporator, it is divided into individual compression elements and flows in parallel (simultaneously in parallel). After being compressed once by each compression element, it is discharged and merged and flows along the refrigerant passage. That is, it flows into the low-stage compression element 11 and also flows into the high-stage compression element 12 separately.
[0024]
Further, in this embodiment, the displacement amounts of the low-stage compression element 11 and the high-stage compression element 12 are set to be equal or almost equal.
[0025]
11a and 11b are a suction passage and a discharge passage of the low-stage compression element 11, respectively, and 12a and 12b are a suction passage and a discharge passage of the high-stage compression element 12, respectively. Reference numeral 12 c denotes a sealed container pressure forming passage that communicates the suction passage 12 a of the high-stage compression element 12 with the sealed container 40.
[0026]
13 a is a suction side check valve, which is disposed in the sealed container 40 and between the suction passage 11 a of the low-stage compression element 11 and the suction passage 12 a of the high-stage compression element 12. When the gas refrigerant pressure in the suction passage 12a of the high-stage compression element 12 is higher than the gas refrigerant pressure in the suction passage 11a of the low-stage compression element 11, the valve is closed and the suction passage 12a of the high-stage compression element 12 is closed. Is lower than the gas refrigerant pressure in the suction passage 11 a of the low-stage compression element 11, the valve is opened, and the gas refrigerant on the suction passage 11 a side of the low-stage compression element 11 is in the high-stage compression element 12. It flows into the suction passage 12a side.
[0027]
Reference numeral 13b denotes a discharge-side check valve, which is disposed in the sealed container 40 and between the discharge passage 11b of the low-stage compression element 11 and the discharge passage 12b of the high-stage compression element 12. When the gas refrigerant pressure in the discharge passage 12b of the high-stage compression element 12 is higher than the gas refrigerant pressure in the discharge passage 11b of the low-stage compression element 11, the valve is closed, and the discharge passage 12b of the high-stage compression element 12 Is lower than the gas refrigerant pressure in the discharge passage 11 b of the low-stage compression element 11, the valve is opened, and the gas refrigerant on the discharge passage 11 b side of the low-stage compression element 11 is in the high-stage compression element 12. It flows into the discharge passage 12b side.
[0028]
The refrigerant discharge passage 12 b of the high-stage compression element 12 is connected to the inlet of the condenser 20. Further, the refrigerant pipe connected to the outlet of the condenser 20 is branched into two, one of which is a first capillary 21 as a decompression device, a freezer compartment evaporator 22, and a suction passage 11a of the low-stage compression element 11. Connected sequentially. The other branched refrigerant pipe is sequentially connected to the first electromagnetic valve 23, the second capillary 24 as a pressure reducing device, the refrigerator 25 evaporator, and the suction passage 12a of the high-stage compression element 12.
[0029]
The electromagnetic valve 23 is a valve that opens and closes when a voltage is applied to adjust the flow of refrigerant in the refrigerant pipe. When the voltage is not energized, the refrigerant flows to the refrigerator compartment evaporator 25 in an open state, and when energized, the refrigerant flows to the refrigerator compartment evaporator 25 in a closed state.
[0030]
The first capillary 21 is disposed in contact with the outlet of the freezer compartment evaporator 22 and the suction passage 11a of the low-stage compression element 11 so as to allow heat exchange. The second capillary 24 is disposed so as to be capable of heat exchange between the outlet of the refrigerating chamber evaporator 25 and the suction passage 12a of the high-stage compression element 12. Thereby, since the refrigerant | coolant of the capillaries 21 and 24 is cooled, pressure-reducing, the inlet enthalpy of each evaporator 22 and 25 falls, and the freezing effect of an evaporator can be increased. On the other hand, since the refrigerant between the outlets of the evaporators 22 and 25 and the suction passages 11a and 12a is heated, it is possible to prevent dew from the piping.
[0031]
26 is a second solenoid valve, 27 is an intermediate cooler, and the discharge passage 11b of the low-stage compression element 11 and the suction passage 12a of the high-stage compression element 12 are connected via the solenoid valve 26 and the intermediate cooler 27. .
[0032]
The second solenoid valve 26 opens and closes the valve by applying a voltage in the same manner as the first solenoid valve 23, and is opened when not energized, and is opened from the discharge passage 11 b of the low-stage compression element 11. Gas refrigerant flow from the discharge passage 11b of the low-stage compression element 11 to the suction passage 12a of the high-stage compression element 12 while allowing the flow of gas refrigerant to the suction passage 12a of the compression element 12 to pass and closed when energized To prevent.
[0033]
The intercooler 27 exchanges heat between the gas refrigerant in the discharge passage 11b of the low-stage compression element 11 and the air to cool the gas refrigerant.
[0034]
30 is a condenser fan, 31 is a freezer compartment evaporator fan, and 32 is a refrigerator compartment evaporator fan.
[0035]
In FIG. 2, the cross-sectional schematic of the refrigerator using the refrigerating cycle of FIG. 1 is shown. The same parts as those in FIG. 1 is a refrigerator main body, 2 is a freezer compartment, 3 is a refrigerator compartment, 4 is an air path formation plate of the evaporator 22 for freezer compartments, 5 is an air path formation plate of the evaporator 25 for refrigerator compartments. 6 is an electric heater for defrosting of the evaporator 22 for freezer compartment, 7 is an electric heater for defrosting of the evaporator 25 for refrigerator compartment, and energization and de-energization are performed at predetermined intervals, respectively. Do frost. 8 is a temperature sensor that detects the temperature in the freezer compartment 2, and 9 is a temperature sensor that detects the temperature in the refrigerator compartment 3. The arrows in the freezer compartment 2 and the refrigerator compartment 3 indicate the direction of airflow.
[0036]
The compressor 10, the condenser 20, the electromagnetic valves 23 and 26, the intercooler 27, and the condenser fan 30 are disposed at the bottom of the refrigerator body 1, and the capillaries 21 and 24 are disposed in the rear heat insulating material of the refrigerator body 1 ( Not shown).
[0037]
The temperature is detected by the temperature sensors 8 and 9, and these outputs are input to the control device 101 of the refrigerator. In the control apparatus 101, the necessity of the cooling operation of the storage chambers 2 and 3 is determined and determined based on the outputs of the temperature sensors 8 and 9. The rotation speeds of the compressor 10 and the fan 30 of the machine room and the fans 31 and 32 of the respective storage rooms are set, and a command is given to the inverters 102, 103, 104, and 105 to adjust these rotation speeds. At the same time, an opening / closing operation command is given to the electromagnetic valves 23 and 26.
[0038]
In addition, when the control device 101 detects a user command from a switch or button 106 provided in the refrigerator 1, the inverters 102 to 105, the electromagnetic valve 23, The operation of the refrigerator may be forcibly set by giving a command to 26. Such operation is appropriate when the user wants to perform cooling and freezing in a short time. When the user commands freezing in a short time, in order to increase the cooling capacity of the freezer compartment, the supply of the refrigerant to the evaporator 25 for the refrigerator compartment is stopped, and the refrigerant is supplied only to the evaporator 22 for the freezer compartment. The solenoid valves 23 and 26 are set so that the refrigerant flows in parallel to the two compression elements 11 and 12. In this embodiment, the electromagnetic valves 23 and 26 are closed.
[0039]
On the other hand, when such a short-time cooling operation is not required, for example, when the difference between the temperature in the freezer compartment and the set temperature is small, the freezer compartment is cooled alone in order to operate more efficiently. Even in this case, the electromagnetic valves 23 and 26 may be set so as to achieve two-stage compression in which the refrigerant sequentially flows through the compression elements 11 and 12. In this embodiment, the electromagnetic valve 23 is closed and the electromagnetic valve 26 is opened. However, when this operation is performed, in the present embodiment, the displacement amounts of the compression elements 11 and 12 are substantially the same, and therefore, the compression element 11 on the lower stage side hardly performs compression work, so the compressor by two-stage compression is used. The improvement in efficiency cannot be expected. Therefore, in order to improve the efficiency when the cooling operation is performed in each chamber alone, the displacement amount of the compression elements 11 and 12 may be varied to reduce the volume of the compression element 12.
[0040]
FIG. 3 is a longitudinal sectional view of the compressor 10 of FIG. The compressor 10 is a two-cylinder rotary compressor, and an electric motor part and a compression mechanism part are housed in a sealed container 40.
[0041]
The electric motor part is composed of a stator 41 fixed to the sealed container 40 by shrink fitting or the like and a rotor 43 fixed to the crankshaft 42.
[0042]
The compression mechanism section has two compression elements corresponding to the low-stage compression element 11 and the high-stage compression element 12 of FIG. The high-stage compression element is composed of a roller 52 (a roller 52 (which includes a main bearing 44 supporting the crankshaft 42, a second cylinder 45, a partition plate 46, a roller portion 52a and a vane portion 52b inserted into the eccentric portion 42a of the crankshaft 42). 7), and sliding members 54a and 54b (see FIG. 7 below) that sandwich the vane portion 52b that enables reciprocating motion and swinging motion of the vane portion 52b. The low-stage compression element includes the partition plate 46, the first cylinder 47, the auxiliary bearing 48 that supports the crankshaft 42, and a roller portion and a vane portion (not shown) inserted into the eccentric portion 42b of the crankshaft 42. And a sliding member (not shown) that sandwiches the vane portion that enables reciprocating motion and swinging motion of the vane portion of the roller 53. The main bearing 44 is fixed to the sealed container 40 by welding or the like.
[0043]
The two eccentric portions 42a and 42b of the crankshaft 42 are formed with a phase difference of 180 ° in the rotation direction, and the rollers 52 and 53 are respectively rotated by the cylinders 45 and 47 as the crankshaft 42 rotates. It is designed to move eccentrically inside. The vanes of the rollers 52 and 53 serve to divide the cylinders 45 and 47 into suction chambers and compression chambers. As the crankshaft 42 rotates, the gas refrigerant is alternately compressed at intervals of 180 ° in the two compression elements.
[0044]
11a ′ is a low-stage compression element suction pipe that partially forms the suction passage 11a of the low-stage compression element 11 of FIG. 1, and 11b ′ is a low-stage compression that partially forms the discharge passage 11b of the low-stage compression element 11 of FIG. The element discharge pipe, 12a ′ is a high-stage compression element suction pipe that partially constitutes the suction passage 12a of the high-stage compression element 12 in FIG. This is a high-stage compression element discharge pipe.
[0045]
Reference numeral 49 denotes a first discharge chamber cover that forms a first discharge chamber together with the sub-bearing 48, and 50 and 51 denote second discharge chamber sub-covers that form a first discharge chamber together with the main bearing 44, respectively. It is a room owner cover.
[0046]
4 (a), (b), (c), (d), and (e) respectively show a second cylinder 45, a partition plate 46, and a first plate that are parts of the compressor 10 shown in FIG. It is the perspective view which looked at the cylinder 47, the sub bearing 48, and the 1st discharge chamber cover 49 from the opposite side to an electric motor part.
[0047]
In the second cylinder 45 shown in FIG. 4 (a), sliding members 54a and 54b sandwiching the vane portion of the roller 51 are incorporated in one space of the gourd-shaped space 45m, and the other space includes the vane portion and the cylinder. This is a space for preventing interference (see FIG. 7 described later). 45e is a hole that partially forms a passage connecting the suction passage 11a of the low-stage compression element 11 of FIG. 1 and the suction-side check valve 13a, and 45f is a discharge side reverse of the discharge passage 11b of the low-stage compression element 11 of FIG. A hole 45g partially forming a passage connecting the stop valve 13b is a recess and a notch partially forming the suction passage 12a of the high-stage compression element 12 of FIG.
[0048]
45u is two holes for fixing the cylinder 45 to the main bearing 44 with bolts, 45v is a partition plate 46, and two female screws for fixing the first cylinder 47 to the second cylinder 45 with bolts The holes 45w are four holes for fastening to the main bearing 44 together with the partition plate 46, the first cylinder 47, the auxiliary bearing 48, and the first discharge chamber cover 49 with bolts.
[0049]
In the partition plate 46 shown in FIG. 4B, 46e is a hole that partially forms a passage connecting the suction passage 11a of the low-stage compression element 11 and the suction-side check valve 13a of FIG. A hole forming part of a passage connecting the discharge passage 11b of the stage compression element 11 and the discharge side check valve 13b, 46g is a hole forming part of the suction passage 12a of the high stage compression element 12 of FIG.
[0050]
46 v is two holes for fixing to the second cylinder 45 together with the first cylinder 47, 46 w is the second cylinder 45, the first cylinder 47, the auxiliary bearing 48, the first discharge chamber. Four holes for fastening the main bearing 44 together with the cover 49 with bolts.
[0051]
In the first cylinder 47 shown in FIG. 4 (c), 47m is equivalent to 45m in FIG. 4 (a). 47e is a notch that partially forms the suction passage 11a of the low-stage compression element 11 of FIG. 1, and 47f is a portion of the passage that connects the discharge passage 11b and the discharge-side check valve 13b of the low-stage compression element 11 of FIG. The hole 47g is a hole that partially forms the suction passage 12a of the high-stage compression element 12 of FIG.
[0052]
47v is two holes for fixing to the second cylinder 45 together with the partition plate 46, 47w is the second cylinder 45, the partition plate 46, the first cylinder 47, the auxiliary bearing 48, the first discharge chamber. Four holes for fastening the main bearing 44 together with the cover 49 with bolts.
[0053]
In the auxiliary bearing 48 shown in FIG. 4D, 48e is a hole that partially forms the suction passage 11a of the low-stage compression element 11 of FIG. 1, and 48t is a valve seat for the low-stage compression element discharge valve. 48d is a discharge hole, 48d 'is a female screw hole for fixing the reed valve 61 shown in FIG. 5A and the valve retainer 62 shown in FIG. Here, the reed valve 61 functions as a discharge valve. 48f is a concave part that partially constitutes the discharge passage 11b of the low-stage compression element 11 of FIG. 1 together with the first discharge chamber cover 49, and forms a discharge chamber, which functions as a silencer by changing the flow passage cross-sectional area. 48f 'is a hole that partially forms a passage connecting the discharge passage 11b of the low-stage compression element 11 of FIG. 1 and the discharge-side check valve 13b, and 48g is a part of the suction passage 12a of the high-stage compression element 12 of FIG. It is a hole to be formed.
[0054]
48w is a hole for fastening four bolts. Reference numeral 48k denotes an oil supply hole for supplying lubricating oil to the crankshaft 42 by an oil supply pump that uses the reciprocating motion of the vane portion of the roller 53 or the like.
[0055]
In the first discharge chamber cover 49 shown in FIG. 4 (e), 49e is a hole that partially forms the suction passage 11a of the low-stage compression element 11 of FIG. 1, and the low-stage compression element suction pipe 11a ′ of FIG. 49f is a hole that partially forms the discharge passage 11b of the low-stage compression element 11 of FIG. 1, and is connected to the low-stage compression element discharge pipe 11b 'of FIG. 3, and 49g is the high-stage compression element 12 of FIG. 3 is partially connected to the high-stage compression element suction pipe 12a ′ of FIG. 49w is a hole for fastening four bolts. Reference numeral 60 denotes an oil supply passage.
[0056]
6 (a), 6 (b), and 6 (c) respectively show a main bearing 44, a second discharge chamber sub cover 50, and a second discharge chamber main cover 51 that are parts of the compressor 10 shown in FIG. It is the perspective view which looked at from the electric motor part side.
[0057]
In the main bearing 44 shown in FIG. 6 (a), 44t is a recess for forming a valve seat or the like of the high-stage compression element discharge valve, 44d is a discharge hole, and 44d 'is shown in FIG. 5 (a). The reed valve 61 is a female screw hole for fixing the valve retainer 62 shown in FIG. 5B to the main bearing 44 with a bolt. Here, the reed valve 61 functions as a discharge valve.
[0058]
44t ′ is a recess for forming the valve seat of the suction side check valve 13a shown in FIG. 1, 44e is a hole of the check valve, 44e ′ is a reed valve 61 shown in FIG. This is a female screw hole for fixing the valve retainer 62 shown in FIG. 5B to the main bearing 44 with a bolt. The reed valve 61 here functions as a check valve. That is, when the gas refrigerant pressure in the space of the recess 44t ′ is higher than the gas refrigerant pressure in the hole 44e, the reed valve is in close contact with the valve seat, the valve is closed, and the gas refrigerant pressure in the space of the recess 44t ′ is When the pressure is lower than the gas refrigerant pressure in the hole 44e, the reed valve floats from the valve seat and the valve is opened.
[0059]
44g is a hole that partially forms a passage connecting the suction passage 12a of the high-stage compression element 12 of FIG. 1 and the suction-side check valve 13a. Reference numeral 44g 'denotes a recess, which together with the second discharge chamber cover 50, forms a flow path that communicates the hole 44g and the recess 44t' constituting the check valve.
[0060]
44t ″ is a recess for forming the valve seat of the discharge side check valve 13b shown in FIG. 1, 44f is a hole of the check valve, 44f ′ is a reed valve 61 shown in FIG. 5 (a). 5B is a female screw hole for fixing the valve retainer 62 shown in FIG. 5B to the main bearing 44 with a bolt. The reed valve 61 here functions as a check valve. That is, when the gas refrigerant pressure in the space of the recess 44t ″ is higher than the gas refrigerant pressure in the hole 44f, the reed valve is in close contact with the valve seat, the valve is closed, and the gas refrigerant in the space of the recess 44t ″. When the pressure is lower than the gas refrigerant pressure in the hole 44f, the reed valve is lifted from the valve seat and the valve is opened.
[0061]
44h partially forms the discharge passage 11b of the high-stage compression element 12 shown in FIG. 1, and the hole on the back side in the figure is connected to the high-stage compression element discharge pipe 12b 'of FIG.
[0062]
Reference numeral 44u denotes two female screw holes for fixing the second cylinder 45 shown in FIG. 4 to the rear side of the figure with bolts. 44w is four female screw holes, and the second cylinder 45, partition plate 46, first cylinder 47, auxiliary bearing 48, and first discharge chamber cover 49 shown in FIG. Two of them are also used to fix the second discharge chamber sub cover 50 and the second discharge chamber main cover 51 on the front side of the figure.
[0063]
In the second discharge chamber sub-cover 50 shown in FIG. 6 (b), 50c is a hole that partially forms the sealed container internal pressure forming passage 12c of FIG. 1, and the recesses 44t ′ and 44g ′ of the main bearing 44 and 44g ′ Communicate. 50h is a convex part that partially forms the discharge passage 12b of the high-stage compression element 12 of FIG. 1 together with the main bearing 44 to form a discharge chamber. This is a hole communicating with another discharge chamber space constituted by the second discharge chamber main cover 51. 50h '' forms a passage connecting the discharge passage 12b of the high-stage compression element 12 of FIG. 1 and the discharge-side check valve 13b, and 50h '' 'denotes the second discharge chamber sub-cover 50 and a second later-described second cover 50. This is a hole that communicates the space constituted by the discharge chamber main cover 51 and the hole 44 h of the main bearing 44 described above.
[0064]
Reference numeral 50w denotes two holes for fixing to the main bearing 44 together with the second discharge chamber main cover 51 with bolts.
[0065]
In the second discharge chamber main cover 51 shown in FIG. 6 (c), 51c is a convex portion, together with the second discharge chamber cover 50, forming a closed container pressure forming passage 12c in FIG. It communicates with the inside of the sealed container 40 of FIG. 51 h is a convex portion that forms a space together with the second discharge chamber sub-cover 50, and the cross-sectional area of the flow path connecting the hole 50 h ′ and the hole 50 h ′ ″ of the second discharge chamber sub-cover 50 changes. To act as a silencer.
[0066]
Reference numeral 51w denotes two holes for fixing to the main bearing 44 together with the second discharge chamber sub cover 50 with bolts.
[0067]
The configuration of the gas refrigerant passage of the compressor 10 shown in FIG. 3 is summarized as follows. The suction passage 11a of the low-stage compression element 11 in FIG. 1 is composed of a low-stage compression element suction pipe 11a ′, a hole 49e, a hole 48e, and a notch 47e. The suction passage 11a and the suction-side check valve 13a in FIG. The connecting passage is composed of a hole 46e, a hole 45e, and a hole 44e. The discharge passage 11b in FIG. 1 includes a recess 48t, a recess 48f (a space formed together with the first discharge chamber cover 49), a hole 49f, and a lower stage. The passage that includes the compression element discharge pipe 11b ′ and connects the discharge passage 11b and the discharge-side check valve 13b in FIG. 1 includes a hole 48f ′, a hole 47f, a hole 46f, a hole 45f, and a hole 44f.
[0068]
Further, the suction passage 12a of the high-stage compression element 12 in FIG. 1 includes a high-stage compression element suction pipe 12a ′, a hole 49g, a hole 48g, a hole 47g, a hole 46g, a recess, and a notch 45g. The passage connecting the side check valve 13a and the suction passage 12a is formed with a recess 44t ′ (a space formed with the second discharge chamber sub-cover 50) and a recess 44g ′ (with the second discharge chamber sub-cover 50). 1), the discharge passage 12b in FIG. 1 includes a recess 44t (a space formed with the second discharge chamber sub-cover 50), a protrusion 50h (a space formed with the main bearing 44), a hole 50h ′, a convex portion 51h (a space formed together with the second discharge chamber sub cover 50), a hole 50h ′ ″, a hole 44h, and a high-stage compression element discharge pipe 12b ′. Valve 13b and discharge passage Passage connecting the 12b, the recess 44t '', the hole 50h 'comprised'. 1 is composed of a hole 50c, a convex portion 51c (a space formed together with the second discharge chamber sub cover 50), and a hole 51c ′, and is sealed with the suction passage of the high-stage compression element. The containers communicate with each other and serve to keep the pressure in the sealed container 40 at the suction gas pressure of the high-stage compression element.
[0069]
FIG. 7 shows a second cylinder portion of the compressor 10 shown in FIG. In the figure, 44z is an end surface portion of the main bearing 44 that constitutes an end surface of the high-stage compression element, and 63 is an oil pocket (concave portion) provided in the end surface portion 44. The inside of the roller 52 and the working chamber are alternately arranged. go and come. Inside the roller 52, the lubricating oil supplied to the crankshaft 42 by the oil supply pump using the reciprocating motion of the vane portion of the roller 53 described above is stored, and the oil pocket 63 operates the high-stage compression element. Oil is supplied to the chamber intermittently. The low-stage compression element is also provided with a similar oil pocket (not shown) at the end face portion of the auxiliary bearing 48, and oil is intermittently supplied to the working chamber of the low-stage compression element.
[0070]
In the refrigerator configured as described above, an operation in which the refrigerator compartment 3 and the freezer compartment 2 are cooled in parallel (simultaneously) and an operation in which the freezer compartment is independently cooled are performed. The operation of simultaneous (parallel) cooling of the freezer compartment and the refrigerator compartment and the operation of the cooling operation of the freezer compartment alone will be described below.
[0071]
At the time of the simultaneous cooling operation of the freezer compartment and the refrigerator compartment, both the first solenoid valve 23 and the second solenoid valve 26 are opened. The low-stage compression element 11, the intermediate cooler 27, the high-stage compression element 12, the condenser 20, the first capillary 21, and the freezer compartment evaporator 22 of the compressor 10 form a freezer compartment cooling and refrigeration cycle and are compressed. The high-stage compression element 12, the condenser 20, the second capillary 24, and the refrigerating room evaporator 25 of the machine 10 form a refrigerating room cooling and refrigeration cycle. The compressor 10 performs two-stage compression in which a low-stage compression element 11 and a high-stage compression element 12 are connected in series. Further, the condenser fan 30, the freezer compartment evaporator 31 and the refrigerating compartment evaporator fan 32 are operated. At this time, in the suction side check valve 13a, the gas refrigerant pressure in the suction passage 12a of the high-stage compression element 12 is higher than the gas refrigerant pressure in the suction passage 11a of the low-stage compression element 11, so that the valve Closed. In the discharge-side check valve 13b, the gas refrigerant pressure in the discharge passage 12b of the high-stage compression element 12 is higher than the gas refrigerant pressure in the discharge passage 11b of the low-stage compression element 11, so that the valve Closed.
[0072]
At this time, for example, the evaporating temperature of the freezer compartment evaporator 22 is −26 ° C., the refrigerating room evaporator 25 is evaporating temperature of −8 ° C., and the refrigerant evaporates at different temperatures. Cooling of the refrigerator compartment 3 is performed. At the branch of the outlet of the condenser 20, when the refrigerant is divided by approximately half into the freezer compartment evaporator 22 and the refrigerator compartment evaporator 25, the freezer compartment 2 and the refrigerator compartment 3 are cooled with substantially the same refrigerating capacity.
[0073]
The low-stage compression element 11 of the compressor 10 converts the gas refrigerant from the freezer compartment evaporator 22 from the low pressure (minimum pressure of the freezing cycle) of the freezer compartment evaporator 22 to the freezer compartment evaporator 25. The high-stage compression element 12 is compressed to an intermediate pressure of the evaporation pressure level, and the high-stage compression element 12 is compressed to the intermediate pressure by the low-stage compression element 11 and cooled by the intermediate cooler 27. Along with the refrigerant, the pressure is compressed from the intermediate pressure to a high pressure at the condensation pressure level of the condenser 13 (maximum pressure in the refrigeration cycle).
[0074]
The displacement amount of the low-stage compression element 11 and the high-stage compression element 12 is set to be equal or almost equal for the following reason. For example, when R134a or R600a is used as the refrigerant, the evaporation pressure of the evaporator 25 for the refrigerator compartment is higher than the evaporation pressure of the evaporator 22 for the freezer compartment, and the suction gas specific volume of the high-stage compression element 12 is low. However, when the freezer compartment and the refrigerator compartment require substantially the same refrigeration capacity, the refrigerant mass flow rate of the high-stage compression element 12 is equal to the refrigerant mass flow rate of the low-stage compression capacity 11. This is because the refrigerant volume flow rate of the suction gas of each of the compression elements 11 and 12 becomes substantially the same. The actual displacement is set based on the required refrigeration capacity of the freezer compartment and the refrigerator compartment, the predetermined intake gas pressure of the compression elements 11 and 12, the temperature condition, and the like. If the displacement amounts of the two compression elements 11 and 12 are the same, some parts can be shared, the number of parts can be reduced, and the cost can be reduced.
[0075]
The pressure in the sealed container 40 of the compressor 10 is a high-stage compression element suction gas pressure, that is, an intermediate pressure (evaporation pressure level of the refrigerator 25 for the refrigerator compartment). FIG. 8 shows the pressure difference between the compression chamber pressure during one rotation of the low-stage compression element and the high-stage compression element when the compressor 10 performs two-stage compression, and the pressure in the closed container. It shows about the case of an intermediate pressure sealed container and (c) a low pressure sealed container. A rotation angle of 0 ° is defined as a crank rotation angle at the start of compression in each of the low-stage compression element and the high-stage compression element. The solid line indicates the compression chamber pressure, the broken line indicates the pressure inside the sealed container, and the oblique line indicates the pressure difference. The conditions here are the refrigerant R134a, the evaporation temperature of the freezer evaporator -26 ° C., the evaporation temperature of the refrigerator refrigerator −8 ° C., and the condenser condensation temperature 33 ° C. From the figure, (b) The intermediate pressure sealed container has a small pressure difference per rotation, and is effective in reducing the amount of leaked gas due to the pressure difference in the compression process, improving the efficiency of the compressor during two-stage compression. Can be made.
[0076]
The oil supply into the working chamber for sealing the working chamber (suction chamber, compression chamber) of the low-stage compression element is provided in the oil that leaks into the working chamber due to the pressure difference between the hermetic container and the working chamber, and the above-described auxiliary bearing 48. Oil pockets, and oil contained in the inhalation gas. Further, the oil supply into the working chamber for sealing the working chamber of the high-stage compression element is performed by the oil pocket 63 provided in the main bearing 44 and oil contained in the suction gas.
[0077]
The intercooler 27 serves to cool the discharge gas of the low-stage compression element and reduce the intake gas temperature of the high-stage compression element. This reduces the theoretical adiabatic compression work per unit mass of the high-stage compression element. , Compression power can be reduced.
[0078]
During the freezer compartment single cooling operation, both the first solenoid valve 23 and the second solenoid valve 26 are closed. Since the solenoid valve 23 is closed, the refrigerant flow to the refrigerator compartment evaporator 25 is blocked, and the refrigerant flows only to the freezer compartment evaporator 22.
[0079]
At this time, the low-stage compression element 11 of the compressor 10 sucks the gas refrigerant at the outlet of the freezer compartment evaporator 22 and performs a compression action. Of the passages connected to the discharge passage 11b of the low-stage compression element 11, the one solenoid valve 26 side is closed, so the discharge passage of the high-stage compression element 12 on the opposite side of the other discharge-side check valve 13b. The gas refrigerant in the low-stage compression element 12 is compressed to a pressure higher than the gas refrigerant pressure in 12b and passes through the check valve 13b. On the other hand, since the solenoid valves 23 and 26 are closed and the refrigerant is not supplied to the refrigerator 25 for the refrigerator compartment and the intermediate cooler 27 communicating with the suction passage 12a, the high-stage compression element is caused by the suction action of the high-stage compression element 12. The gas refrigerant pressure in the 12 suction passages 12a gradually decreases and becomes lower than the gas refrigerant pressure in the suction passage 11a of the low-stage compression element 11. As a result, the suction-side check valve 13 a is opened, and the gas refrigerant on the suction passage 11 a side of the low-stage compression element 11 flows into the suction passage 12 a side of the high-stage compression element 12.
[0080]
Note that the gas refrigerant pressure in the refrigerator compartment evaporator 25 and the intercooler 27 is the same as the gas refrigerant pressure in the suction passage 12a, and is the evaporation pressure level of the freezer compartment evaporator 22, but the refrigerator compartment evaporator. The temperature of 25 is substantially equal to the air temperature in the refrigerator compartment 3, and the temperature of the intercooler 27 is substantially equal to the air temperature at the bottom of the refrigerator body 1 and is higher than the evaporation temperature of the freezer compartment evaporator 22. . For this reason, the problem that the gas refrigerant in the suction passage 12a condenses and stays in the refrigerating room evaporator 25 and the intercooler 27 can be prevented. Further, the valve 23 is arranged between the branch portion of the refrigerant pipe provided between the evaporator and the condenser and the evaporator. The valve 26 is disposed between the intermediate cooler 27 and the discharge passage 11 b of the compression element 11. By doing in this way, when performing the cooling operation of the storage chamber alone, the amount of the refrigerant remaining in the evaporator 25 and the cooler 27 can be reduced, and the operation efficiency can be kept high.
[0081]
At this time, the two compression elements 11 and 12 perform the compression action in parallel from the evaporation pressure level of the freezer compartment evaporator 22 to the condensation pressure level of the condenser 20, respectively. Accordingly, a freezer compartment single cooling refrigeration cycle including the two compression elements 11 and 12 of the compressor 10, the condenser 20, the first capillary 21, and the freezer compartment evaporator 22 is formed. Further, the condenser fan 30 and the freezer compartment evaporator fan 31 are operated, and the refrigerator compartment evaporator fan 32 is stopped. Thereby, only the freezer compartment 2 is cooled.
[0082]
At this time, the pressure in the sealed container 40 of the compressor 10 is a high-stage compression element suction gas pressure, that is, a low pressure (evaporation pressure level of the freezer compartment evaporator 22). FIG. 9 shows the pressure difference between the compression chamber pressure during one rotation of the compression element and the pressure in the sealed container when the compressor 10 performs single-stage compression, in the case of (a) a high-pressure sealed container and (b) a low-pressure sealed container. Show. The solid line indicates the compression chamber pressure, the broken line indicates the pressure inside the sealed container, and the oblique line indicates the pressure difference. The conditions here are the refrigerant R134a, the evaporation temperature of the freezer evaporator -26 ° C, and the condensation temperature of the condenser 32 ° C. From the figure, (b) In the case of a low-pressure sealed container, the pressure difference per rotation is small, and it is effective in reducing the amount of leaked gas due to the pressure difference in the compression process, and improves the efficiency during single-stage compression of the compressor. be able to.
[0083]
The oil supply into the working chamber for sealing the working chambers (suction chamber, compression chamber) of the two compression elements is the oil contained in the auxiliary pocket 48 and the main bearing 44, and the oil contained in the suction gas, respectively. Is done.
[0084]
Japanese Examined Patent Publication No. 4-54152 is provided with a two-cylinder rotary compressor having two compression chambers in a sealed container, and a valve is provided on a refrigerant passage communicating with the compression chamber (compression element) of the compressor. Thus, a refrigerant flow to each compression chamber is switched between parallel and series.
[0085]
That is, in this prior art, the suction pipe of one compression chamber (low pressure compression element) and the suction pipe of the other compression chamber (high pressure compression element) are connected via a check valve, and the high pressure compression element The discharge pipe of the low-pressure compression element branched in two directions is communicated with the inside of the sealed container via a check valve, and the other is high-pressure via a switching solenoid valve. Connected to the suction pipe of the compression element. Then, the above-described switching solenoid valve is operated according to the required capacity and efficiency that change depending on the operating conditions, and the single-stage compression operation in which the refrigerant flows in parallel through the two compression elements and is compressed once. By switching between two-stage compression operation in which refrigerant flows through one compression element in series and is compressed twice by each compression element, it is intended to exert more appropriate capability over a wide range of operation conditions.
[0086]
The compressor of this prior art is the one in which the inside of the container becomes equal to the pressure of the refrigerant discharged from the high pressure compression element, and it is not changed from the low pressure to the intermediate pressure as in this embodiment. In this embodiment, when each storage room is cooled by a plurality of coolers, the above-described configuration is used to select a more appropriate operation to improve the efficiency of cooling and operation of the refrigerator. Further, the present invention solves the problem of the refrigerant flow that occurs when the refrigerant flow to be passed through the compression element of the compressor is switched, thereby improving the efficiency.
[0087]
Furthermore, with such a configuration, when a hydrocarbon-based refrigerant, which is a flammable refrigerant, is used as the refrigerant, the amount of refrigerant that dissolves into the lubricating oil is reduced, and the overall refrigerant amount used in the refrigerator refrigeration cycle is reduced. Therefore, the possibility of accidents such as ignition due to leakage of the flammable refrigerant is reduced.
[0088]
FIG. 10 shows a control flowchart of the simultaneous cooling operation of the freezer and refrigerator compartment of the refrigerator and the independent cooling operation of the freezer. The control device 101 performs the following processing.
[0089]
If the operation switch of the refrigerator is ON (300Y), the refrigerating room temperature sensor 9 is caused to detect the refrigerating room temperature Tr (301), and it is determined whether the refrigerating room temperature Tr is equal to or higher than the refrigerating room cooling start temperature Trs (302). If the refrigerating room temperature Tr is equal to or higher than the refrigerating room cooling start temperature Trs (302Y), the operation of the condenser fan 30, the freezing room fan 31, the refrigerating room fan 32, and the compressor 10 is started (303), and the freezing room refrigerating room is simultaneously cooled. Do the driving.
[0090]
The timer is started (304), and after a predetermined time has passed (305Y), the refrigerator temperature sensor 9 detects the refrigerator temperature Tr (306), and determines whether the refrigerator temperature Tr is equal to or lower than the refrigerator cooling end temperature Tre (306). 307). If the temperature is not lower than the refrigeration room cooling end temperature Tre (307N), the process returns to step 304, and the freezing room refrigeration room simultaneous cooling operation is continued until the refrigeration room temperature Tr becomes lower than the refrigeration room cooling end temperature Tre.
[0091]
If the refrigerating room temperature Tr is equal to or lower than the refrigerating room cooling end temperature Tre (307Y), the freezer temperature sensor 8 detects the freezing room temperature Tf (308), and if the refrigerating room temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe ( 309Y), the operation of the compressor 10, the condenser fan 30, the freezer compartment fan 31, and the refrigerator compartment fan 32 is stopped, and the freezer compartment refrigerator compartment simultaneous cooling operation is ended (310).
[0092]
The timer is started (311), and after a predetermined time has passed (312), the process returns to step 300. In step 302, if the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs (302N), then the freezer compartment temperature sensor 8 is made to detect the freezer compartment temperature Tf (320), and the freezer compartment temperature Tf is frozen in the refrigerator compartment. It is determined whether the temperature is equal to or higher than the start temperature Tfs (321). If it is lower than the freezer compartment cooling start temperature Tfs (321N), the process proceeds to step 311 and returns to step 300.
[0093]
If the freezer compartment temperature Tf is equal to or higher than the freezer compartment cooling start temperature Tfs (321Y), the solenoid valves 23 and 26 are closed by energization, and the operation of the condenser fan 30, the freezer compartment fan 31, and the compressor 10 is started (322). The room is cooled alone.
[0094]
The timer is started (323), and after a predetermined time has passed (324Y), the refrigerator temperature sensor 9 detects the refrigerator temperature Tr (325), and determines whether the refrigerator temperature Tr is equal to or higher than the refrigerator start temperature Trs ( 326). If it is equal to or higher than the cooling room cooling start temperature Trs (326Y), the operation of the cold room fan 32 is started, the energization of the electromagnetic valves 23 and 26 is stopped, the valve is opened (340), and the freezing room refrigeration is started from the freezing room single cooling operation. The operation proceeds to the room simultaneous cooling operation and proceeds to step 304.
[0095]
If the refrigerating room temperature Tr is lower than the refrigerating room cooling start temperature Trs (326N), the freezing room temperature sensor 8 is caused to detect the freezing room temperature Tf (327), and it is determined whether the freezing room temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe. (328). If the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (328N), the process returns to step 323 to continue the freezer compartment single cooling operation. If it is below freezing room cooling end temperature Tfe (328Y), operation of compressor 10, condenser fan 30 and freezing room fan 31 is stopped, energization to solenoid valves 23 and 26 is stopped, and the valves are opened to individually cool the freezing room. The operation ends, the process proceeds to step 311 and returns to step 300.
[0096]
In step 309, if the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (309N), the solenoid valves 23 and 26 are energized, the valves are closed, and the operation of the refrigerator compartment fan 32 is stopped. The simultaneous cooling operation shifts to the freezer compartment single cooling operation, and the process proceeds to step 323.
[0097]
By controlling the configuration and operation of the above-described embodiment, heater heating for preventing freezing of the refrigerator compartment food is not required, the freezer compartment temperature is, for example, −18 ° C. or less, and the refrigerator compartment temperature is, for example, higher than 0 ° C. 5 It can be set to below ℃, and the temperature of the freezer compartment and the refrigerator compartment can be kept appropriate.
[0098]
Further, during the parallel cooling operation of the freezer compartment and the refrigerator compartment, the gas refrigerant from the evaporator 25 for the refrigerator compartment is further reduced to the low pressure of the evaporation pressure level of the evaporator 22 for the freezer compartment, and not compressed from the low pressure. Since the compression is performed from the intermediate pressure of the evaporation pressure level of the evaporator for the refrigerator compartment, the compression power can be reduced, and the power consumption of the refrigerator can be greatly reduced.
[0099]
Furthermore, since the compressor has two compression elements and is configured to perform two-stage compression control during the parallel cooling operation of the freezing room and the refrigeration room, the pressure difference between the compression chamber and the suction chamber of each compression element is small. Thus, there is an effect in reducing the amount of leaked gas in the compression process, the efficiency of the compressor is improved, and the efficiency of the refrigerator can be improved.
[0100]
Furthermore, during the cooling operation of the freezer alone, the two compression elements of the compressor are compressed in parallel, so the displacement for cooling the freezer is double that of the freezer cold storage simultaneous cooling operation. The freezing room refrigeration capacity can be increased.
[0101]
In addition, a refrigerator having an evaporator in each of the freezer compartment and the refrigerator compartment has a single evaporator, and the evaporation of the evaporator for the refrigerator compartment is compared with a refrigerator that cools both the refrigerator compartment and the refrigerator compartment by forced circulation of cold air. Since the temperature can be increased, the temperature of the cold air discharged to the refrigerator compartment can be increased and the humidity can be maintained high, so that the food stored in the refrigerator compartment can be kept in good condition.
[0102]
Moreover, since the amount of frost formation on the evaporator for the refrigerator compartment is also reduced, the cycle of defrosting by the electric heater is extended, which is effective for reducing power consumption.
[0103]
In addition, since the cold air in the freezer compartment and the refrigerator compartment is completely separated, odor transfer between the freezer compartment and the refrigerator compartment can be prevented.
[0104]
In addition, since an opening is provided for communicating the suction passage of the compression element and the inside of the sealed container of the compressor, the pressure in the sealed container becomes low during single-stage compression of the compressor, and the inside of the sealed container during two-stage compression. The pressure becomes an intermediate pressure. For this reason, the pressure difference between the compression chamber per rotation and the pressure in the sealed container is small, which is effective in reducing the amount of leaked gas due to the pressure difference in the compression process, and the efficiency of the compressor can be improved.
[0105]
Further, since the pressure in the hermetic container of the compressor is set to a low pressure or an intermediate pressure, the amount of refrigerant dissolved in the lubricating oil can be reduced, and it becomes easy to cope with a hydrocarbon-based refrigerant that is a flammable refrigerant.
[0106]
Moreover, since the check valve is disposed in the sealed container, the piping around the compressor can be made compact.
[0107]
In addition, since the two solenoid valves 23 and 26 perform the same opening / closing operation, energization and de-energization of the two solenoid valves in the control device 101 can be made into one circuit, thereby reducing costs. it can.
[0108]
Example 2
A second embodiment of the present invention will be described with reference to FIGS.
[0109]
FIG. 11 is a configuration diagram of the refrigeration cycle of the refrigerator according to the second embodiment, and FIG. 12 is a table showing the opening / closing operation of the solenoid valve of the refrigeration cycle of FIG. At the same time, the operation of the refrigerator according to Example 1 is also shown. In FIG. 11, the same parts as those in FIG.
[0110]
In FIG. 11, the compressor 10 ′ has two compression elements (a low-stage compression element 11 and a high-stage compression element 12) similarly to the compressor 10 of FIG. 1. 70a and 70b are electromagnetic valves provided on the inlet side and the outlet side of the freezer evaporator 22, and 71a and 71b are the suction passages 11a and 12a side and the discharge passages 11b and 12b side of the compression elements 11 and 12, respectively. It is a solenoid valve provided in. By the combination of opening and closing of the six solenoid valves 23, 26, 70a, 70b, 71a, 71b, simultaneous cooling of the freezer compartment and the refrigerator compartment, independent cooling of the refrigerator compartment, and independent cooling of the refrigerator compartment are performed.
[0111]
In the refrigeration cycle of the refrigerator configured as described above, operations of the freezing room refrigerating room simultaneous cooling operation, the freezing room single cooling operation, and the refrigerating room single cooling operation will be described.
[0112]
At the time of the freezing room refrigerating room simultaneous cooling operation, as shown in FIG. 12, the electromagnetic valves 23, 26, 70a and 70b are opened, and the electromagnetic valves 71a and 70b are closed. At this time, the low-stage compression element 11, the intermediate cooler 27, the high-stage compression element 12, the condenser 20, the first capillary 21, and the freezer compartment evaporator 22 of the compressor 10 ′ form a freezer compartment cooling and refrigeration cycle. At the same time, the high-stage compression element 12, the condenser 20, the second capillary 24, and the refrigerating room evaporator 25 of the compressor 10 ′ form a refrigerating room cooling and refrigeration cycle. The compressor 10 ′ performs two-stage compression in which a low-stage compression element 11 and a high-stage compression element 12 are connected in series. Further, the condenser fan 30, the freezer compartment evaporator 31 and the refrigerating compartment evaporator fan 32 are operated.
[0113]
The low-stage compression element 11 of the compressor 10 ′ converts the gas refrigerant from the freezer compartment evaporator 22 from the low pressure (minimum pressure of the freezing cycle) of the freezer compartment evaporator 22 to the refrigerator compartment evaporator 25. The high-stage compression element 12 is compressed to the intermediate pressure by the low-stage compression element 11, and the gas refrigerant cooled by the intermediate cooler 27 is supplied from the refrigerator 25 for the refrigerator compartment. Along with the gas refrigerant, compression is performed from an intermediate pressure to a high pressure at the condensation pressure level of the condenser 13 (maximum pressure in the refrigeration cycle).
[0114]
With the above operation, the simultaneous cooling operation of the freezer compartment and the refrigerator compartment is performed.
[0115]
During the freezer compartment single cooling operation, as shown in FIG. 12, the electromagnetic valves 70a, 70b, 71a, 71b are opened, and the electromagnetic valves 23, 26 are closed. At this time, the two compression elements 11 and 12 are connected in parallel. Since the solenoid valve 70a is opened and the solenoid valve 23 is closed, the refrigerant is supplied to the freezer compartment evaporator 22, and the refrigerant is not supplied to the refrigerator compartment evaporator 25. Since the solenoid valves 23 and 26 are closed and the refrigerant is not supplied to the refrigerator 25 and the intercooler 27 that communicate with the suction passage 12a of the high-stage compression element 12, the high-stage compression element 12 is open. Gas refrigerant from the freezer evaporator 22 is sucked and compressed through the electromagnetic valve 71a. Further, since the electromagnetic valve 26 is closed, the discharge gas of the low-stage compression element 11 passes through the open electromagnetic valve 71b, merges with the discharge gas of the high-stage compression element 12, and enters the condenser 20. Therefore, a freezer compartment single cooling refrigeration cycle including the two compression elements 11 and 12, the condenser 20, the first capillary 21, and the freezer compartment evaporator 22 is formed. Further, the condenser fan 30 and the freezer compartment evaporator fan 31 are operated, and the refrigerator compartment evaporator fan 32 is stopped. Thereby, the independent cooling operation of the freezer compartment is performed.
[0116]
Further, at the time of the refrigerator compartment single cooling operation, as shown in FIG. 12, the electromagnetic valves 23, 71a, 71b are opened, and the electromagnetic valves 26, 70a, 70b are closed. At this time, the two compression elements 11 and 12 are connected in parallel. Since the electromagnetic valve 23 is opened and the electromagnetic valve 70a is closed, the refrigerant is supplied to the refrigerator 25 evaporator, and no refrigerant is supplied to the freezer evaporator 22. Since the electromagnetic valve 70b is closed, the low-stage compression element 11 sucks and compresses the gas refrigerant from the refrigerator for evaporator 25 through the open electromagnetic valve 71a. Further, since the electromagnetic valve 26 is closed, the discharge gas of the low-stage compression element 11 passes through the open electromagnetic valve 71b, merges with the discharge gas of the high-stage compression element 12, and enters the condenser 20. Therefore, a refrigerating room single cooling refrigeration cycle including the two compression elements 11 and 12, the condenser 20, the second capillary 24, and the refrigerating room evaporator 25 is formed. Further, the condenser fan 30 and the refrigerator fan 32 are operated, and the freezer evaporator fan 31 is stopped. Thereby, the independent cooling operation of the refrigerator compartment is performed.
[0117]
Note that the gas refrigerant pressure in the intermediate cooler 27 is the same as the gas refrigerant pressure in the suction passage 12a and is the evaporation pressure level of the refrigerator 25 for the refrigerator compartment, but the temperature of the intermediate cooler 27 is Since it becomes substantially equal to the air temperature at the bottom, it is higher than the evaporation temperature of the refrigerator 25 evaporator, and therefore, the problem that the gas refrigerant condenses and stays in the intermediate cooler 27 can be prevented. Further, since the solenoid valves 70a and 70b are closed, it is possible to prevent the problem that the gas refrigerant circulating in the refrigeration cycle is cooled by the freezer compartment evaporator 22, and is condensed and retained.
[0118]
In the present embodiment, since the simultaneous (parallel) cooling operation of the freezer compartment and the refrigerator compartment, the cooling operation of the freezer compartment alone, and the cooling operation of the refrigerator compartment alone can be switched, the food in the refrigerator compartment is the same as in the first embodiment. Heater heating to prevent freezing is unnecessary, for example, the freezer temperature can be -18 ° C or lower, and the refrigerator temperature can be 5 ° C or lower higher than 0 ° C. Can keep.
[0119]
In addition, since the refrigerator compartment can be operated alone as compared with the first embodiment, when only the refrigerator compartment is required for cooling, the freezer compartment is not simultaneously cooled as in the first embodiment. Since only the refrigerator compartment can be cooled, excessive cooling of the freezer compartment can be prevented.
[0120]
Also, during simultaneous cooling operation in the freezer compartment, the gas refrigerant from the evaporator for the refrigerator compartment is further reduced to the low pressure of the evaporation pressure level of the evaporator for the freezer compartment, and not compressed from that low pressure, but for the refrigerator compartment. Since it compresses from the intermediate pressure of the evaporation pressure level of an evaporator, compression power can be reduced and the power consumption of a refrigerator can be reduced significantly.
[0121]
Furthermore, since the compressor has two compression elements and is configured to perform two-stage compression control during the simultaneous cooling operation of the freezer compartment and the refrigerator compartment, the pressure difference between the compression chamber and the suction chamber of each compression element becomes small, and the compression process This is effective in reducing the amount of leaked gas, improving the efficiency of the compressor and improving the efficiency of the refrigerator.
[0122]
In addition, during the freezing room (or refrigeration room) single cooling operation, the two compression elements of the compressor are compressed in parallel, so the amount of displacement for cooling the freezing room (or refrigeration room) is refrigerated in the freezer room. It becomes twice (or four times) that in the simultaneous cooling operation of the room, and the freezing capacity of the freezing room (or refrigeration room) can be increased.
[0123]
In addition, a refrigerator having an evaporator in each of the freezer compartment and the refrigerator compartment has a single evaporator, and the evaporation of the evaporator for the refrigerator compartment is compared with a refrigerator that cools both the refrigerator compartment and the refrigerator compartment by forced circulation of cold air. Since the temperature can be increased, the temperature of the cold air discharged to the refrigerator compartment can be increased and the humidity can be maintained high, so that the food stored in the refrigerator compartment can be kept in good condition.
[0124]
Moreover, since the amount of frost formation on the evaporator for the refrigerator compartment is also reduced, the cycle of defrosting by the electric heater is extended, which is effective for reducing power consumption.
[0125]
In addition, since the cold air in the freezer compartment and the refrigerator compartment is completely separated, odor transfer between the freezer compartment and the refrigerator compartment can be prevented.
[0126]
[Example 3]
A third embodiment of the present invention will be described with reference to FIGS.
[0127]
FIG. 13: is a perspective view of the refrigerator which shows the outline of the refrigerating cycle of the refrigerator based on the 3rd Example of this invention, and is a perspective view which shows the structure inside. FIG. 14 is a longitudinal sectional view showing an outline of the structure of the refrigerator shown in FIG. FIG. 15 is a schematic view of a panel for operating the refrigerator provided in the refrigerator shown in FIG. FIG. 16 is a table showing the opening / closing operation of the solenoid valve of the refrigeration cycle of the refrigerator shown in FIG. 17 to 20 are flowcharts showing a control flow of the operation of the refrigerator shown in FIG.
[0128]
13 and 14, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted. The refrigeration cycle configuration of the present embodiment is the same as the refrigeration cycle configuration shown in FIG. 1 of the first embodiment, and when referring to FIG.
[0129]
The difference between the refrigerator shown in the present embodiment and the refrigerator shown in FIG. 1 is that the refrigerator of this embodiment is placed behind the vegetable compartment 3B arranged below the refrigerator compartment 3A and the refrigerator 25 for refrigerator compartment and the refrigerator. The room fan 32 is disposed, and a wall of the refrigerator compartment 3A on the rear side of the refrigerator has a cold air passage through which air cooled by the cooler 25 supplied to the refrigerator compartment 3A by driving the fan 32 flows. And an opening through which the cold air flows into a space partitioned by a shelf provided in the refrigerator compartment 3A from the inside of the passage. An operation panel that can be operated by the user is provided on the door disposed on the front side of the refrigerator in the refrigerator compartment 3A. By operating the operation panel, the user adjusts the operation of the refrigerator to perform a desired operation. Can be performed.
[0130]
Moreover, the heat insulation partition wall provided with the heat insulating material which partitions the inside of a refrigerator up and down is arrange | positioned under the vegetable compartment 3B, and the freezer compartment 2 is provided under this heat insulation partition wall. This freezer compartment is divided into a plurality of chambers in the top and bottom, and containers 2A and 2B formed by opening the top in the respective chambers are arranged. A plurality of doors for opening and closing the chamber are provided. And the said container moves to the refrigerator front-back direction with the movement by the opening / closing operation | movement of these doors.
[0131]
A freezer compartment evaporator 22 and a freezer compartment fan 31 are arranged behind the freezer compartment 2 partitioned into a plurality of compartments, and the air cooled by the evaporator 22 by the drive of the freezer compartment fan is frozen. It is supplied into the chamber 2. In the present embodiment, the supplied cold air is supplied so as to flow into the container from the opened upper side of the containers 2A and 2B, and flows from the inside of the container to the outside of the container or directly flows from the outside of the container to the inside of the container and the container. Is cooled, flows from the return port of the cool air provided behind the container 2 </ b> B toward the evaporator 22, and is cooled again by the evaporator 22.
[0132]
In FIG. 13, the compressor 10 ″ includes two compression elements, a low-stage compression element (first compression element) and a high-stage compression element (second compression element), as in the compressor 10 shown in FIG. ) And two check valves are disposed in the sealed container 40 ″. Unlike the compressor 10 shown in FIG. 3, the discharge pipe 12 b ″ of the high-stage compression element is provided so as to extend from the side surface of the sealed container 40 ″ to the outside of the container. As a result, the high-temperature discharge gas is discharged out of the sealed container 40 ″ as soon as possible, and the influence of heating on the gas having a lower temperature than the discharge gas is reduced, and the tube 11a ′, 11b ′, 12a ′ is separated. As a result, a space necessary for the welding work of these pipes is secured, and the work becomes easy.
[0133]
  In this figure, 20A is a condenser, for example, having a structure in which fins are provided on a refrigerant pipe by insertion or winding, etc., provided at the bottom on the back side of the refrigerator body 1 ', and a compressor 10' 'or intermediate This condensation along with the cooler 27vesselIt is arrange | positioned in the machine room which is the space which accommodates 20A. 20B is the condensationvesselA pipe connected to the refrigerant pipe is provided so as to come into contact with and in close contact with a steel plate which is an outer plate forming the side surface and the back surface of the refrigerator main body 1 ′. Thereby, the refrigerant flowing in the pipe 20B can exchange heat with the external space via the outer plate (steel plate) to radiate heat.
[0134]
As described above, the intermediate cooler 27 is disposed in the machine room, and in this embodiment, the condenser 20A and the intermediate cooler 27 are configured as an integral heat exchanger as the same finned pipe as the condenser 20A. Are arranged together. Thereby, the cost of the refrigerator can be reduced, and the size of the machine room can be reduced to secure a large storage room in the refrigerator.
[0135]
As described above, in FIG. 14, the refrigerator 1 'has two freezing rooms (2A, 2B), a refrigeration room 3A, and a vegetable room 3B. Reference numerals 80 and 81 denote temperature sensors for detecting the surface temperatures of the freezer compartment evaporator 22 and the refrigerator compartment evaporator 25, respectively. 101 'is a control device of the refrigerator of this embodiment. Reference numeral 106 'denotes an operation panel provided on the door of the refrigerator compartment 3A.
[0136]
In the refrigerator of this embodiment, as in the refrigerator shown in FIG. 3, the control device 101 ′ is provided with a temperature sensor 8 for the freezer compartment, a temperature sensor 9 for the refrigerator compartment (the temperature sensor for the vegetable compartment is not shown). Alternatively, signals from the temperature sensor 80 of the freezer compartment evaporator 22, the temperature sensor 81 of the refrigerator compartment evaporator, etc. are inputted, and based on these signals, the compressor 10 ″, the fan 30, 31 and 31, the heaters 6 and 7 for the evaporator, and the operation of the electromagnetic valves 23 and 26 are adjusted.
[0137]
In FIG. 15, the operation panel 106 ′ is set with a quick cooling button 90, a quick freezing button 91, a refrigerator temperature setting button 92, a freezer temperature setting button 93, and LEDs 90 a and 91 a indicating operating states of quick cooling and quick freezing. LEDs 92a and 93a indicating the detected temperature, the detected temperature, or the difference between them are provided. By operating these buttons, the user can instruct the refrigerator to perform a desired operation.
[0138]
In this embodiment, by operating the above-described button on the operation panel 106 or the LED directly, the refrigerator compartment temperature and the freezer compartment temperature can be selected by setting according to the strong, medium, and weak cooling, respectively. When the cooling setting is selected, the temperature at which the cooling is started and the temperature at which the cooling is ended are set for each of the refrigerator compartment 3A or the freezer compartments 2A and 2B corresponding to the selected strong, medium, or weak. . In the present embodiment, the temperature at which the cooling is finished is set to increase in the order of strong, medium, and weak. Based on the set temperature and the signal detected and output by the sensors 8 and 9, the control device 101 'determines and adjusts the operation and operation of the refrigerator.
[0139]
As shown in FIG. 16, the refrigerator having the above configuration is configured to adjust the opening and closing of the electromagnetic valves 23 and 26 to perform the parallel cooling operation A for the freezer compartment and the refrigerator compartment, the parallel cooling operation B for the freezer compartment and the refrigerator compartment, and the freezer compartment. It is operated in three operation modes of single cooling operation. In this embodiment, when R134a or R600a is used as the refrigerant, the evaporation temperature of the freezer compartment evaporator 22 is −26 ° C., and the evaporation temperature of the refrigerator compartment evaporator 25 is −8 ° C., the specific volume of the refrigerant gas is From the relationship, in the operation of the refrigerator and the refrigeration cycle with both the solenoid valves 23 and 26 being the first operation mode open, the ratio between the refrigeration capacity of the freezer compartments 2A and 2B and the refrigeration capacity of the refrigerator compartment 3A is about 1. Pair one.
[0140]
Further, in the operation state of the refrigerator and the refrigeration cycle with the electromagnetic valve 23 in the second operation mode opened and the electromagnetic valve 26 closed, the ratio of the freezing capacity of the freezer compartments 2A and 2B to the freezing capacity of the refrigerator compartment 3A. Is about 1: 2. In these first and second operation modes, the refrigerator compartment 3A and the freezer compartments 2A, 2B are cooled in parallel (simultaneously). These first and second operation modes are operations in which the refrigerator compartment and the freezer compartment are cooled simultaneously (in parallel) with different ratios of the cooling capacity required for the refrigerator compartment 3A and the freezer compartments 2A and 2B. is there.
[0141]
Furthermore, in the cooling operation of the freezer compartment alone performed with both the solenoid valves 23 and 26 being the third operation mode closed, only the freezer compartment is cooled, and the refrigerator compartment is not cooled.
[0142]
The parallel cooling operation A of the freezing room and the refrigerating room is the same as the simultaneous (parallel) cooling operation of the freezing room and the refrigerating room described in the first embodiment. The cooling operation of the freezer compartment alone is the same as the single cooling operation of the freezer compartment described in the first embodiment. Therefore, in the third embodiment, an operation mode in which the refrigeration room refrigeration capacity is approximately twice the freezer refrigeration capacity compared to the first embodiment is added, so that the freezer load and the refrigeration room of the refrigerator are added. The operation corresponding to the load becomes possible, and it becomes possible to respond more precisely to the user's request, and it is possible to suppress unnecessary cooling, improve the efficiency of cooling, and reduce power consumption.
[0143]
Since the simultaneous cooling operation A and the freezing room single cooling operation of the freezing room and the freezing room are described in detail in Example 1, they are omitted here, and the freezing room freezing room simultaneous cooling operation B is again illustrated in FIGS. This will be described below with reference to FIGS.
[0144]
In the parallel cooling operation B of the freezer compartment and the refrigerator compartment, since the electromagnetic valve 23 is in the open state, the refrigerant is supplied to and flows through both the evaporator 22 for the refrigerator compartment and the evaporator 25 for the refrigerator compartment. The first compression element (low-stage compression element) 11 of the compressor 10 ″ sucks the gas refrigerant at the outlet of the freezer compartment evaporator 22 and performs compression. However, since the solenoid valve 26 is closed, the refrigerant does not flow into the intermediate cooler 27 and is in the discharge passage 12b of the second compression element (high-stage compression element) 12 on the opposite side of the discharge-side check valve 13b. The gas refrigerant of the first compression element 11 is compressed up to a pressure higher than the gas refrigerant pressure of and passes through the check valve 13b. On the other hand, the high-stage compression element 12 sucks the gas refrigerant at the outlet of the refrigerator for the refrigerator compartment 25 and performs compression. At this time, since the evaporation pressure of the evaporator 25 for the refrigerator compartment is higher than the evaporation pressure of the evaporator 22 for the freezer compartment, the check valve 13a is closed.
[0145]
In other words, the low-stage compression element 11 of the compressor 10 ″ changes the gas refrigerant from the freezer compartment evaporator 22 from the low pressure of the freezer compartment evaporator 22 to the high pressure of the condenser 13 condensing pressure level. The refrigeration cycle that cools the freezer compartment together with the condenser 20, the first capillary 21, and the freezer compartment evaporator 22 is formed. On the other hand, the high-stage compression element 12 compresses the gas refrigerant from the evaporator 25 for the refrigerator compartment from the intermediate pressure at the evaporator level of the evaporator 22 for the refrigerator compartment to the high pressure at the condensation pressure level of the condenser 13. Together with the second capillary 24 and the refrigerator 22 for the refrigerator compartment, a refrigeration cycle for cooling the refrigerator compartment is formed. At this time, the pressure in the sealed container 40 of the compressor 10 ″ is an intermediate pressure that is the pressure of the suction gas of the high-stage compression element 12.
[0146]
At this time, the condenser fan 30, the freezer compartment fan 31, and the refrigerator compartment fan 32 are operated. In this operation, the gas refrigerant from the refrigerator compartment evaporator 25 is further reduced to a low pressure of the evaporation pressure level of the freezer compartment evaporator 22, and is not compressed from the low pressure, but the evaporation pressure of the refrigerator compartment evaporator. Since the compression is performed from the intermediate pressure level, the compression power can be reduced, and the power consumption of the refrigerator during the actual operation can be greatly reduced.
[0147]
The temperature of the intermediate cooler 27 is substantially equal to the air temperature at the bottom of the refrigerator main body, and is higher than the evaporation temperature of the refrigerator 25 for the refrigerator compartment, so that the problem that the gas refrigerant condenses and stays in the intermediate cooler 27 is Absent.
[0148]
  At this time, for example, if R134a or R600a is used as the refrigerant, and the freezer compartment evaporation temperature is −26 ° C. and the refrigerator compartment evaporation temperature is −8 ° C., the displacement amount of the low-stage compression element 11 and the high-stage compression element 12 is equal or nearly equal. Thus, since the specific volume of the suction gas of the high-stage compression element 12 is almost half of the specific volume of the suction gas of the low-stage compression element 11, the refrigerant mass flow rate of the high-stage compression element 12 is the refrigerant mass of the low-stage compression element 11. About twice the flow rate and coolFreezing roomThe ratio between the freezing capacity and the freezing room freezing capacity is about 1: 2.
[0149]
Next, a control flowchart according to the present embodiment will be described with reference to FIGS. The following processing is performed by the control device 101 '. A case where a user command is received from the operation panel 106 'will be described later.
[0150]
In this control, the combination of the refrigerator compartment temperature and the freezer compartment temperature is divided into four combinations according to the operation state at that time, and the parallel (simultaneous) cooling operation A, the freezer compartment and the refrigerator compartment for the freezer compartment and the refrigerator compartment for each. The parallel (simultaneous) cooling operation B of the chambers, the independent cooling operation of the freezing chamber, and the stop are performed. This process will be described with reference to a flowchart.
[0151]
In FIG. 17, if the operation switch of the refrigerator is ON (400Y), the refrigerator compartment temperature sensor 9 and the freezer compartment temperature sensor 8 are caused to detect the refrigerator compartment temperature Tr and the refrigerator compartment temperature Tf, respectively, in the operation stop state (401). It is determined whether or not the refrigerating room temperature Tr is equal to or higher than the refrigerating room cooling start temperature Trs, and whether or not the freezing room temperature Tf is equal to or higher than the freezing room cooling start temperature Tfs (402).
[0152]
If the refrigerator compartment temperature Tr is not less than the refrigerator compartment cooling start temperature Trs and the refrigerator compartment temperature Tf is not less than the refrigerator compartment cooling start temperature Tfs (402a), the condenser fan 30, the refrigerator compartment fan 31, the refrigerator compartment fan 32, and the compressor 10 The operation is started (403), and the freezing room and the refrigerating room in which the freezing room refrigerating capacity and the refrigerating room refrigerating capacity are substantially equal are subjected to the parallel cooling operation A, and the process proceeds to the reference numeral.
[0153]
If the refrigerator compartment temperature Tr is equal to or higher than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is less than the refrigerator compartment cooling start temperature Tfs (402b), the solenoid valve 26 is energized to close the valve, and the condenser fan 30, The operation of the room fan 31, the refrigerating room fan 32, and the compressor 10 is started (420), and the freezing room and refrigerating room parallel cooling operation B in which the refrigerating room refrigerating capacity is approximately twice the refrigerating room refrigerating capacity is performed. Move to (D).
[0154]
If the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is equal to or higher than the refrigerator compartment cooling start temperature Tfs (402b), the solenoid valves 23 and 26 are energized, the valves are closed, and the condenser fan 30 Then, the operation of the freezer compartment fan 31 and the compressor 10 is started (430), the cooling operation of the freezer compartment alone is performed, and the flow shifts to the symbol (E).
[0155]
Moreover, if the refrigerator compartment temperature Tr is less than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is less than the refrigerator compartment cooling start temperature Tfs (402b), the operation stop state is continued, and the process proceeds to the reference (C).
[0156]
When the freezing room and refrigerating room parallel cooling operation A is performed, the timer is started (404) through the reference (B) in FIG. 18, and after a predetermined time has passed (405Y), the temperature sensors 8 and 9 are set to the freezer temperature. Tf and the refrigerator compartment temperature Tr are detected (406), and it is determined whether the refrigerator compartment temperature Tr is equal to or lower than the refrigerator compartment cooling end temperature Tre and whether the refrigerator compartment temperature Tf is equal to or lower than the refrigerator compartment cooling end temperature Tfe (407).
[0157]
If the refrigerating room temperature Tr is equal to or lower than the refrigerating room cooling end temperature Tre and the freezing room temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe (407a), the compressor 10, the condenser fan 30, the freezing room fan 31, and the refrigerating room fan 32 The operation is stopped (408), the parallel cooling operation A for the freezing room and the refrigerating room is finished, and the process proceeds to the code (C).
[0158]
Further, if the refrigerator compartment temperature Tr is equal to or lower than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the refrigerator compartment cooling end temperature Tfe (407b), the solenoid valves 23 and 26 are closed, and the operation of the refrigerator compartment fan 32 is stopped. (440) The parallel cooling operation A for the freezer compartment and the refrigerating compartment is shifted to the freezer compartment single cooling operation, and the process proceeds to the symbol (E).
[0159]
Further, when the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is equal to or lower than the refrigerator compartment cooling end temperature Tfe (407c), the electromagnetic valve 26 is closed (441), and the refrigerator compartment refrigerator compartment simultaneous cooling operation is performed. It moves from A to parallel cooling operation B of the freezing room and the refrigerating room, and moves to the code (D).
[0160]
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (407d), the freezer compartment refrigerator compartment simultaneous cooling operation A is continued, and the code (B Return to).
[0161]
In the case of the operation stop state, the timer is started through the code (C) (409), and after a predetermined time has passed (410Y), the process returns to the code (A).
[0162]
When the parallel cooling operation B of the freezing room and the refrigerating room is performed, the timer is started (421) through the sign (D) in FIG. 19, and after a predetermined time (422Y), the temperature sensors 8 and 9 are connected to the freezing room. The temperature Tf and the refrigerating room temperature Tr are detected (423), and it is determined whether the refrigerating room temperature Tr is equal to or lower than the refrigerating room cooling end temperature Tre and whether the freezer temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe (424). .
[0163]
If the refrigerating room temperature Tr is equal to or lower than the refrigerating room cooling end temperature Tre and the freezing room temperature Tf is equal to or lower than the refrigerating room cooling end temperature Tfe (424a), the compressor 10, the condenser fan 30, the freezing room fan 31, and the refrigerating room fan 32 The operation is stopped (408), the parallel cooling operation B of the freezing room and the refrigerating room is finished, and the process proceeds to the code (C).
[0164]
If the refrigerator compartment temperature Tr is equal to or lower than the refrigerator compartment cooling end temperature Tre and the refrigerator compartment temperature Tf is higher than the refrigerator compartment cooling end temperature Tfe (424b), the solenoid valve 23 is closed and the operation of the refrigerator compartment fan 32 is stopped (426). ), The parallel cooling operation B of the freezing room and the refrigerating room is shifted to the freezing room single cooling operation, and the process proceeds to the symbol (E).
[0165]
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is equal to or lower than the refrigerator compartment cooling end temperature Tfe (424c), the parallel cooling operation B of the freezer compartment and the refrigerator compartment is continued, and the sign ( Return to D).
[0166]
Also, if the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the refrigerator compartment cooling end temperature Tfe (424d), the electromagnetic valve 26 is opened (427), and the freezer compartment and refrigerator compartment The parallel cooling operation B is shifted to the freezer / refrigeration chamber cooling operation A, and the process proceeds to the symbol (B).
[0167]
When the cooling operation of the freezer compartment is performed, the timer is started (431) through the symbol (E) in FIG. 20, and after a predetermined time has passed (432Y), the temperature sensors 8 and 9 store the freezer compartment temperature Tf and the refrigerator. The room temperature Tr is detected (433), and it is determined whether the refrigerating room temperature Tr is equal to or higher than the refrigerating room cooling start temperature Trs and whether the freezer temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe (434).
[0168]
If the refrigerator compartment temperature Tr is not less than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is not more than the refrigerator compartment cooling end temperature Tfe (434a), the operation of the refrigerator compartment fan 32 is started and the electromagnetic valve 23 is opened (435). It shifts from the freezer compartment single cooling operation to the freezer compartment refrigerator simultaneous cooling operation B, and moves to the code (D).
[0169]
Further, if the refrigerator compartment temperature Tr is equal to or higher than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (434b), the refrigerator compartment fan 32 starts operating, and the solenoid valves 23 and 26 are opened. (436) The freezer compartment single cooling operation is shifted to the freezer compartment refrigerator simultaneous cooling operation A, and the process proceeds to the symbol (B).
[0170]
Further, if the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (434c), the freezer compartment single cooling operation is continued, and the flow returns to the symbol (E).
[0171]
Further, if the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is equal to or lower than the refrigerator compartment cooling end temperature Tfe (434d), the operation of the compressor 10, the condenser fan 30, and the freezer compartment fan 31 is stopped. Then, the solenoid valves 23 and 26 are opened (437), the freezer compartment single operation is terminated, and the process proceeds to the reference (C).
[0172]
The compressor rotation speed is set to, for example, a larger temperature difference between a temperature difference between the refrigerator temperature Tr and the refrigerator cooling end temperature Tre and a temperature difference between the freezer temperature Tf and the freezer cooling end temperature Tfe. Control in proportion.
[0173]
With regard to the defrosting operation control, for example, the operation time of the freezer compartment fan 31 is integrated, and when the predetermined time is reached, the defrosting electric heaters 6 and 7 are energized to defrost the evaporators 22 and 26 and evaporate. The surface temperature of the vessel is detected by temperature sensors 80 and 81. When each evaporator reaches a predetermined temperature or higher, energization to the electric heaters 6 and 7 is stopped, and the defrosting operation is stopped.
[0174]
When the user operates the quick cooling button 90 of the operation panel 106 ', the cooling operation of the refrigerator compartment is preferentially performed. At this time, the cooling operation of the refrigerator compartment is forcibly set to be strong, and the temperatures of the refrigerator compartment and the freezer compartment are set accordingly. The parallel cooling operation B of the freezing room and the refrigerating room is performed for a certain period of time. Further, the rotation speed of the compressor is set substantially in proportion to the temperature difference between the refrigerating room temperature Tr and the refrigerating room cooling end temperature Tre, and this proportionality constant is set to a value larger than usual. As a result, the cooling capacity of the refrigeration cycle is greater than in normal operation, and the refrigerator compartment is cooled in a shorter time and at a lower temperature.
[0175]
When the user presses the quick freezing button 90 on the operation panel 106 ', the freezing operation of the freezer compartment is preferentially performed. At this time, the cooling operation of the freezer compartment is forcibly set to be strong, and the temperature of the freezer compartment is set accordingly. Then, the cooling operation of the freezer compartment alone is performed for a predetermined time. In the present embodiment, the rotation speed of the compressor during this operation is set to the maximum rotation speed of the compressor.
[0176]
As described above, in this embodiment, the power consumption of the refrigerator can be further reduced by properly using the three operation modes in accordance with the load during normal operation.
[0177]
In addition, efficient operation can be performed by selecting an operation mode that matches the user's command.
[0178]
About the effect of the refrigerator which concerns on the Example demonstrated above, the data are shown below. FIG. 21 is a graph showing the power consumption of the refrigerator according to the embodiment of the present invention and the refrigerator according to the prior art. As shown in FIG. 21, the power consumption when only the freezing room needs to be cooled is lower than that of the present invention in the conventional example in which only the freezing room refrigerating room simultaneous cooling operation is performed (compressor power consumption). Input), fan input, etc.) and heater power consumption (equivalent to cooling room cooling capacity) to prevent freezing of food in the refrigerator compartment is required. Therefore, at this time, in the embodiment of the present invention as compared with the conventional example, for example, the power consumption is about one third, and the power consumption can be significantly reduced.
[0179]
The direct object of the present invention is a refrigerator, but it can also be applied to a refrigeration air conditioner other than a refrigerator having a plurality of evaporators having different evaporation temperatures and cooling a plurality of rooms.
[0180]
In the refrigerator of the first embodiment, as shown in FIG. 2, the refrigerator main body (box) has a structure in which the freezer compartment and the refrigerator compartment are integrated. However, in the present invention, the refrigerator compartment and the refrigerator compartment are separately provided. The present invention can also be applied to a refrigerator that is a box and includes a plurality of boxes.
[0181]
In the first embodiment, as the compressor, a two-cylinder rotary compressor in which a roller portion and a vane portion are integrally formed (the piston roller portion moving in the cylinder has a vane portion) is used. However, the present invention uses other compressors having two or more compression elements, for example, a rotary compressor, a reciprocating compressor, and a scroll compressor in which a roller portion and a vane portion are separated. May be. Further, a plurality of compressors having one compression element may be combined.
[0182]
【The invention's effect】
  As explained above, according to the present invention,While the inside of a warehouse can be cooled efficiently, compression power can be reduced. Further, it is possible to prevent the problem that the refrigerant is condensed and stays in the heat exchanger to which the refrigerant is not supplied.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a refrigeration cycle of a refrigerator according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing an outline of a refrigerator using the refrigeration cycle of the embodiment shown in FIG.
FIG. 3 is a longitudinal sectional view showing a structure of a compressor constituting the refrigeration cycle shown in FIG.
4 is a perspective view showing a structure of a second cylinder, a partition plate, a first cylinder, a secondary bearing, and a first discharge chamber cover, which are parts of the compressor shown in FIG. 3;
5 is a perspective view showing a structure of a valve that is a part of the compressor shown in FIG. 3; FIG.
6 is a perspective view showing structures of a main bearing, a second discharge chamber sub-cover, and a second discharge chamber main cover that are parts of the compressor shown in FIG. 3;
7 is a cross-sectional view showing the structure on the second cylinder portion side of the XX cross section of the compressor shown in FIG. 3;
8 is a graph showing the pressure difference between the compression chamber pressure during one rotation and the pressure in the sealed container when the compressor shown in FIG. 3 performs two-stage compression.
9 is a graph showing the pressure difference between the compression chamber pressure during one rotation and the pressure in the sealed container when the compressor shown in FIG. 3 performs single-stage compression.
10 is a flowchart of operation control of the refrigerator of FIG.
FIG. 11 is a schematic diagram showing a configuration of a refrigeration cycle of a refrigerator according to a second embodiment of the present invention.
12 is a table showing opening / closing operations of solenoid valves in the refrigeration cycle of FIG.
FIG. 13 is a perspective view of the refrigerator showing an outline of the refrigeration cycle of the refrigerator according to the third embodiment of the present invention.
14 is a longitudinal sectional view schematically showing the refrigerator of FIG.
15 is an operation panel of the refrigerator of FIG.
16 is a table showing opening / closing operations of solenoid valves in the refrigeration cycle of FIG. 13;
FIG. 17 is a part of a flowchart showing an operation control flow of the refrigerator of FIG.
18 is a part of a flowchart showing an operation control flow of the refrigerator of FIG.
FIG. 19 is a part of a flowchart showing an operation control flow of the refrigerator of FIG.
20 is a part of a flowchart showing an operation control flow of the refrigerator of FIG.
FIG. 21 is a graph showing power consumption of a refrigerator according to an example of the present invention and a refrigerator according to the related art.
[Explanation of symbols]
1,1 '... refrigerator main body
2, 2A, 2B ... Freezer room
3, 3A ... Refrigerated room
3B ... Vegetable room
6, 7 ... Electric heater for defrosting
8,9 ... Temperature sensor
10, 10 ', 10 "... compressor
11 ... Low stage compression element
11a '... Low-stage compression element suction pipe
11b '... Low stage compression element discharge pipe
12 ... High compression element
12a '... high-stage compression element suction pipe
12b ', 12b "... high-stage compression element discharge pipe
12c: Pressure forming passage in the sealed container
13a, 13b ... Check valve
20, 20A, 20B ... Condenser
21, 24 ... Capillary
22 ... Freezer evaporator
23, 26, 70a, 70b, 71a, 71b ... Solenoid valve
25 ... Refrigerator evaporator
27 ... Intercooler
40 ... Airtight container
42 ... Crankshaft
44 ... Main bearing
45, 47 ... Cylinder
46 ... Partition plate
48 ... Sub bearing
49, 50, 51 ... discharge chamber cover
52, 53 ... Roller
63 ... Oil pocket
101, 101 '... control device
102, 103, 104, 105 ... inverter
106, 106 '... operation switches

Claims (5)

第1の貯蔵室を冷却する第1の冷却器と、第2の貯蔵室を冷却する第2の冷却器と、第1及び第2の圧縮要素を有する圧縮機と、凝縮器とが接続された冷凍サイクルを備えた冷蔵庫において、
前記第1の圧縮要素からの吐出通路と前記凝縮器の入口とに接続された冷媒管と、
前記凝縮器の出口と第1の冷却器及び第2の冷却器とに接続された冷媒管と、
前記第1の冷却器と前記第1の圧縮要素とに接続された第1の吸入通路と、
前記第2の冷却器と前記第2の圧縮要素とに接続された第2の吸入通路と、
前記第1及び第2の吸入通路とに接続された通路に設けられ前記第1の吸入通路から第2の吸入通路への冷媒の流れを止める第1の弁手段と、
前記第1の圧縮要素からの吐出通路と前記第2の圧縮要素からの吐出通路とに接続された通路に設けられ前記第1の圧縮要素の吐出通路から前記第2の圧縮要素の吐出通路への冷媒の流れを止める第2の弁手段と、
前記第2圧縮要素からの吐出通路と前記第1の吸入通路との接続通路と、
前記第1の冷却器と前記第1の吸入通路とを通る冷媒の流れと前記第2の圧縮要素から前記第1の圧縮要素に流れる冷媒の流れを調節する調節手段を備え
前記調節手段は、
前記凝縮器と前記第1及び第2の冷却器とを接続する冷媒管上に設けられ前記第1及び第2の冷却器に冷媒管を分岐する分岐部と、
この分岐部と前記第1の冷却器との間の冷媒管上に設けられこの管内の冷媒の流れを調節する第1の調節手段と、
前記第2の圧縮要素からの吐出通路と前記第1の吸入通路との接続通路上に設けられこの通路内の冷媒の流れを調節する第2の調節手段と、
前記第1及び第2の調節手段を調節する制御手段と、
を備え、
前記第2の調節手段と前記第1の吸入通路との接続通路上に設けられた熱交換器と、を備えた冷蔵庫。
A first cooler for cooling the first storage chamber, a second cooler for cooling the second storage chamber, a compressor having first and second compression elements, and a condenser are connected. In a refrigerator equipped with a freezing cycle,
A refrigerant pipe connected to a discharge passage from the first compression element and an inlet of the condenser;
A refrigerant pipe connected to the outlet of the condenser and the first cooler and the second cooler;
A first suction passage connected to the first cooler and the first compression element;
A second suction passage connected to the second cooler and the second compression element;
First valve means provided in a passage connected to the first and second suction passages to stop the flow of refrigerant from the first suction passage to the second suction passage;
Provided in a passage connected to a discharge passage from the first compression element and a discharge passage from the second compression element, and from a discharge passage of the first compression element to a discharge passage of the second compression element Second valve means for stopping the flow of the refrigerant;
A connection passage between the discharge passage from the second compression element and the first suction passage;
Adjusting means for adjusting the flow of refrigerant through the first cooler and the first suction passage and the flow of refrigerant flowing from the second compression element to the first compression element ;
The adjusting means is
A branch portion provided on a refrigerant pipe connecting the condenser and the first and second coolers and branching the refrigerant pipe to the first and second coolers;
First adjusting means provided on a refrigerant pipe between the branch portion and the first cooler for adjusting the flow of the refrigerant in the pipe;
A second adjusting means provided on a connecting passage between the discharge passage from the second compression element and the first suction passage, for adjusting the flow of the refrigerant in the passage;
Control means for adjusting the first and second adjusting means;
With
A refrigerator comprising: a heat exchanger provided on a connection passage between the second adjustment means and the first suction passage .
前記第1または第2の調節手段が電磁弁であり、前記制御手段が前記電磁弁を調節する請求項に記載の冷蔵庫。The refrigerator according to claim 1 , wherein the first or second adjusting means is an electromagnetic valve, and the control means adjusts the electromagnetic valve. 前記調節手段は、前記第2の冷却器に供給される冷媒が前記第1及び第2の圧縮要素を順に通過する運転と、前記第2の冷却器に供給される冷媒が前記第1の圧縮要素と第2の圧縮要素とに分流して通過する運転とを切替える請求項1または2に記載の冷蔵庫。The adjusting means includes an operation in which the refrigerant supplied to the second cooler sequentially passes through the first and second compression elements, and the refrigerant supplied to the second cooler is the first compression. The refrigerator according to claim 1 or 2 , wherein the operation is switched between the element and the second compression element. 前記調節手段は、前記第2の冷却器に供給される冷媒が前記第1及び第2の圧縮要素を順に通過する運転と、前記第2の冷却器に供給される冷媒が前記第1の圧縮要素と第2の圧縮要素とに分流して通過する運転と、前記第2の冷却器に供給される冷媒が前記第2の圧縮要素のみ通過する運転とを切替える請求項1または2に記載の冷蔵庫。The adjusting means includes an operation in which the refrigerant supplied to the second cooler sequentially passes through the first and second compression elements, and the refrigerant supplied to the second cooler is the first compression. a driver passing elements and shunts to the second compression element, the refrigerant supplied to the second cooler according to claim 1 or 2 switching between operation passes only the second compression element refrigerator. 請求項3または4記載の冷蔵庫において、
前記第2圧縮要素からの吐出通路と前記第1の吸入通路との接続通路と、前記第1の圧縮要素と前記第2の圧縮要素が内側に配置された密閉容器と、前記第1の吸入通路と前記密閉容器内の空間とに連通する密閉容器内圧力形成通路を備えた冷蔵庫。
The refrigerator according to claim 3 or 4,
A connection passage between a discharge passage from the second compression element and the first suction passage, a sealed container in which the first compression element and the second compression element are disposed, and the first suction A refrigerator including a pressure forming passage in a sealed container that communicates with the passage and a space in the sealed container .
JP2001073278A 2000-03-15 2001-03-15 refrigerator Expired - Fee Related JP4300712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073278A JP4300712B2 (en) 2000-03-15 2001-03-15 refrigerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000077772 2000-03-15
JP2000-77772 2000-03-15
JP2001073278A JP4300712B2 (en) 2000-03-15 2001-03-15 refrigerator

Publications (2)

Publication Number Publication Date
JP2001330360A JP2001330360A (en) 2001-11-30
JP4300712B2 true JP4300712B2 (en) 2009-07-22

Family

ID=26587928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073278A Expired - Fee Related JP4300712B2 (en) 2000-03-15 2001-03-15 refrigerator

Country Status (1)

Country Link
JP (1) JP4300712B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262416A (en) * 2002-03-12 2003-09-19 Sanyo Electric Co Ltd Air conditioner
KR100557056B1 (en) * 2003-07-26 2006-03-03 엘지전자 주식회사 Scroll compressor with volume regulating capability
KR100547321B1 (en) * 2003-07-26 2006-01-26 엘지전자 주식회사 Scroll compressor with volume regulating capability
KR100547322B1 (en) * 2003-07-26 2006-01-26 엘지전자 주식회사 Scroll compressor with volume regulating capability
KR100557057B1 (en) * 2003-07-26 2006-03-03 엘지전자 주식회사 Scroll compressor with volume regulating capability
US7417737B2 (en) 2003-12-02 2008-08-26 Fujilfilm Corporation Method for measuring surface plasmon resonance
JP2012515880A (en) * 2009-01-23 2012-07-12 ビッツァー クールマシーネンバウ ゲーエムベーハー Multiple scroll compressors having different volume indexes and systems and methods for the same
KR101155494B1 (en) * 2009-11-18 2012-06-15 엘지전자 주식회사 Heat pump
BRPI1005090A2 (en) * 2010-12-10 2013-04-02 Whirlpool Sa Double suction compressor control methods for refrigeration systems
WO2016113785A1 (en) * 2015-01-15 2016-07-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device and compressor used in same

Also Published As

Publication number Publication date
JP2001330360A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US6189335B1 (en) Multi-stage compressing refrigeration device and refrigerator using the device
EP1975414B1 (en) Injectible two-staged rotary compressor and heat pump system
TW200526912A (en) Refrigerator
WO2000071947A1 (en) Improved control system for a refrigerator with two evaporating temperatures
JP2009127902A (en) Refrigerating device and compressor
JP2701658B2 (en) Air conditioner
JP4300712B2 (en) refrigerator
JP2000054975A (en) Two-stage compressor
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
KR100361787B1 (en) A refrigerator
JPH02230995A (en) Compressor for heat pump and operating method thereof
JP4253957B2 (en) refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JPH07234024A (en) Air conditioner
JP2006125843A (en) Cooling cycle and refrigerator
JP3548017B2 (en) Cooling system
JP4013875B2 (en) Freezer refrigerator
JP4284789B2 (en) refrigerator
JPH01318860A (en) Refrigeration cycle device
JP2001263901A (en) Refrigerator
JP2001201194A (en) Cold storage system with deep freezer
JP2001065888A (en) Carbon dioxide refrigerating machine
JP2012247097A (en) Refrigerating cycle apparatus
JPH07234037A (en) Heat pump equipment
JPH0210063A (en) Device for refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees