JP2001330360A - Refrigerator and freezer air conditioner - Google Patents

Refrigerator and freezer air conditioner

Info

Publication number
JP2001330360A
JP2001330360A JP2001073278A JP2001073278A JP2001330360A JP 2001330360 A JP2001330360 A JP 2001330360A JP 2001073278 A JP2001073278 A JP 2001073278A JP 2001073278 A JP2001073278 A JP 2001073278A JP 2001330360 A JP2001330360 A JP 2001330360A
Authority
JP
Japan
Prior art keywords
refrigerant
compression element
refrigerator
evaporator
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001073278A
Other languages
Japanese (ja)
Other versions
JP4300712B2 (en
Inventor
Kazuhiro Endo
和広 遠藤
Hirokatsu Kosokabe
弘勝 香曽我部
Kenichi Oshima
健一 大島
Shigeya Kawaminami
茂也 川南
Akihiko Ishiyama
明彦 石山
Isao Hayase
功 早瀬
Hiroaki Matsushima
弘章 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001073278A priority Critical patent/JP4300712B2/en
Publication of JP2001330360A publication Critical patent/JP2001330360A/en
Application granted granted Critical
Publication of JP4300712B2 publication Critical patent/JP4300712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Abstract

PROBLEM TO BE SOLVED: To provide either a refrigerator or a freezer air conditioner in which there is provided a cooler for individually cooling a plurality of storing chambers and then an efficient cooling in the refrigerator is carried out. SOLUTION: There is provided a refrigerator having a freezing cycle in which a first evaporator for cooling an inner part of a freezing chamber, a second evaporator for cooling an inner part of a refrigerator chamber, a compressor having a first compressing element and a second compressing element for compressing refrigerant, and a condenser are connected to each other. The refrigerator is comprised of a first refrigerant flow passage communicated between the first evaporator and the first compressing element, a second refrigerant flow passage between the first compressing element and the second compressing element, and a third refrigerant flow passage communicated between the second evaporator and the second refrigerant flow passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の蒸発器、圧
縮要素を有する圧縮機を備えた冷蔵庫及び冷凍空調装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having a plurality of evaporators and a compressor having a compression element, and a refrigerating and air-conditioning apparatus.

【0002】[0002]

【従来の技術】家庭の電気代に占める冷蔵庫の割合は大
きいので、家庭の電気代を低減するためには冷蔵庫の消
費電力を低減することが重要な課題となっている。これ
を解決する技術として、蒸発温度が異なる2個の蒸発
器、2個の圧縮要素を有し、2個の蒸発器の各出口を2
個の圧縮要素の各吸入通路にそれぞれ接続した冷蔵庫が
考えられている。このような従来技術の一例は、特開平
5−223368号公報に開示されている。
2. Description of the Related Art Since the ratio of refrigerators to household electricity bills is large, it is important to reduce the power consumption of refrigerators in order to reduce household electricity bills. As a technique for solving this, two evaporators having different evaporation temperatures, two compression elements, and each outlet of the two evaporators is connected to two evaporators.
A refrigerator connected to each suction passage of each compression element has been considered. One example of such a prior art is disclosed in Japanese Patent Application Laid-Open No. 5-223368.

【0003】上記従来技術に開示された冷蔵庫は、蒸発
温度の異なる、冷凍室を冷却する冷凍室蒸発器と冷蔵室
を冷却する冷蔵室蒸発器を並列関係に接続し、2段圧縮
を行う2個の圧縮要素を備えている。低段圧縮要素の吸
入通路は、冷凍室蒸発器出口と接続し、低段圧縮要素の
吐出通路は、冷蔵室蒸発器出口と合流し、高段圧縮要素
の吸入通路と接続し、高段圧縮要素の吐出通路は凝縮器
入口と接続している。
In the refrigerator disclosed in the above-mentioned prior art, a freezer compartment evaporator for cooling a freezer compartment and a refrigerator compartment evaporator for cooling a refrigerator compartment having different evaporation temperatures are connected in parallel, and two-stage compression is performed. It has a number of compression elements. The suction passage of the low-stage compression element is connected to the outlet of the freezing room evaporator, and the discharge passage of the low-stage compression element is joined to the outlet of the refrigerating room evaporator and connected to the suction passage of the high-stage compression element. The discharge passage of the element is connected to the condenser inlet.

【0004】上記低段圧縮要素は、冷凍室蒸発器から流
出したガス冷媒を冷凍室蒸発器の蒸発圧力レベルの低圧
から、冷蔵室蒸発器の蒸発圧力レベルの中間圧まで圧縮
し、高段圧縮要素は、低段圧縮要素により中間圧まで圧
縮されたガス冷媒と、冷蔵室蒸発器から流出したガス冷
媒を共に、中間圧から凝縮器の凝縮圧力レベルの高圧ま
で圧縮するものである。
[0004] The low-stage compression element compresses the gas refrigerant flowing out of the freezer compartment evaporator from a low pressure at the evaporation pressure level of the freezer compartment to an intermediate pressure at the evaporation pressure level of the refrigerator compartment evaporator. The element compresses both the gas refrigerant compressed to the intermediate pressure by the low-stage compression element and the gas refrigerant flowing out of the refrigerator evaporator from the intermediate pressure to a high pressure of the condensation pressure of the condenser.

【0005】このような従来技術では、冷凍室蒸発器と
比較して、蒸発温度が高い冷蔵室蒸発器から流出したガ
ス冷媒を、さらに減圧し低圧から圧縮するのではなく、
中間圧から圧縮するものであり、低段圧縮の圧縮動力を
低減して、冷蔵庫の消費電力を大幅に低減しようとして
いる。
[0005] In such a conventional technique, the gas refrigerant flowing out of the refrigerator compartment evaporator having a higher evaporation temperature than that of the freezer compartment evaporator is not depressurized and compressed from a low pressure.
It compresses from the intermediate pressure, and attempts to reduce the compression power of the low-stage compression to significantly reduce the power consumption of the refrigerator.

【0006】また、上記のように、冷凍室と冷蔵室に各
々の蒸発器をもつ冷蔵庫は、蒸発器1個で、冷凍室と冷
蔵室の両方を冷気の強制循環により冷却する冷蔵庫に比
べて、冷蔵室蒸発器の蒸発温度を高くすることができる
ので、冷蔵室への吐出冷気温度を高くでき、湿度を高く
維持するものである。
As described above, a refrigerator having an evaporator in a freezer compartment and a refrigerator compartment has a single evaporator, compared to a refrigerator in which both the freezer compartment and the refrigerator compartment are cooled by forced circulation of cool air. Since the evaporation temperature of the refrigerator evaporator can be increased, the temperature of the cool air discharged into the refrigerator can be increased, and the humidity can be maintained high.

【0007】[0007]

【発明が解決しようとする課題】一般に、冷蔵庫の冷凍
室温度は、−18℃以下である一方、冷蔵室温度は、0
℃より高い5℃以下であることが求められている。上記
の特開平5−223368号公報に開示された従来技術
では、2個の圧縮要素と蒸発温度の異なる2個の蒸発器
を用いて、冷凍室と冷蔵室を同時に冷却し、大幅な消費
電力の低減を図る構成が示されている。
Generally, the temperature of the freezer compartment of a refrigerator is -18 ° C. or less, while the temperature of the refrigerator compartment is 0 ° C.
It is required that the temperature is 5 ° C. or lower, which is higher than the temperature. In the prior art disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-223368, the freezing compartment and the refrigerating compartment are simultaneously cooled by using two compression elements and two evaporators having different evaporating temperatures, so that a large amount of power is consumed. 1 is shown.

【0008】しかしながら、上記従来技術による冷凍室
と冷蔵室とを並行して冷却する運転では、冷蔵室温度は
所定以下であっても、冷凍室温度が所定以上のときに冷
凍室を冷却するため、冷蔵室が必要以上に冷却されてし
まうという問題があり、冷蔵室内の貯蔵物に悪影響を与
えてしまうという点については何ら考慮されていなかっ
た。このような問題を解決するために、冷蔵室の食品が
凍結しないように冷蔵室内を温める電気ヒータを設ける
と、消費電力の増加をもたらしてしまうという問題があ
った。
However, in the operation of cooling the freezer compartment and the refrigerating compartment in parallel according to the above-mentioned prior art, the freezer compartment is cooled when the freezer compartment temperature is higher than a predetermined temperature, even if the refrigerator compartment temperature is lower than a predetermined temperature. However, there is a problem that the refrigerator compartment is cooled more than necessary, and no consideration has been given to the fact that the storage in the refrigerator compartment is adversely affected. In order to solve such a problem, if an electric heater for warming the refrigerator compartment is provided so that the food in the refrigerator compartment does not freeze, there is a problem that power consumption is increased.

【0009】また、こうした問題を解決するためには、
各室を単独で冷却することが必要であるが、このような
機能を達成するための圧縮機や冷凍サイクルの構造につ
いては、この従来技術では考慮されていなかった。特
に、各室を単独に冷却する運転と同時に運転する運転と
を切替える場合に効率良く運転させる冷蔵庫の構成につ
いて、従来技術では考慮されていなかった。
In order to solve such a problem,
Although it is necessary to cool each chamber independently, the structure of a compressor or a refrigeration cycle for achieving such a function has not been considered in this prior art. In particular, the prior art has not considered a configuration of a refrigerator that efficiently operates when switching between an operation of simultaneously cooling each room and an operation of simultaneously operating each room.

【0010】本発明の目的は、複数の貯蔵室を個別に冷
却する冷却器を備え効率良く庫内を冷却する冷蔵庫また
は冷凍空調装置を提供することにある。
It is an object of the present invention to provide a refrigerator or a refrigerating air conditioner which includes a cooler for individually cooling a plurality of storage rooms and efficiently cools the inside of the refrigerator.

【0011】[0011]

【課題を解決するための手段】上記目的は、冷凍室内を
冷却する第1の蒸発器と、冷蔵室内を冷却する第2の蒸
発器と、冷媒を圧縮する第1の圧縮要素と第2の圧縮要
素とを有する圧縮機と、凝縮器とが接続された冷凍サイ
クルを備えた冷蔵庫において、前記第1の蒸発器と第1
の圧縮要素とが連通された第1の冷媒の流路と、前記第
1の圧縮要素から第2の圧縮要素とを連通する第2の冷
媒の流路と、前記第2の蒸発器と前記第2の冷媒通路と
を連通する第3の冷媒の流路とを備えたことにより達成
される。
SUMMARY OF THE INVENTION The above objects are attained by a first evaporator for cooling a freezer compartment, a second evaporator for cooling a refrigerator compartment, a first compression element for compressing a refrigerant, and a second evaporator. In a refrigerator including a refrigerating cycle in which a compressor having a compression element and a condenser are connected, the first evaporator and the first evaporator are connected to each other.
A first refrigerant flow path communicating with the first compression element, a second refrigerant flow path communicating from the first compression element to the second compression element, the second evaporator, and the second evaporator. This is achieved by providing a third refrigerant flow path communicating with the second refrigerant passage.

【0012】また、冷凍室内を冷却する第1の蒸発器
と、冷蔵室内を冷却する第2の蒸発器と、冷媒を圧縮す
る第1の圧縮要素と第2の圧縮要素とを有する圧縮機
と、凝縮器とが接続され、前記凝縮機から前記第1及び
第2の蒸発器に冷媒が分かれて流れる冷凍サイクルを備
えた冷蔵庫において、前記第1の蒸発器と第1の圧縮要
素とが連通された第1の冷媒の流路と、前記第1の圧縮
要素から第2の圧縮要素とを連通する第2の冷媒の流路
と、前記第2の蒸発器と前記第2の冷媒通路とを連通す
る第3の冷媒の流路と、前記凝縮機から前記第2の蒸発
器に向かう冷媒の流れを抑止する手段を備えたことによ
り達成される。
A first evaporator for cooling the freezer compartment, a second evaporator for cooling the refrigerator compartment, and a compressor having a first compression element and a second compression element for compressing the refrigerant. And a condenser connected to the first evaporator and the first and second evaporators, wherein the first evaporator communicates with the first compression element. The flow path of the first refrigerant, the flow path of the second refrigerant that communicates from the first compression element to the second compression element, the second evaporator, and the second refrigerant path. And a means for suppressing the flow of the refrigerant from the condenser to the second evaporator.

【0013】さらに、前記第1及び第2の蒸発器から前
記第1及び第2及び第3の冷媒の流路を冷媒が流れる運
転と、前記凝縮機から前記第2の蒸発器に向かう冷媒の
流れが抑止され前記第1の蒸発器を通り前記圧縮機に冷
媒が流れる運転とを備えたことにより達成される。さら
にまた、前記凝縮機から前記第1の蒸発器に向かう冷媒
の流れが抑止され、前記第2の蒸発器を通り前記圧縮機
に冷媒が流れることにより達成される。
Further, an operation in which the refrigerant flows from the first and second evaporators through the flow paths of the first, second and third refrigerants, and an operation of the refrigerant flowing from the condenser to the second evaporator is performed. The flow is suppressed and the refrigerant flows through the first evaporator to the compressor. Furthermore, the flow of the refrigerant from the condenser to the first evaporator is suppressed, and the refrigerant is achieved by flowing the refrigerant to the compressor through the second evaporator.

【0014】また、冷凍室内を冷却する第1の蒸発器
と、冷蔵室内を冷却する第2の蒸発器と、冷媒を圧縮す
る第1の圧縮要素と第2の圧縮要素とを有する圧縮機
と、凝縮器とが接続された冷凍サイクルを備えた冷蔵庫
において、前記冷媒が前記第1の蒸発器、第1の圧縮要
素、第2の圧縮要素の順に流れるとともに前記第2の蒸
発器、前記第2の圧縮要素の順に流れる第1の冷媒の流
れと、前記冷媒が前記第1の蒸発器を通って前記圧縮機
に流れる第2の冷媒の流れとを備え、前記第1の冷媒の
流れと前記第2の冷媒の流れとを切替えて運転すること
により達成される。
A compressor having a first evaporator for cooling the freezer compartment, a second evaporator for cooling the refrigerator compartment, and a first compression element and a second compression element for compressing the refrigerant; , A refrigerator provided with a refrigeration cycle connected to a condenser, wherein the refrigerant flows in the order of the first evaporator, the first compression element, the second compression element, and the second evaporator, A flow of a first refrigerant flowing in the order of two compression elements, and a flow of a second refrigerant in which the refrigerant flows through the first evaporator to the compressor. This is achieved by switching and operating the flow of the second refrigerant.

【0015】さらに、前記第2の蒸発器を通って前記圧
縮機に冷媒が流れる第3の冷媒の流れに切替えて運転す
ることにより達成される。さらにまた、前記冷媒が前記
第1の蒸発器を通って前記第1及び第2の圧縮要素に流
れる場合には、前記第1の圧縮要素と前記第2の圧縮要
素とに並列に冷媒が流れることにより達成される。
Further, this is achieved by switching the operation to a third refrigerant flow through which the refrigerant flows through the second evaporator to the compressor. Furthermore, when the refrigerant flows to the first and second compression elements through the first evaporator, the refrigerant flows in parallel to the first compression element and the second compression element. This is achieved by:

【0016】さらには、前記冷蔵庫の扉に設けられ使用
者が操作して冷蔵庫の運転を調節可能な操作手段を備
え、前記第1または第2または第3の冷媒の流れによる
運転のいずれかが選択可能なことにより達成される。さ
らにまた、前記圧縮機を駆動する電動機の回転を可変に
調節する調節手段と、前記操作手段の操作により前記前
記第2の冷媒の流れによる運転が選択されるとともに前
記調節手段により前記圧縮機の回転数が増大されること
により達成される。
Further, operating means is provided on the door of the refrigerator and can be operated by a user to adjust the operation of the refrigerator, and any one of the first, second or third operation by the flow of the refrigerant is provided. Achieved by being selectable. Furthermore, adjusting means for variably adjusting the rotation of the electric motor driving the compressor, and operation by the flow of the second refrigerant is selected by operating the operating means, and the adjusting means controls the compressor by the adjusting means. This is achieved by increasing the rotational speed.

【0017】また、第1の貯蔵室を冷却する第1の冷却
器と、第2の貯蔵室を冷却する第2の冷却器と、第1及
び第2の圧縮室を有する圧縮機と、凝縮器とが接続され
た冷凍サイクルを備えた冷蔵庫において、前記第1の圧
縮室からの吐出通路と前記凝縮器の入口とを接続された
冷媒管と、前記凝縮器の出口と第1の冷却器及び第2の
冷却器とを接続する冷媒管と、前記第1の冷却器と前記
第1の圧縮室とに接続された第1の吸入通路と、前記第
2の冷却器と前記第2の圧縮室とに接続された第2の吸
入通路と、前記第1及び第2の吸入通路とに接続する通
路に設けられ前記第1の吸入通路から第2の吸入通路へ
の冷媒の流れを止める第1の弁手段と、前記第1の圧縮
室からの吐出通路と前記第2の圧縮室からの吐出通路と
に接続する通路に設けられ前記第1の圧縮室の吐出通路
から前記第2の圧縮室の吐出通路への冷媒の流れを止め
る第2の弁手段と、前記第2圧縮室からの吐出通路と前
記第1の吸入通路との接続通路と、前記第1の冷却器と
前記第1の吸入通路とを通る冷媒の流れと前記第2の圧
縮室から前記第1の圧縮室に流れる冷媒の流れを調節す
る調節手段を備えたことにより達成される。
A first cooler for cooling the first storage chamber, a second cooler for cooling the second storage chamber, a compressor having first and second compression chambers, A refrigerator having a refrigeration cycle to which a condenser is connected, a refrigerant pipe connected to a discharge passage from the first compression chamber and an inlet of the condenser, an outlet of the condenser, and a first cooler. And a refrigerant pipe connecting the second cooler, a first suction passage connected to the first cooler and the first compression chamber, the second cooler and the second cooler. A second suction passage connected to the compression chamber and a passage connected to the first and second suction passages are provided for stopping a flow of the refrigerant from the first suction passage to the second suction passage. A first valve means, a passage connected to a discharge passage from the first compression chamber and a discharge passage from the second compression chamber; A second valve means for stopping a flow of the refrigerant from a discharge passage of the first compression chamber to a discharge passage of the second compression chamber; a discharge passage from the second compression chamber; and the first suction. Adjusting means for adjusting the flow of the refrigerant passing through the connection passage to the passage, the first cooler and the first suction passage, and the flow of the refrigerant flowing from the second compression chamber to the first compression chamber; It is achieved by having.

【0018】さらに、前記調節手段は、前記凝縮器と前
記第1及び第2の冷却器とを接続する冷媒管上に設けら
れ前記第1及び第2の冷却器に冷媒管を分岐する分岐部
と、この分岐部と前記第1の冷却器との間の冷媒管上に
設けられこの管内の冷媒の流れを調節する第1の調節手
段と、前記第2の圧縮室からの吐出通路と前記第1の吸
入通路との接続通路上に設けられこの通路内の冷媒の流
れを調節する第2の調節手段と、前記第1及び第2の調
節手段を調節する制御手段を備えたことにより達成され
る。
Further, the adjusting means is provided on a refrigerant pipe connecting the condenser and the first and second coolers, and is a branch portion for branching the refrigerant pipe to the first and second coolers. A first adjusting means provided on a refrigerant pipe between the branch portion and the first cooler to adjust a flow of the refrigerant in the pipe; a discharge passage from the second compression chamber; Achieved by providing a second adjusting means provided on a connecting passage with the first suction passage for adjusting the flow of the refrigerant in the passage, and a controlling means for adjusting the first and second adjusting means. Is done.

【0019】また、第1の貯蔵室を冷却する第1の冷却
器と、第2の貯蔵室を冷却する第2の冷却器と、第1及
び第2の圧縮室を有する圧縮機と、凝縮器とが接続され
た冷凍サイクルを備えた冷蔵庫において、前記第1の圧
縮室からの吐出通路と前記凝縮器の入口とを接続された
冷媒管と、前記凝縮器の出口と第1の冷却器及び第2の
冷却器とを接続する冷媒管と、前記第1の冷却器と前記
第1の圧縮室とに接続された第1の吸入通路と、前記第
2の冷却器と前記第2の圧縮室とに接続された第2の吸
入通路と、前記第2圧縮室からの吐出通路と前記第1の
吸入通路との接続通路と、前記第1の圧縮室と前記第2
の圧縮室が内側に配置された密閉容器と、前記第1の吸
入通路と前記密閉容器内の空間とに連通する開口部を備
えたことにより達成される。
A first cooler for cooling the first storage chamber, a second cooler for cooling the second storage chamber, a compressor having first and second compression chambers, A refrigerator having a refrigeration cycle to which a condenser is connected, a refrigerant pipe connected to a discharge passage from the first compression chamber and an inlet of the condenser, an outlet of the condenser, and a first cooler. And a refrigerant pipe connecting the second cooler, a first suction passage connected to the first cooler and the first compression chamber, the second cooler and the second cooler. A second suction passage connected to the compression chamber, a connection passage between the discharge passage from the second compression chamber and the first suction passage, the first compression chamber and the second suction passage;
This is achieved by providing an airtight container in which the compression chamber is disposed inside, and an opening communicating with the first suction passage and the space in the airtight container.

【0020】さらに、前記第1及び第2の吸入通路とに
接続する通路に設けられ前記第1の吸入通路から第2の
吸入通路への冷媒の流れを止める第1の弁手段と、前記
第1の圧縮室からの吐出通路と前記第2の圧縮室からの
吐出通路とに接続する通路に設けられ前記第1の圧縮室
の吐出通路から前記第2の圧縮室の吐出通路への冷媒の
流れを止める第2の弁手段と、前記第1の冷却器と前記
第1の吸入通路とを通る冷媒の流れと前記第2の圧縮室
から前記第1の圧縮室に流れる冷媒の流れを調節する調
節手段を備えたことにより達成される。
A first valve means provided in a passage connected to the first and second suction passages for stopping a flow of the refrigerant from the first suction passage to the second suction passage; The refrigerant flowing from the discharge passage of the first compression chamber to the discharge passage of the second compression chamber is provided in a passage connected to the discharge passage from the first compression chamber and the discharge passage from the second compression chamber. The second valve means for stopping the flow, the flow of the refrigerant passing through the first cooler and the first suction passage, and the flow of the refrigerant flowing from the second compression chamber to the first compression chamber are adjusted. This is achieved by providing an adjusting means.

【0021】また、室内を冷却するための第1の蒸発器
及び第2の蒸発器と、冷媒を圧縮する第1の圧縮要素と
第2の圧縮要素とを有する圧縮機と、凝縮器とが接続さ
れた冷凍サイクルを備えた冷凍空調装置において、前記
第1の蒸発器と第1の圧縮要素とが連通された第1の冷
媒の流路と、前記第1の圧縮要素から第2の圧縮要素と
を連通する第2の冷媒の流路と、前記第2の蒸発器と前
記第2の冷媒通路とを連通する第3の冷媒の流路とを備
えたことにより達成される。
Further, a first evaporator and a second evaporator for cooling the room, a compressor having a first compression element and a second compression element for compressing a refrigerant, and a condenser are provided. In a refrigeration air conditioner having a connected refrigeration cycle, a flow path of a first refrigerant in which the first evaporator and the first compression element are communicated, and a second compression path from the first compression element This is achieved by providing a flow path of a second refrigerant that communicates with the element, and a flow path of a third refrigerant that communicates the second evaporator and the second refrigerant path.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例を図1ない
し図21を参照して説明する。 〔実施例 1〕図1は、本発明の第1の実施例に係る冷
蔵庫の冷凍サイクルの概略を示すサイクルの構成図であ
る。図2は、図1に示す実施例の冷凍サイクルを用いた
冷蔵庫の概略を示す縦断面図である。図3は、図1に示
す実施例の冷凍サイクルに設けられた圧縮機の内部構造
を示す縦断面図である。図4は、図3に示した圧縮機部
品である第2のシリンダ、仕切り板、第1のシリンダ、
副軸受、第1の吐出室カバーの構造を示す斜視図であ
る。図5は、図3に示した圧縮機部品である弁を示す斜
視図である。図6は、図3に示した圧縮機部品である主
軸受、第2の吐出室副カバー、第2の吐出室主カバーの
構造を示す斜視図である。図7は、図3に示した圧縮機
のX−X断面の第2のシリンダ部分を示す図である。図
8は、図3に示す実施例の圧縮機が2段圧縮を行うとき
の一回転中の圧縮室圧力と密閉容器内圧力との差を示す
グラフである。図9は、図3に示す実施例の圧縮機が単
段圧縮を行うときの一回転中の圧縮室圧力と密閉容器内
圧力との差を示すグラフである。図10は、図2に示す
実施例の冷蔵庫の運転制御フローを示すフローチャート
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. [Embodiment 1] FIG. 1 is a schematic diagram of a refrigerating cycle of a refrigerator according to a first embodiment of the present invention. FIG. 2 is a longitudinal sectional view schematically showing a refrigerator using the refrigeration cycle of the embodiment shown in FIG. FIG. 3 is a longitudinal sectional view showing the internal structure of the compressor provided in the refrigeration cycle of the embodiment shown in FIG. FIG. 4 shows a second cylinder, a partition plate, a first cylinder, which are the compressor parts shown in FIG.
FIG. 4 is a perspective view illustrating a structure of a sub bearing and a first discharge chamber cover. FIG. 5 is a perspective view showing a valve which is a compressor part shown in FIG. FIG. 6 is a perspective view showing a structure of a main bearing, a second discharge chamber sub-cover, and a second discharge chamber main cover which are compressor parts shown in FIG. FIG. 7 is a view showing a second cylinder portion of a cross section XX of the compressor shown in FIG. 3. FIG. 8 is a graph showing the difference between the pressure in the compression chamber and the pressure in the closed vessel during one rotation when the compressor of the embodiment shown in FIG. 3 performs two-stage compression. FIG. 9 is a graph showing the difference between the pressure in the compression chamber and the pressure in the closed vessel during one rotation when the compressor of the embodiment shown in FIG. 3 performs single-stage compression. FIG. 10 is a flowchart showing an operation control flow of the refrigerator of the embodiment shown in FIG.

【0023】図1において、10は圧縮機、40は密閉
容器で、密閉容器40内に二つの圧縮要素(低段圧縮要
素11、高段圧縮要素12)を有している。本実施の例
では、後述するように、これら二つの圧縮要素が直列に
接続される場合には、冷凍サイクルを流れる冷媒はこれ
らの圧縮要素を順に通流して個々の圧縮要素により2回
に亙り圧縮される。また、二つの圧縮要素が並列に接続
された場合には、サイクルを流れる冷媒は、凝縮機から
蒸発器を通った後、個々の圧縮要素に分かれて並列に
(同時並行に)流入して、個々の圧縮要素で1回圧縮さ
れた後吐出され、冷媒通路に沿って合流して流れる。つ
まり、低段圧縮要素11に流入するとともに高段圧縮要
素12にも分かれて流入する。
In FIG. 1, reference numeral 10 denotes a compressor, and reference numeral 40 denotes a closed container. The closed container 40 has two compression elements (low-stage compression element 11 and high-stage compression element 12). In this embodiment, as will be described later, when these two compression elements are connected in series, the refrigerant flowing through the refrigeration cycle flows through these compression elements in order, and the individual compression elements twice. Compressed. Also, when two compression elements are connected in parallel, the refrigerant flowing through the cycle passes through the evaporator from the condenser, then is divided into individual compression elements and flows in parallel (simultaneously). After being compressed once by each compression element, it is discharged and merges and flows along the refrigerant passage. That is, it flows into the low-stage compression element 11 and also flows into the high-stage compression element 12 separately.

【0024】また、本実施の例では、低段圧縮要素11
と高段圧縮要素12の押しのけ量は、同等またはほぼ同
等に設定されている。
In this embodiment, the low-stage compression element 11
And the displacement of the high-stage compression element 12 are set to be equal or almost equal.

【0025】11a、11bはそれぞれ低段圧縮要素1
1の吸入通路、吐出通路で、12a、12bはそれぞれ
高段圧縮要素12の吸入通路、吐出通路である。12c
は高段圧縮要素12の吸入通路12aを密閉容器40内
に連通する密閉容器内圧力形成通路である。
Reference numerals 11a and 11b denote low-stage compression elements 1 respectively.
Reference numeral 12a, 12b denotes a suction passage and a discharge passage of the high-stage compression element 12, respectively. 12c
Is a pressure-generating passage in the closed vessel that connects the suction passage 12a of the high-stage compression element 12 to the inside of the closed vessel 40.

【0026】13aは吸入側逆止弁で、密閉容器40内
に、かつ、低段圧縮要素11の吸入通路11aと高段圧
縮要素12の吸入通路12aの間に配置される。高段圧
縮要素12の吸入通路12aでのガス冷媒圧力が、低段
圧縮要素11の吸入通路11aのガス冷媒圧力より高い
場合、弁は閉じた状態となり、高段圧縮要素12の吸入
通路12aでのガス冷媒圧力が、低段圧縮要素11の吸
入通路11aのガス冷媒圧力より低い場合、弁は開いた
状態となり、低段圧縮要素11の吸入通路11a側のガ
ス冷媒が高段圧縮要素12の吸入通路12a側に流入す
る。
Reference numeral 13a denotes a suction-side check valve which is arranged in the closed vessel 40 and between the suction passage 11a of the low-stage compression element 11 and the suction passage 12a of the high-stage compression element 12. When the gas refrigerant pressure in the suction passage 12a of the high-stage compression element 12 is higher than the gas refrigerant pressure in the suction passage 11a of the low-stage compression element 11, the valve is closed, and the valve is closed. Is lower than the gas refrigerant pressure in the suction passage 11a of the low-stage compression element 11, the valve is opened, and the gas refrigerant on the suction passage 11a side of the low-stage compression element 11 It flows into the suction passage 12a.

【0027】13bは吐出側逆止弁で、密閉容器40内
に、かつ、低段圧縮要素11の吐出通路11bと高段圧
縮要素12の吐出通路12bの間に配置される。高段圧
縮要素12の吐出通路12bでのガス冷媒圧力が、低段
圧縮要素11の吐出通路11bのガス冷媒圧力より高い
場合、弁は閉じた状態となり、高段圧縮要素12の吐出
通路12bでのガス冷媒圧力が、低段圧縮要素11の吐
出通路11bのガス冷媒圧力より低い場合、弁は開いた
状態となり、低段圧縮要素11の吐出通路11b側のガ
ス冷媒が高段圧縮要素12の吐出通路12b側に流入す
る。
Reference numeral 13b denotes a discharge-side check valve, which is disposed in the closed casing 40 and between the discharge passage 11b of the low-stage compression element 11 and the discharge passage 12b of the high-stage compression element 12. When the gas refrigerant pressure in the discharge passage 12b of the high-stage compression element 12 is higher than the gas refrigerant pressure in the discharge passage 11b of the low-stage compression element 11, the valve is in a closed state and the discharge passage 12b of the high-stage compression element 12 is closed. When the gas refrigerant pressure of the lower stage compression element 11 is lower than the gas refrigerant pressure of the discharge passage 11b, the valve is in an open state, and the gas refrigerant on the discharge passage 11b side of the lower stage compression element 11 It flows into the discharge passage 12b.

【0028】高段圧縮要素12の冷媒の吐出通路12b
は、凝縮器20の入口に接続される。また、凝縮器20
の出口につながる冷媒管路は、二つに分岐され、片方
は、減圧装置としての第1のキャピラリ21、冷凍室用
蒸発器22、低段圧縮要素11の吸入通路11aと順次
接続される。分岐された他方の冷媒管は、第1の電磁弁
23、減圧装置としての第2のキャピラリ24、冷蔵室
用蒸発器25、高段圧縮要素12の吸入通路12aと順
次接続される。
The refrigerant discharge passage 12b of the high-stage compression element 12
Is connected to the inlet of the condenser 20. Also, the condenser 20
Is branched into two, one of which is sequentially connected to a first capillary 21 as a decompression device, a freezer evaporator 22, and a suction passage 11a of the low-stage compression element 11. The other branched refrigerant pipe is sequentially connected to a first solenoid valve 23, a second capillary 24 as a decompression device, a refrigerator evaporator 25, and a suction passage 12a of the high-stage compression element 12.

【0029】電磁弁23は、電圧が印加されることによ
り弁の開閉作用が行われ冷媒管内部の冷媒の流れを調節
するものである。電圧の非通電時は開いた状態で、冷蔵
室用蒸発器25への冷媒の流れを通過させ、通電時は閉
じた状態で、冷蔵室用蒸発器25への冷媒の流れを阻止
する。
The solenoid valve 23 opens and closes the valve when a voltage is applied to regulate the flow of the refrigerant inside the refrigerant pipe. When the voltage is not supplied, the flow of the refrigerant to the refrigerator compartment evaporator 25 is allowed to pass in an open state, and when the voltage is not supplied, the flow of the refrigerant to the refrigerator compartment evaporator 25 is blocked in the closed state.

【0030】第1のキャピラリ21は、冷凍室用蒸発器
22の出口と低段圧縮要素11の吸入通路11aの間と
熱交換可能に接して配置される。また、第2のキャピラ
リ24は、冷蔵室用蒸発器25の出口と高段圧縮要素1
2の吸入通路12aの間と熱交換可能に接して配置され
る。これにより、キャピラリ21、24の冷媒は、減圧
しながら冷却されるため、それぞれの蒸発器22、25
の入口エンタルピが低下し、蒸発器の冷凍効果を増加さ
せることができる。一方、蒸発器22、25の出口と吸
入通路11a、12a間の冷媒は加熱されるため、配管
の露付きを防止できる。
The first capillary 21 is disposed so as to be able to exchange heat between the outlet of the freezer evaporator 22 and the suction passage 11 a of the low-stage compression element 11. The second capillary 24 is connected to the outlet of the evaporator 25 for the refrigerator and the high-stage compression element 1.
The two suction passages 12a are disposed so as to be able to exchange heat with each other. Thereby, the refrigerant in the capillaries 21 and 24 is cooled while being decompressed.
Enthalpy of the evaporator is reduced, and the refrigeration effect of the evaporator can be increased. On the other hand, since the refrigerant between the outlets of the evaporators 22 and 25 and the suction passages 11a and 12a is heated, dew on the piping can be prevented.

【0031】26は第2の電磁弁、27は中間冷却器
で、電磁弁26、中間冷却器27を介して、低段圧縮要
素11の吐出通路11bと高段圧縮要素12の吸入通路
12aは接続される。
Reference numeral 26 denotes a second solenoid valve, and 27 denotes an intercooler. Through the solenoid valve 26 and the intercooler 27, the discharge passage 11b of the low-stage compression element 11 and the suction passage 12a of the high-stage compression element 12 are connected. Connected.

【0032】第2の電磁弁26は、第1の電磁弁23と
同様に電圧をかけることにより弁の開閉作用を行い、非
通電時は開いた状態で、低段圧縮要素11の吐出通路1
1bから高段圧縮要素12の吸入通路12aへのガス冷
媒の流れを通過させ、通電時は閉じた状態で、低段圧縮
要素11の吐出通路11bから高段圧縮要素12の吸入
通路12aへのガス冷媒の流れを阻止する。
The second solenoid valve 26 opens and closes the valve by applying a voltage in the same manner as the first solenoid valve 23. When the second solenoid valve 26 is not energized, the second solenoid valve 26 is open.
1b from the discharge passage 11b of the low-stage compression element 11 to the suction passage 12a of the high-stage compression element 12 while passing the gas refrigerant flow from the discharge passage 11b to the suction passage 12a of the high-stage compression element 12. Blocks the flow of gas refrigerant.

【0033】中間冷却器27は、低段圧縮要素11の吐
出通路11bのガス冷媒と空気を熱交換させ、ガス冷媒
を冷却する。
The intercooler 27 exchanges heat between the gas refrigerant in the discharge passage 11b of the low-stage compression element 11 and air to cool the gas refrigerant.

【0034】30は凝縮器ファン、31は冷凍室用蒸発
器ファン、32は冷蔵室用蒸発器ファンである。
Reference numeral 30 denotes a condenser fan, 31 denotes a freezing room evaporator fan, and 32 denotes a refrigerator room evaporator fan.

【0035】図2に、図1の冷凍サイクルを用いた冷蔵
庫の断面概略図を示す。図1と同等部分には同一符号を
付す。1は冷蔵庫本体、2は冷凍室、3は冷蔵室、4は
冷凍室用蒸発器22の風路形成板、5は冷蔵室用蒸発器
25の風路形成板である。6は冷凍室用蒸発器22の除
霜用電気ヒータ、7は冷蔵室用蒸発器25の除霜用電気
ヒータであり、各々、所定の周期で通電、非通電が行わ
れ、蒸発器の除霜を行う。8は冷凍室2内の温度を検知
する温度センサ、9は冷蔵室3内の温度を検知する温度
センサである。冷凍室2、冷蔵室3内の矢印は、気流の
向きを示す。
FIG. 2 is a schematic sectional view of a refrigerator using the refrigeration cycle of FIG. 1 are given the same reference numerals. 1 is a refrigerator main body, 2 is a freezing room, 3 is a refrigerating room, 4 is an air path forming plate of the freezer evaporator 22, and 5 is an air path forming plate of the refrigerating room evaporator 25. Reference numeral 6 denotes an electric heater for defrosting the evaporator 22 for the freezer compartment, and 7 denotes an electric heater for defrosting the evaporator 25 for the refrigerator compartment. Do the frost. Reference numeral 8 denotes a temperature sensor for detecting the temperature in the freezer compartment 2, and reference numeral 9 denotes a temperature sensor for detecting the temperature in the refrigerator compartment 3. Arrows in the freezer compartment 2 and the refrigerator compartment 3 indicate the direction of airflow.

【0036】圧縮機10、凝縮器20、電磁弁23、2
6、中間冷却器27、凝縮器ファン30は、冷蔵庫本体
1の底部に配置され、キャピラリ21、24は冷蔵庫本
体1の背面断熱材内に配置(図示せず)される。
The compressor 10, the condenser 20, the solenoid valves 23,
6. The intercooler 27 and the condenser fan 30 are disposed at the bottom of the refrigerator main body 1, and the capillaries 21 and 24 are disposed (not shown) in the rear heat insulating material of the refrigerator main body 1.

【0037】温度センサ8,9で温度が検知され、これ
らの出力が冷蔵庫の制御装置101に入力される。制御
装置101では、温度センサ8,9の出力に基づいて各
貯蔵室2,3の冷却運転の要否を判断して決定する。圧
縮機10及び機械室のファン30、各貯蔵室のファン3
1,32の回転数を設定し、これらの回転数を調節する
ためインバータ102,103,104,105に指令
を与える。同時に、電磁弁23,26に開閉動作の指令
を与える。
Temperatures are detected by the temperature sensors 8 and 9, and their outputs are input to the control device 101 of the refrigerator. The control device 101 determines and determines whether or not the cooling operation of each of the storage rooms 2 and 3 is necessary based on the outputs of the temperature sensors 8 and 9. Compressor 10, fan 30 in machine room, fan 3 in each storage room
The number of rotations of 1, 32 is set, and a command is given to inverters 102, 103, 104, 105 to adjust these rotation numbers. At the same time, a command for an opening / closing operation is given to the solenoid valves 23 and 26.

【0038】また、制御装置101は、冷蔵庫1に設け
られたスイッチやボタン106からの使用者の指令を検
知した場合には、温度センサ8,9の出力に係わらず、
インバータ102〜105、電磁弁23,26に指令を
与えて強制的に冷蔵庫の運転を設定するようにしても良
い。このような運転は、使用者が短時間で冷却、冷凍を
行いたい場合に適切である。使用者が短時間での冷凍を
指令した場合には、冷凍室の冷却能力を増大させるた
め、冷蔵室用の蒸発器25への冷媒の供給を止めて冷凍
室用の蒸発器22のみに冷媒を供給して冷凍室を単独で
冷却することとし、2つの圧縮要素11,12に並列に
冷媒が流れるように電磁弁23,26を設定する。本実
施例では、電磁弁23,26を閉じる。
When the controller 101 detects a user command from a switch or button 106 provided on the refrigerator 1, regardless of the outputs of the temperature sensors 8 and 9,
A command may be given to the inverters 102 to 105 and the solenoid valves 23 and 26 to forcibly set the operation of the refrigerator. Such an operation is appropriate when the user wants to perform cooling and freezing in a short time. When the user instructs freezing in a short time, supply of the refrigerant to the evaporator 25 for the refrigerator is stopped and the refrigerant is supplied only to the evaporator 22 for the refrigerator in order to increase the cooling capacity of the refrigerator. Is supplied to cool the freezing room independently, and the solenoid valves 23 and 26 are set so that the refrigerant flows in parallel to the two compression elements 11 and 12. In this embodiment, the solenoid valves 23 and 26 are closed.

【0039】一方、このような短時間の冷却運転が不要
である場合、例えば冷凍室内の温度と設定温度との差が
小さい場合には、より効率の良い運転をするために、た
とえ冷凍室を単独に冷却する場合でも、圧縮要素11,
12に順に冷媒が流れる2段圧縮となるように電磁弁2
3,26を設定しても良い。本実施例の場合には、電磁
弁23を閉じ、電磁弁26を開く。ただし、この運転を
行う場合、本実施例では圧縮要素11,12の押しのけ
量はほぼ同じであるので、低段側の圧縮要素11におい
ては、ほとんど圧縮仕事をしないため、2段圧縮による
圧縮機の効率向上が期待できない。そこで、各室単独で
冷却運転を行う場合での効率を向上させるために、圧縮
要素11,12の押しのけ量を異ならせ圧縮要素12の
容積を小さくしても良い。
On the other hand, when such a short cooling operation is not necessary, for example, when the difference between the temperature in the freezer compartment and the set temperature is small, the freezer compartment is required to operate more efficiently. Even when cooling alone, the compression element 11,
12 so that the refrigerant flows into the two-stage compression in order.
3, 26 may be set. In this embodiment, the solenoid valve 23 is closed and the solenoid valve 26 is opened. However, when this operation is performed, in this embodiment, since the displacements of the compression elements 11 and 12 are almost the same, the compression element 11 on the lower stage side hardly performs the compression work. Cannot be expected to improve efficiency. Therefore, in order to improve the efficiency when performing the cooling operation in each chamber alone, the displacement of the compression elements 11 and 12 may be varied to reduce the volume of the compression element 12.

【0040】図3は、図1の圧縮機10の縦断面図であ
る。圧縮機10は2シリンダ形ロータリ圧縮機で、密閉
容器40内に電動機部と圧縮機構部が収納されている。
FIG. 3 is a longitudinal sectional view of the compressor 10 of FIG. The compressor 10 is a two-cylinder rotary compressor in which an electric motor unit and a compression mechanism unit are housed in a closed container 40.

【0041】電動機部は、密閉容器40に焼きばめ等で
固定されたステータ41とクランク軸42に固定された
ロータ43とで構成されている。
The electric motor section is composed of a stator 41 fixed to the closed casing 40 by shrink fitting or the like and a rotor 43 fixed to the crankshaft 42.

【0042】圧縮機構部は、図1の低段圧縮要素11と
高段圧縮要素12に該当する2個の圧縮要素を有してい
る。高段圧縮要素は、クランク軸42を支持する主軸受
44、第2のシリンダ45、仕切り板46、クランク軸
42の偏心部42aにかん入されたローラ部52aとベ
ーン部52bからなるローラ52(後出の図7参照)、
ベーン部52bの往復運動と揺動運動を可能にするベー
ン部52bを挟み込む滑動部材54a、54b(後出の
図7参照)により構成されている。低段圧縮要素は、前
記仕切り板46、第1のシリンダ47、クランク軸42
を支持する副軸受48、クランク軸42の偏心部42b
にかん入されたローラ部とベーン部(図示せず)からな
るローラ53、ローラ53のベーン部の往復運動と揺動
運動を可能にするベーン部を挟み込む滑動部材(図示せ
ず)により構成されている。前記主軸受44は、溶接等
で密閉容器40に固定されている。
The compression mechanism section has two compression elements corresponding to the low-stage compression element 11 and the high-stage compression element 12 in FIG. The high-stage compression element includes a main bearing 44 that supports the crankshaft 42, a second cylinder 45, a partition plate 46, and a roller 52 (a roller 52a and a vane 52b inserted into the eccentric portion 42a of the crankshaft 42). See Figure 7 below),
It is constituted by sliding members 54a and 54b (see FIG. 7 described later) that sandwich the vane 52b that enables the reciprocating motion and the swinging motion of the vane 52b. The low-stage compression element includes the partition plate 46, the first cylinder 47, the crankshaft 42,
Bearing 48 for supporting the eccentric portion 42b of the crankshaft 42
The roller 53 includes a roller portion and a vane portion (not shown) inserted into the roller 53, and a sliding member (not shown) that sandwiches the vane portion that enables the reciprocating motion and the swinging motion of the vane portion of the roller 53. ing. The main bearing 44 is fixed to the closed container 40 by welding or the like.

【0043】クランク軸42の二つの偏心部42a、4
2bは、互いに回転方向に180°の位相差を有して形
成され、ローラ52、53は、クランク軸42の回転に
ともなって、それぞれのシリンダ45、47内を偏心回
転運動するようになっている。また、各ローラ52、5
3のベーン部は、各シリンダ45、47内を吸入室と圧
縮室に区分する働きをしている。クランク軸42の回転
にともない、二つの圧縮要素において、180°間隔で
ガス冷媒の圧縮が交互に行われる。
The two eccentric portions 42a, 4a of the crankshaft 42
2b are formed so as to have a phase difference of 180 ° in the rotation direction, and the rollers 52, 53 are eccentrically rotated in the respective cylinders 45, 47 with the rotation of the crankshaft 42. I have. Each roller 52, 5
The vane 3 functions to divide the interior of each of the cylinders 45 and 47 into a suction chamber and a compression chamber. With the rotation of the crankshaft 42, the compression of the gas refrigerant is alternately performed at 180 ° intervals in the two compression elements.

【0044】11a’は図1の低段圧縮要素11の吸入
通路11aを一部構成する低段圧縮要素吸入管、11
b’は図1の低段圧縮要素11の吐出通路11bを一部
構成する低段圧縮要素吐出管、12a’は図1の高段圧
縮要素12の吸入通路12aを一部構成する高段圧縮要
素吸入管、12b’は図1の低段圧縮要素12の吐出通
路12bを一部構成する高段圧縮要素吐出管である。
Reference numeral 11a 'denotes a low-stage compression element suction pipe which partially constitutes a suction passage 11a of the low-stage compression element 11 in FIG.
b 'is a low-stage compression element discharge pipe which partially forms the discharge passage 11b of the low-stage compression element 11 of FIG. 1, and 12a' is a high-stage compression which partially forms the suction passage 12a of the high-stage compression element 12 of FIG. The element suction pipe 12b 'is a high-stage compression element discharge pipe that partially configures the discharge passage 12b of the low-stage compression element 12 in FIG.

【0045】49は副軸受48とともに第1の吐出室を
形成する第1の吐出室カバー、50、51はそれぞれ主
軸受44とともに第1の吐出室を形成する第2の吐出室
副カバー、第2の吐出室主カバーである。
Reference numeral 49 denotes a first discharge chamber cover forming a first discharge chamber together with the sub-bearing 48, and reference numerals 50 and 51 denote second discharge chamber sub-covers forming a first discharge chamber together with the main bearing 44. 2 is a main discharge chamber cover.

【0046】図4(a)、(b)、(c)、(d)、
(e)は、それぞれ、図3に示した圧縮機10の部品で
ある第2のシリンダ45、仕切り板46、第1のシリン
ダ47、副軸受48、第1の吐出室カバー49を電動機
部と反対側から見た斜視図である。
FIGS. 4 (a), (b), (c), (d),
(E) shows the second cylinder 45, the partition plate 46, the first cylinder 47, the sub bearing 48, and the first discharge chamber cover 49, which are parts of the compressor 10 shown in FIG. It is the perspective view seen from the other side.

【0047】図4(a)に示す第2のシリンダ45にお
いて、ひょうたん形の空間45mの片方の空間は、ロー
ラ51のベーン部を挟み込む滑動部材54a、54bが
組込まれ、他方の空間はベーン部とシリンダとの干渉を
防止するための空間である(後出の図7参照)。45e
は図1の低段圧縮要素11の吸入通路11aと吸入側逆
止弁13aを接続する通路を一部形成する孔、45fは
図1の低段圧縮要素11の吐出通路11bと吐出側逆止
弁13bを接続する通路を一部形成する孔、45gは図
1の高段圧縮要素12の吸入通路12aを一部形成する
凹部及び切り欠きである。
In the second cylinder 45 shown in FIG. 4 (a), one of the gourd-shaped spaces 45m incorporates sliding members 54a and 54b which sandwich the vane portion of the roller 51, and the other space is a vane portion. This is a space for preventing interference between the cylinder and the cylinder (see FIG. 7 described later). 45e
1 is a hole partially forming a passage connecting the suction passage 11a of the low-stage compression element 11 and the suction-side check valve 13a in FIG. 1, and 45f is a discharge passage 11b and a discharge-side check of the low-stage compression element 11 in FIG. A hole 45g partially forming a passage connecting the valve 13b is a concave portion and a cutout partially forming the suction passage 12a of the high-stage compression element 12 in FIG.

【0048】45uはシリンダ45を主軸受44にボル
トで固定するための2個の孔、45vは、仕切り板4
6、第1のシリンダ47を第2のシリンダ45にボルト
で固定するための2個のめねじ孔、45wは、仕切り板
46、第1のシリンダ47、副軸受48、第1の吐出室
カバー49とともに主軸受44にボルトで締結するため
の4個の孔である。
45u is two holes for fixing the cylinder 45 to the main bearing 44 with bolts, and 45v is a partition plate 4
6. Two female screw holes 45w for fixing the first cylinder 47 to the second cylinder 45 with bolts are provided by the partition plate 46, the first cylinder 47, the auxiliary bearing 48, and the first discharge chamber cover. There are four holes for bolting to the main bearing 44 together with 49.

【0049】図4(b)に示す仕切り板46において、
46eは図1の低段圧縮要素11の吸入通路11aと吸
入側逆止弁13aを接続する通路を一部形成する孔、4
6fは図1の低段圧縮要素11の吐出通路11bと吐出
側逆止弁13bを接続する通路を一部形成する孔、46
gは図1の高段圧縮要素12の吸入通路12aを一部形
成する孔である。
In the partition plate 46 shown in FIG.
46e is a hole which partially forms a passage connecting the suction passage 11a of the low-stage compression element 11 of FIG.
6f is a hole which partially forms a passage connecting the discharge passage 11b of the low-stage compression element 11 of FIG.
g is a hole that partially forms the suction passage 12a of the high-stage compression element 12 in FIG.

【0050】46vは、第1のシリンダ47とともに第
2のシリンダ45にボルトで固定するための2個の孔、
46wは、第2のシリンダ45、第1のシリンダ47、
副軸受48、第1の吐出室カバー49とともに主軸受4
4にボルトで締結するための4個の孔である。
Reference numeral 46v denotes two holes for bolting the first cylinder 47 to the second cylinder 45 together with the first cylinder 47,
46w is a second cylinder 45, a first cylinder 47,
The main bearing 4 together with the auxiliary bearing 48 and the first discharge chamber cover 49
There are four holes for bolting to 4.

【0051】図4(c)に示す第1のシリンダ47にお
いて、47mは図4(a)の45mと同等部である。4
7eは図1の低段圧縮要素11の吸入通路11aを一部
形成する切り欠き、47fは図1の低段圧縮要素11の
吐出通路11bと吐出側逆止弁13bを接続する通路を
一部形成する孔、47gは図1の高段圧縮要素12の吸
入通路12aを一部形成する孔である。
In the first cylinder 47 shown in FIG. 4 (c), 47m is equivalent to 45m in FIG. 4 (a). 4
7e is a cutout partially forming the suction passage 11a of the low-stage compression element 11 of FIG. 1, and 47f is a part of a passage connecting the discharge passage 11b and the discharge-side check valve 13b of the low-stage compression element 11 of FIG. The hole to be formed, 47g, is a hole that partially forms the suction passage 12a of the high-stage compression element 12 in FIG.

【0052】47vは仕切り板46とともに第2のシリ
ンダ45にボルトで固定するための2個の孔、47wは
第2のシリンダ45、仕切り板46、第1のシリンダ4
7、副軸受48、第1の吐出室カバー49とともに主軸
受44にボルトで締結するための4個の孔である。
Reference numeral 47v denotes two holes for bolting together with the partition plate 46 to the second cylinder 45, and 47w denotes a second cylinder 45, the partition plate 46, the first cylinder 4
7, four holes for fastening the main bearing 44 together with the auxiliary bearing 48 and the first discharge chamber cover 49 by bolts.

【0053】図4(d)に示す副軸受48において、4
8eは図1の低段圧縮要素11の吸入通路11aを一部
形成する孔、48tは低段圧縮要素吐出弁の弁座等を形
成するための凹部で、48dは吐出孔、48d’は図5
(a)に示すリード弁61、図5(b)に示す弁押さえ
62を副軸受48にボルトで固定するためのめねじ孔で
ある。ここでのリード弁61は吐出弁として働く。48
fは第1の吐出室カバー49とともに図1の低段圧縮要
素11の吐出通路11bを一部構成する凹部で、吐出室
を形成し、流路断面積が変化することにより消音器とし
て働く。48f’は図1の低段圧縮要素11の吐出通路
11bと吐出側逆止弁13bを接続する通路を一部形成
する孔、48gは図1の高段圧縮要素12の吸入通路1
2aを一部形成する孔である。
In the auxiliary bearing 48 shown in FIG.
8e is a hole that partially forms the suction passage 11a of the low-stage compression element 11 of FIG. 1, 48t is a recess for forming a valve seat or the like of the low-stage compression element discharge valve, 48d is a discharge hole, and 48d ′ is a drawing. 5
This is a female screw hole for fixing the reed valve 61 shown in FIG. 5A and the valve retainer 62 shown in FIG. Here, the reed valve 61 functions as a discharge valve. 48
f is a concave portion that partially configures the discharge passage 11b of the low-stage compression element 11 of FIG. 1 together with the first discharge chamber cover 49, forms a discharge chamber, and functions as a muffler by changing the flow path cross-sectional area. 48f 'is a hole which partially forms a passage connecting the discharge passage 11b of the low-stage compression element 11 and the discharge-side check valve 13b of FIG. 1, and 48g is a suction passage 1 of the high-stage compression element 12 of FIG.
This is a hole partially forming 2a.

【0054】48wは4個のボルト締結用の孔である。
48kは、ローラ53のベーン部の往復運動等を利用し
た給油ポンプにより、クランク軸42に潤滑油を給油す
るための給油孔である。
48w is a hole for fastening four bolts.
Reference numeral 48k denotes an oil supply hole for supplying lubricating oil to the crankshaft 42 by an oil supply pump utilizing the reciprocating motion of the vane portion of the roller 53 and the like.

【0055】図4(e)に示す第1の吐出室カバー49
において、49eは図1の低段圧縮要素11の吸入通路
11aを一部形成する孔で、図3の低段圧縮要素吸入管
11a’と接続され、49fは図1の低段圧縮要素11
の吐出通路11bを一部形成する孔で、図3の低段圧縮
要素吐出管11b’と接続され、49gは図1の高段圧
縮要素12の吸入通路11aを一部形成する孔で、図3
の高段圧縮要素吸入管12a’と接続される。49w
は、4個のボルト締結用の孔である。60は、給油通路
である。
The first discharge chamber cover 49 shown in FIG.
In the figure, 49e is a hole which partially forms the suction passage 11a of the low-stage compression element 11 of FIG. 1, is connected to the low-stage compression element suction pipe 11a 'of FIG. 3, and 49f is the low-stage compression element 11 of FIG.
3 is connected to the low-stage compression element discharge pipe 11b 'in FIG. 3, and 49g is a hole partially forming the suction passage 11a in the high-stage compression element 12 in FIG. 3
Is connected to the high-stage compression element suction pipe 12a '. 49w
Are four bolt fastening holes. Reference numeral 60 denotes an oil supply passage.

【0056】図6(a)、(b)、(c)は、それぞ
れ、図3に示した圧縮機10の部品である主軸受44、
第2の吐出室副カバー50、第2の吐出室主カバー51
を電動機部側から見た斜視図である。
FIGS. 6 (a), 6 (b) and 6 (c) show a main bearing 44, which is a component of the compressor 10 shown in FIG.
Second discharge chamber sub-cover 50, second discharge chamber main cover 51
FIG. 3 is a perspective view of the motor viewed from the motor unit side.

【0057】図6(a)に示す主軸受44において、4
4tは高段圧縮要素吐出弁の弁座等を形成するための凹
部で、44dは吐出孔、44d’は前出の図5(a)に
示すリード弁61、図5(b)に示す弁押さえ62を主
軸受44にボルトで固定するためのめねじ孔である。こ
こでのリード弁61は吐出弁として働く。
In the main bearing 44 shown in FIG.
4t is a recess for forming a valve seat or the like of the high-stage compression element discharge valve, 44d is a discharge hole, 44d 'is a reed valve 61 shown in FIG. 5A, and a valve shown in FIG. 5B. A female screw hole for fixing the retainer 62 to the main bearing 44 with a bolt. Here, the reed valve 61 functions as a discharge valve.

【0058】44t’は図1に示す吸入側逆止弁13a
の弁座等を形成するための凹部で、44eは逆止弁の
孔、44e’は前出の図5(a)に示すリード弁61、
図5(b)に示す弁押さえ62を主軸受44にボルトで
固定するためのめねじ孔である。ここでのリード弁61
は逆止弁として働く。すなわち、凹部44t’の空間の
ガス冷媒圧力が、孔44e内のガス冷媒圧力より高い場
合、リード弁は弁座に密着し、弁は閉じた状態となり、
凹部44t’の空間のガス冷媒圧力が、孔44e内のガ
ス冷媒圧力より低い場合、リード弁は弁座から浮き、弁
は開いた状態となる。
44t 'is a suction-side check valve 13a shown in FIG.
44e is a hole of a check valve, 44e 'is a reed valve 61 shown in FIG.
This is a female screw hole for fixing the valve retainer 62 shown in FIG. 5B to the main bearing 44 with a bolt. Reed valve 61 here
Works as a check valve. That is, when the gas refrigerant pressure in the space of the concave portion 44t 'is higher than the gas refrigerant pressure in the hole 44e, the reed valve is in close contact with the valve seat, and the valve is in a closed state,
When the gas refrigerant pressure in the space of the concave portion 44t 'is lower than the gas refrigerant pressure in the hole 44e, the reed valve floats from the valve seat, and the valve is opened.

【0059】44gは図1の高段圧縮要素12の吸入通
路12aと吸入側逆止弁13aを接続する通路を一部形
成する孔である。44g’は凹部で、第2の吐出室カバ
ー50とともに、孔44gと逆止弁を構成する凹部44
t’とを連通する流路を形成する。
Reference numeral 44g denotes a hole which partially forms a passage connecting the suction passage 12a of the high-stage compression element 12 and the suction-side check valve 13a in FIG. 44g ′ is a concave portion, together with the second discharge chamber cover 50, a concave portion 44g that constitutes a check valve with the hole 44g.
A flow path communicating with t ′ is formed.

【0060】44t’’は図1に示す吐出側逆止弁13
bの弁座等を形成するための凹部で、44fは逆止弁の
孔、44f’は前出の図5(a)に示すリード弁61、
図5(b)に示す弁押さえ62を主軸受44にボルトで
固定するためのめねじ孔である。ここでのリード弁61
は逆止弁として働く。すなわち、凹部44t’’の空間
のガス冷媒圧力が、孔44f内のガス冷媒圧力より高い
場合、リード弁は弁座に密着し、弁は閉じた状態とな
り、凹部44t’’の空間のガス冷媒圧力が、孔44f
内のガス冷媒圧力より低い場合、リード弁は弁座から浮
き、弁は開いた状態となる。
44t ″ is the discharge-side check valve 13 shown in FIG.
b is a recess for forming a valve seat or the like, 44f is a check valve hole, 44f 'is a reed valve 61 shown in FIG.
This is a female screw hole for fixing the valve retainer 62 shown in FIG. 5B to the main bearing 44 with a bolt. Reed valve 61 here
Works as a check valve. That is, when the gas refrigerant pressure in the space of the recess 44t '' is higher than the gas refrigerant pressure in the hole 44f, the reed valve is in close contact with the valve seat, the valve is in a closed state, and the gas refrigerant in the space of the recess 44t '' is closed. Pressure is 44f
When the pressure is lower than the gas refrigerant pressure inside the reed valve, the reed valve floats from the valve seat and the valve is opened.

【0061】44hは図1に示す高段圧縮要素12の吐
出通路11bを一部形成し、図の背面側の孔は図3の高
段圧縮要素吐出管12b’と接続される。
Reference numeral 44h partially forms the discharge passage 11b of the high-stage compression element 12 shown in FIG. 1, and the hole on the back side in the figure is connected to the high-stage compression element discharge pipe 12b 'in FIG.

【0062】44uは2個のめねじ孔であり、図の背面
側に図4に示す第2のシリンダ45をボルトで固定する
ためのものである。44wは4個のめねじ孔であり、図
の背面側に図4に示す第2のシリンダ45、仕切り板4
6、第1のシリンダ47、副軸受48、第1の吐出室カ
バー49をボルトで固定するためのものであり、そのう
ち2個は図の正面側に、第2の吐出室副カバー50、第
2の吐出室主カバー51を固定するためにも用いられ
る。
Reference numeral 44u denotes two female screw holes for fixing the second cylinder 45 shown in FIG. 4 to the rear side of the figure with bolts. Reference numeral 44w denotes four female screw holes, and the second cylinder 45 and the partition plate 4 shown in FIG.
6, for fixing the first cylinder 47, the sub bearing 48, and the first discharge chamber cover 49 with bolts, two of which are on the front side in the drawing, the second discharge chamber sub cover 50, It is also used to fix the second discharge chamber main cover 51.

【0063】図6(b)に示す第2の吐出室副カバー5
0において、50cは図1の密閉容器内圧力形成通路1
2cを一部形成する孔で、主軸受44の凹部44t’、
44g’孔44gと連通する。50hは凸部で主軸受4
4とともに図1の高段圧縮要素12の吐出通路12bを
一部構成し、吐出室を形成し、50h’はこの吐出室を
第2の吐出室副カバー50と後述の第2の吐出室主カバ
ー51により構成される他の吐出室空間と連通する孔で
ある。50h’’は図1の高段圧縮要素12の吐出通路
12bと吐出側逆止弁13bを接続する通路を形成し、
50h’’’はこの第2の吐出室副カバー50と後述の
第2の吐出室主カバー51により構成される空間と前述
の主軸受44の孔44hを連通する孔である。
The second discharge chamber sub-cover 5 shown in FIG.
0, 50c is the pressure forming passage 1 in the closed container of FIG.
2c is a hole that partially forms the recess 2t 'of the main bearing 44,
44g 'communicates with the hole 44g. 50h is a convex part and the main bearing 4
4 together with a part of the discharge passage 12b of the high-stage compression element 12 of FIG. 1 to form a discharge chamber, and the discharge chamber 50h ′ is connected to a second discharge chamber sub-cover 50 and a second discharge chamber main cover to be described later. The hole communicates with another discharge chamber space formed by the cover 51. 50h '' forms a passage connecting the discharge passage 12b of the high-stage compression element 12 of FIG. 1 and the discharge-side check valve 13b,
50h ′ ″ is a hole that communicates a space formed by the second discharge chamber sub-cover 50 and a second discharge chamber main cover 51 described later with the hole 44h of the main bearing 44 described above.

【0064】50wは第2の吐出室主カバー51ととも
に主軸受44にボルトで固定するための2個の孔であ
る。
Reference numeral 50w denotes two holes for bolting the main bearing 44 together with the second discharge chamber main cover 51.

【0065】図6(c)に示す第2の吐出室主カバー5
1において、51cは凸部で第2の吐出室カバー50と
ともに、図1の密閉容器内圧力形成通路12cを形成す
る通路で、孔51c’を介して図3の密閉容器40内と
連通する。51hは凸部で、第2の吐出室副カバー50
とともに空間を形成し、第2の吐出室副カバー50の孔
50h’と孔50h’’’を接続する流路の断面積が変
化することにより消音器の働きをする。
The second discharge chamber main cover 5 shown in FIG.
In FIG. 1, reference numeral 51c denotes a convex portion, together with the second discharge chamber cover 50, which is a passage that forms the closed container internal pressure forming passage 12c of FIG. 1, and communicates with the inside of the closed container 40 of FIG. 3 through a hole 51c '. Reference numeral 51h denotes a convex portion, which is a second discharge chamber sub-cover 50.
A space is formed together with the space, and the cross-sectional area of the flow path connecting the holes 50h ′ ″ of the second discharge chamber sub-cover 50 changes to function as a muffler.

【0066】51wは第2の吐出室副カバー50ととも
に主軸受44にボルトで固定するための2個の孔であ
る。
Reference numeral 51w denotes two holes for fixing the main discharge bearing together with the second discharge chamber sub-cover 50 to the main bearing 44 by bolts.

【0067】前述の図3の圧縮機10のガス冷媒通路の
構成をまとめると以下のようになる。図1の低段圧縮要
素11の吸入通路11aは、低段圧縮要素吸入管11
a’、孔49e、孔48e、切り欠き47eから構成さ
れ、図1の吸入通路11aと吸入側逆止弁13aを接続
する通路は、孔46e、孔45e、孔44eから構成さ
れ、図1の吐出通路11bは、凹部48t、凹部48f
(第1の吐出室カバー49とともに形成される空間)、
孔49f、低段圧縮要素吐出管11b’から構成され、
図1の吐出通路11bと吐出側逆止弁13bを接続する
通路は、孔48f’、孔47f、孔46f、孔45f、
孔44fから構成される。
The structure of the gas refrigerant passage of the compressor 10 shown in FIG. 3 is summarized as follows. The suction passage 11a of the low-stage compression element 11 in FIG.
a ', a hole 49e, a hole 48e, and a notch 47e. A passage connecting the suction passage 11a and the suction-side check valve 13a in FIG. 1 is constituted by a hole 46e, a hole 45e, and a hole 44e. The discharge passage 11b has a concave portion 48t, a concave portion 48f.
(Space formed with the first discharge chamber cover 49),
It comprises a hole 49f, a low-stage compression element discharge pipe 11b ',
The passage connecting the discharge passage 11b and the discharge-side check valve 13b in FIG. 1 includes a hole 48f ′, a hole 47f, a hole 46f, a hole 45f,
It is composed of a hole 44f.

【0068】また、図1の高段圧縮要素12の吸入通路
12aは、高段圧縮要素吸入管12a’、孔49g、孔
48g、孔47g、孔46g、凹部及び切り欠き45g
から構成され、図1の吸入側逆止弁13aと吸入通路1
2aを接続する通路は、凹部44t’(第2の吐出室副
カバー50とともに形成される空間)、凹部44g’
(第2の吐出室副カバー50とともに形成される空
間)、孔44gから構成され、図1の吐出通路12b
は、凹部44t(第2の吐出室副カバー50とともに形
成される空間)、凸部50h(主軸受44とともに形成
される空間)、孔50h’、凸部51h(第2の吐出室
副カバー50とともに形成される空間)、孔50
h’’’、孔44h、高段圧縮要素吐出管12b’から
構成され、図1の吐出側逆止弁13bと吐出通路12b
を接続する通路は、凹部44t’’、孔50h’’から
構成される。図1の密閉容器内圧力形成通路12cは、
孔50c、凸部51c(第2の吐出室副カバー50とと
もに形成される空間)、孔51c‘から構成され、高段
圧縮要素の吸入通路と密閉容器を連通し、密閉容器40
内の圧力を高段圧縮要素の吸入ガス圧力に保つ働きをし
ている。
The suction passage 12a of the high-stage compression element 12 shown in FIG. 1 includes a high-stage compression element suction pipe 12a ', a hole 49g, a hole 48g, a hole 47g, a hole 46g, a concave portion and a notch 45g.
The suction-side check valve 13a and the suction passage 1 shown in FIG.
The passage connecting 2a includes a concave portion 44t '(a space formed together with the second discharge chamber sub-cover 50) and a concave portion 44g'.
(A space formed together with the second discharge chamber sub-cover 50), and a hole 44g.
Are a concave portion 44t (a space formed with the second discharge chamber sub-cover 50), a convex portion 50h (a space formed with the main bearing 44), a hole 50h ', and a convex portion 51h (the second discharge chamber sub-cover 50). Space formed with the
h ′ ″, a hole 44h, a high-stage compression element discharge pipe 12b ′, and the discharge-side check valve 13b and the discharge passage 12b in FIG.
Is constituted by a concave portion 44t '' and a hole 50h ''. The pressure forming passage 12c in the closed container in FIG.
A hole 50c, a convex portion 51c (a space formed with the second discharge chamber sub-cover 50), and a hole 51c 'communicate with the suction passage of the high-stage compression element and the closed container.
It works to keep the internal pressure at the suction gas pressure of the high-stage compression element.

【0069】図7は、図3に示した圧縮機10のX−X
断面の第2のシリンダ部である。図において、44zは
高段圧縮要素の端面を構成する主軸受44の端面部、6
3はその端面部44に設けられた油ポケット(凹部)で
あり、ローラ52の内側と作動室内とを交互に行き来す
る。ローラ52の内側には、前述したローラ53のベー
ン部の往復運動等を利用した給油ポンプによりクランク
軸42に給油された潤滑油が貯溜しており、油ポケット
63により、高段圧縮要素の作動室に間欠的に油を供給
する。また、低段圧縮要素についても、副軸受48の端
面部に同様の油ポケットが設けられており(図示せ
ず)、低段圧縮要素の作動室に間欠的に油を供給してい
る。
FIG. 7 is a cross-sectional view of the compressor 10 shown in FIG.
It is a 2nd cylinder part of a cross section. In the drawing, reference numeral 44z denotes an end face of the main bearing 44 constituting an end face of the high-stage compression element;
Reference numeral 3 denotes an oil pocket (recess) provided in the end face portion 44, which alternates between the inside of the roller 52 and the working chamber. Inside the roller 52, lubricating oil supplied to the crankshaft 42 by an oil supply pump utilizing the reciprocating motion of the vane portion of the roller 53 described above is stored, and the oil pocket 63 activates the high-stage compression element. Supply oil intermittently to the chamber. The low-stage compression element also has a similar oil pocket (not shown) at the end face of the sub-bearing 48 to supply oil intermittently to the working chamber of the low-stage compression element.

【0070】以上のように構成する冷蔵庫においては、
冷蔵室3と冷凍室2とが並行して(同時に)冷却される
運転と、冷凍室が単独で冷却される運転が行われる。こ
の冷凍室及び冷蔵室の同時(並行)冷却の運転と冷凍室
単独の冷却運転の動作について、以下、説明する。
In the refrigerator configured as described above,
An operation in which the refrigerator compartment 3 and the freezer compartment 2 are cooled in parallel (simultaneously) and an operation in which the freezer compartment is cooled independently are performed. The operation of the simultaneous (parallel) cooling operation of the freezer and the refrigerator compartment and the operation of the cooling operation of the freezer alone will be described below.

【0071】冷凍室冷蔵室同時冷却運転時には、第1の
電磁弁23、第2の電磁弁26をともに開く。圧縮機1
0の低段圧縮要素11、中間冷却器27、高段圧縮要素
12、凝縮器20、第1のキャピラリ21、冷凍室用蒸
発器22は、冷凍室冷却冷凍サイクルを形成するととも
に、圧縮機10の高段圧縮要素12、凝縮器20、第2
のキャピラリ24、冷蔵室用蒸発器25は、冷蔵室冷却
冷凍サイクルを形成する。圧縮機10は、低段圧縮要素
11、高段圧縮要素12を直列に接続した2段圧縮を行
う。また、凝縮器ファン30、冷凍室用蒸発器ファン3
1、冷蔵室用蒸発器ファン32を運転する。この時、吸
入側逆止弁13aにおいて、高段圧縮要素12の吸入通
路12aでのガス冷媒圧力が、低段圧縮要素11の吸入
通路11aでのガス冷媒圧力より高くなっているため、
弁は閉じた状態となっている。また、吐出側逆止弁13
bにおいても、高段圧縮要素12の吐出通路12bでの
ガス冷媒圧力が、低段圧縮要素11の吐出通路11bで
のガス冷媒圧力より高くなっているため、弁は閉じた状
態となっている。
During the simultaneous cooling operation of the freezer compartment and the refrigerator compartment, both the first solenoid valve 23 and the second solenoid valve 26 are opened. Compressor 1
The low-stage compression element 11, the intercooler 27, the high-stage compression element 12, the condenser 20, the first capillary 21, and the freezer-room evaporator 22 form a freezer-room cooling refrigeration cycle and a compressor 10. High-stage compression element 12, condenser 20, second
The capillary 24 and the refrigerating room evaporator 25 form a refrigerating room cooling refrigerating cycle. The compressor 10 performs two-stage compression in which a low-stage compression element 11 and a high-stage compression element 12 are connected in series. In addition, the condenser fan 30 and the freezer evaporator fan 3
1. The refrigerator evaporator fan 32 is operated. At this time, in the suction-side check valve 13a, the gas refrigerant pressure in the suction passage 12a of the high-stage compression element 12 is higher than the gas refrigerant pressure in the suction passage 11a of the low-stage compression element 11.
The valve is closed. Also, the discharge-side check valve 13
Also in b, since the gas refrigerant pressure in the discharge passage 12b of the high-stage compression element 12 is higher than the gas refrigerant pressure in the discharge passage 11b of the low-stage compression element 11, the valve is in a closed state. .

【0072】この時、例えば、冷凍室用蒸発器22の蒸
発温度は、−26℃、冷蔵室用蒸発器25の蒸発温度
は、−8℃というように異なる温度で冷媒が蒸発し、そ
れぞれ冷凍室2、冷蔵室3の冷却を行う。凝縮器20出
口の分岐において、冷凍室用蒸発器22と冷蔵室用蒸発
器25にほぼ半分ずつ冷媒が分流される時、冷凍室2と
冷蔵室3はほぼ同等の冷凍能力で冷却される。
At this time, the refrigerant evaporates at different temperatures, for example, the evaporator 22 for the freezer compartment has an evaporating temperature of -26 ° C. and the evaporator 25 for the refrigerating compartment has an evaporating temperature of −8 ° C. The cooling of the chamber 2 and the refrigerator compartment 3 is performed. At the branch of the outlet of the condenser 20, when the refrigerant is almost halved into the evaporator 22 for the freezer compartment and the evaporator 25 for the refrigerating compartment, the refrigerating compartment 2 and the refrigerating compartment 3 are cooled with substantially the same refrigerating capacity.

【0073】圧縮機10の低段圧縮要素11は、冷凍室
用蒸発器22からのガス冷媒を冷凍室用蒸発器22の蒸
発圧力レベルの低圧(冷凍サイクルの最低圧力)から、
冷蔵室用蒸発器25の蒸発圧力レベルの中間圧まで圧縮
し、高段圧縮要素12は、低段圧縮要素11により中間
圧まで圧縮され、中間冷却器27により冷却されたガス
冷媒を、冷蔵室用蒸発器25からのガス冷媒とともに、
中間圧から凝縮器13の凝縮圧力レベルの高圧(冷凍サ
イクルの最高圧力)まで圧縮する。
The low-stage compression element 11 of the compressor 10 converts the gas refrigerant from the freezer compartment evaporator 22 from the low pressure of the evaporation pressure level of the freezer compartment evaporator 22 (the minimum pressure of the refrigeration cycle).
The high-stage compression element 12 compresses the gas refrigerant compressed to the intermediate pressure by the low-stage compression element 11 and cooled by the intermediate cooler 27 to the intermediate pressure of the evaporating pressure level of the refrigerator compartment evaporator 25. Together with the gas refrigerant from the evaporator 25 for
The compression is performed from the intermediate pressure to a high pressure (the maximum pressure of the refrigeration cycle) of the condensation pressure level of the condenser 13.

【0074】低段圧縮要素11と高段圧縮要素12の押
しのけ量を、同等またはほぼ同等となるように設定した
が、この理由は以下のためである。例えば、冷媒として
R134aまたはR600aを使用する場合、冷蔵室用
蒸発器25の蒸発圧力が冷凍室用蒸発器22の蒸発圧力
より高く、高段圧縮要素12の吸入ガス比容積が低段圧
縮要素11の吸入ガス比容積のほぼ半分となるが、冷凍
室と冷蔵室がほぼ同等の冷凍能力を必要とする場合、高
段圧縮要素12の冷媒質量流量は、低段圧縮容量11の
冷媒質量流量の約2倍となり、各圧縮要素11、12の
吸入ガスの冷媒体積流量は、ほぼ同じになるためであ
る。なお、実際の押しのけ量は、冷凍室と冷蔵室の必要
冷凍能力、圧縮要素11、12のそれぞれ所定の吸入ガ
ス圧力、温度条件等から設定される。二つの圧縮要素1
1、12の押しのけ量を同じとした場合、一部部品の共
用ができ、部品点数が減り、コストの低減を図れる。
The displacements of the low-stage compression element 11 and the high-stage compression element 12 are set to be equal or almost equal, for the following reason. For example, when R134a or R600a is used as the refrigerant, the evaporating pressure of the refrigerator compartment evaporator 25 is higher than the evaporating pressure of the freezer compartment evaporator 22, and the high-stage compression element 12 has a lower suction gas specific volume than the low-stage compression element 11. When the refrigerating compartment and the refrigerating compartment require substantially the same refrigerating capacity, the refrigerant mass flow rate of the high-stage compression element 12 is equal to the refrigerant mass flow rate of the low-stage compression capacity 11. This is because it is about twice, and the refrigerant volume flow rates of the suction gas of the compression elements 11 and 12 are almost the same. The actual displacement is set based on the required refrigerating capacity of the freezing compartment and the refrigerating compartment, predetermined suction gas pressures of the compression elements 11 and 12, temperature conditions, and the like. Two compression elements 1
When the displacements of the parts 1 and 12 are the same, some parts can be shared, the number of parts is reduced, and the cost can be reduced.

【0075】圧縮機10の密閉容器40内圧力は、高段
圧縮要素吸入ガス圧力、すなわち、中間圧(冷蔵室用蒸
発器25の蒸発圧力レベル)となっている。図8に圧縮
機10が2段圧縮を行うときの低段圧縮要素、高段圧縮
要素の一回転中の圧縮室圧力と密閉容器内圧力の圧力差
を、(a)高圧密閉容器、(b)中間圧密閉容器、
(c)低圧密閉容器の場合について示す。回転角0°を
低段圧縮要素、高段圧縮要素それぞれにおける圧縮開始
のクランク回転角度とする。実線は圧縮室圧力、破線は
密閉容器内圧力、斜線はその圧力差を示す。ここでの条
件は、冷媒R134a、冷凍室用蒸発器の蒸発温度−2
6℃、冷蔵室用蒸発器の蒸発温度−8℃、凝縮器の凝縮
温度33℃としている。図より、(b)中間圧密閉容器
の場合が、一回転当たりの圧力差が小さく、圧縮過程の
圧力差による漏洩ガス量の低減に効果があり、圧縮機の
2段圧縮時の効率を向上させることができる。
The internal pressure of the sealed container 40 of the compressor 10 is the high-stage compression element suction gas pressure, that is, the intermediate pressure (evaporation pressure level of the refrigerator compartment evaporator 25). FIG. 8 shows the pressure difference between the pressure in the compression chamber and the pressure in the closed vessel during one rotation of the low-stage compression element and the high-stage compression element when the compressor 10 performs two-stage compression. ) Intermediate pressure sealed container,
(C) A case of a low-pressure closed container will be described. The rotation angle of 0 ° is the crank rotation angle at the start of compression in each of the low-stage compression element and the high-stage compression element. The solid line indicates the pressure in the compression chamber, the dashed line indicates the pressure in the closed vessel, and the oblique line indicates the pressure difference. The condition here is that the refrigerant R134a, the evaporation temperature of the freezer evaporator -2
The temperature is 6 ° C., the evaporation temperature of the refrigerator evaporator is −8 ° C., and the condensation temperature of the condenser is 33 ° C. As shown in the figure, (b) the case of the intermediate-pressure closed vessel has a small pressure difference per rotation, which is effective in reducing the amount of leaked gas due to the pressure difference in the compression process, and improves the efficiency of the two-stage compression of the compressor. Can be done.

【0076】低段圧縮要素の作動室(吸入室、圧縮室)
の密封のための作動室内への給油は、密閉容器と作動室
の圧力差により作動室内に漏れ込む油と前述の副軸受4
8に設けられた油ポケット、および吸入ガスに含まれる
油により行われる。また、高段圧縮要素の作動室の密封
のための作動室内への給油は、前述の主軸受44に設け
られた油ポケット63、吸入ガスに含まれる油により行
われる。
Working chamber (suction chamber, compression chamber) for low-stage compression element
For the oil supply into the working chamber for sealing, the oil leaking into the working chamber due to the pressure difference between the closed container and the working chamber and the above-mentioned auxiliary bearing 4
This is carried out by the oil pocket provided in 8 and the oil contained in the suction gas. Further, the oil supply into the working chamber for sealing the working chamber of the high-stage compression element is performed by the oil contained in the oil pocket 63 provided in the main bearing 44 and the suction gas.

【0077】中間冷却器27は低段圧縮要素の吐出ガス
を冷却し、高段圧縮要素の吸入ガス温度を低減させる働
きをするが、これにより、高段圧縮要素の単位質量当た
りの理論断熱圧縮仕事が減り、圧縮動力を低減すること
ができる。
The intercooler 27 serves to cool the discharge gas of the low-stage compression element and reduce the temperature of the intake gas of the high-stage compression element. Work is reduced, and compression power can be reduced.

【0078】冷凍室単独冷却運転時には、第1の電磁弁
23、第2の電磁弁26をともに閉じる。電磁弁23が
閉じられるため、冷蔵室用蒸発器25への冷媒の流れは
阻止され、冷媒は冷凍室用蒸発器22へのみ流れる。
During the freezing operation of the freezing compartment, both the first solenoid valve 23 and the second solenoid valve 26 are closed. Since the solenoid valve 23 is closed, the flow of the refrigerant to the refrigerator compartment evaporator 25 is blocked, and the refrigerant flows only to the freezer compartment evaporator 22.

【0079】この時、圧縮機10の低段圧縮要素11
は、冷凍室用蒸発器22出口のガス冷媒を吸入し、圧縮
作用を行う。低段圧縮要素11の吐出通路11bと接続
する通路のうち、片方の電磁弁26側は閉じられている
ため、もう片方の吐出側逆止弁13bの反対側の高段圧
縮要素12の吐出通路12b内のガス冷媒圧力より高い
圧力まで、低段圧縮要素12のガス冷媒は圧縮され、逆
止弁13bを通過する。一方、電磁弁23、26が閉じ
いて、吸入通路12aと連通する冷蔵室用蒸発器25、
中間冷却器27には冷媒が供給されないため、高段圧縮
要素12の吸入作用により、高段圧縮要素12の吸入通
路12aのガス冷媒圧力は、次第に低下し、低段圧縮要
素11の吸入通路11aのガス冷媒圧力より低下する状
態となる。これにより、吸入側逆止弁13aは開く状態
となり、低段圧縮要素11の吸入通路11a側のガス冷
媒が高段圧縮要素12の吸入通路12a側に流入する。
At this time, the low-stage compression element 11 of the compressor 10
Sucks the gas refrigerant at the outlet of the freezer evaporator 22 and performs a compression action. Since one of the passages connected to the discharge passage 11b of the low-stage compression element 11 is closed on one side of the solenoid valve 26, the discharge passage of the high-stage compression element 12 on the opposite side of the other discharge-side check valve 13b. The gas refrigerant in the low stage compression element 12 is compressed to a pressure higher than the gas refrigerant pressure in 12b and passes through the check valve 13b. On the other hand, the electromagnetic valves 23 and 26 are closed, and the evaporator 25 for the refrigerator compartment communicating with the suction passage 12a,
Since no refrigerant is supplied to the intercooler 27, the gas refrigerant pressure in the suction passage 12a of the high-stage compression element 12 gradually decreases due to the suction action of the high-stage compression element 12, and the suction passage 11a of the low-stage compression element 11 Is reduced below the gas refrigerant pressure. As a result, the suction-side check valve 13a is opened, and the gas refrigerant on the suction passage 11a side of the low-stage compression element 11 flows into the suction passage 12a side of the high-stage compression element 12.

【0080】なお、冷蔵室用蒸発器25、中間冷却器2
7でのガス冷媒圧力は、吸入通路12a内のガス冷媒圧
力と同じ、冷凍室用蒸発器22の蒸発圧力レベルである
が、冷蔵室用蒸発器25の温度は、冷蔵室3内の空気温
度とほぼ等しくなり、中間冷却器27の温度は、冷蔵庫
本体1の底部の空気温度とほぼ等しくなり、冷凍室用蒸
発器22の蒸発温度より高くなる。このため、吸入通路
12a内のガス冷媒が冷蔵室用蒸発器25、中間冷却器
27で凝縮し滞留するという問題を防止できる。また、
弁23は、蒸発器と凝縮器との間に設けられた冷媒管の
分岐部と蒸発器との間に配置されている。弁26は中間
冷却器27と圧縮要素11の吐出通路11bとの間に配
置されている。このようにすることで、貯蔵室単独の冷
却運転を行う際に、蒸発器25や冷却器27に残留して
いる冷媒の量を低減して、運転の効率を高く保つことが
できる。
The evaporator 25 for the refrigerator compartment, the intercooler 2
The gas refrigerant pressure at 7 is the same as the gas refrigerant pressure in the suction passage 12a, which is the evaporation pressure level of the freezing room evaporator 22, but the temperature of the refrigerator room evaporator 25 is the air temperature in the refrigerator room 3. And the temperature of the intercooler 27 becomes substantially equal to the air temperature at the bottom of the refrigerator main body 1 and becomes higher than the evaporation temperature of the freezer evaporator 22. Therefore, it is possible to prevent a problem that the gas refrigerant in the suction passage 12a is condensed and stays in the refrigerating room evaporator 25 and the intercooler 27. Also,
The valve 23 is disposed between the evaporator and a branch of a refrigerant pipe provided between the evaporator and the condenser. The valve 26 is disposed between the intercooler 27 and the discharge passage 11b of the compression element 11. By doing so, when performing the cooling operation of the storage room alone, the amount of the refrigerant remaining in the evaporator 25 or the cooler 27 can be reduced, and the operation efficiency can be kept high.

【0081】この時、二つの圧縮要素11、12は、そ
れぞれ、冷凍室用蒸発器22の蒸発圧力レベルから、凝
縮器20の凝縮圧力レベルまで並列に圧縮作用を行う。
したがって、圧縮機10の二つの圧縮要素11、12、
凝縮器20、第1のキャピラリ21、冷凍室用蒸発器2
2からなる冷凍室単独冷却冷凍サイクルを形成する。ま
た、凝縮器ファン30、冷凍室用蒸発器ファン31を運
転し、冷蔵室用蒸発器ファン32は停止する。これによ
り、冷凍室2のみの冷却を行う。
At this time, the two compression elements 11 and 12 respectively perform the compression action in parallel from the evaporation pressure level of the freezer evaporator 22 to the condensation pressure level of the condenser 20.
Therefore, the two compression elements 11, 12,
Condenser 20, first capillary 21, freezer evaporator 2
A freezing cycle consisting of two freezer compartments is formed. Further, the condenser fan 30 and the freezer compartment evaporator fan 31 are operated, and the refrigerator compartment evaporator fan 32 is stopped. Thereby, only the freezing compartment 2 is cooled.

【0082】この時、圧縮機10の密閉容器40内圧力
は、高段圧縮要素吸入ガス圧力、すなわち、低圧(冷凍
室用蒸発器22の蒸発圧力レベル)となっている。図9
に圧縮機10が単段圧縮を行うときの圧縮要素の一回転
中の圧縮室圧力と密閉容器内圧力の圧力差を、(a)高
圧密閉容器、(b)低圧密閉容器の場合について示す。
実線は圧縮室圧力、破線は密閉容器内圧力、斜線はその
圧力差を示す。ここでの条件は、冷媒R134a、冷凍
室用蒸発器の蒸発温度−26℃、凝縮器の凝縮温度32
℃としている。図より、(b)低圧密閉容器の場合が、
一回転当たりの圧力差が小さく、圧縮過程の圧力差によ
る漏洩ガス量の低減に効果があり、圧縮機の単段圧縮時
の効率を向上させることができる。
At this time, the pressure in the closed vessel 40 of the compressor 10 is a high-stage compression element suction gas pressure, that is, a low pressure (evaporation pressure level of the freezer evaporator 22). FIG.
The pressure difference between the pressure in the compression chamber and the pressure in the closed vessel during one revolution of the compression element when the compressor 10 performs single-stage compression is shown in (a) the high-pressure closed vessel and (b) the low-pressure closed vessel.
The solid line indicates the pressure in the compression chamber, the dashed line indicates the pressure in the closed vessel, and the oblique line indicates the pressure difference. The conditions here are as follows: the refrigerant R134a, the evaporation temperature of the freezer evaporator −26 ° C., and the condensation temperature of the condenser 32
° C. From the figure, (b) the case of the low-pressure closed container is
The pressure difference per rotation is small, which is effective in reducing the amount of leaked gas due to the pressure difference in the compression process, and can improve the efficiency of single-stage compression of the compressor.

【0083】二つの圧縮要素の作動室(吸入室、圧縮
室)の密封のための作動室内への給油は、それぞれ、前
述の副軸受48、主軸受44に設けられた油ポケット及
び吸入ガスに含まれる油により行われる。
The oil supply to the working chamber for sealing the working chambers (suction chamber, compression chamber) of the two compression elements is performed by the oil pocket and suction gas provided in the sub bearing 48 and the main bearing 44, respectively. It is performed by the contained oil.

【0084】特公平4−54152号公報には、2つの
圧縮室を密閉容器内に備えた2シリンダの回転式圧縮機
を備え、圧縮機の圧縮室(圧縮要素)に連通した冷媒通
路上に弁を設けて、各圧縮室への冷媒の流れを並列/直
列に切替えるものが開示されている。
In Japanese Patent Publication No. 4-54152, a two-cylinder rotary compressor having two compression chambers in a closed container is provided, and is provided on a refrigerant passage communicating with a compression chamber (compression element) of the compressor. A valve is provided to switch the flow of the refrigerant to each compression chamber in parallel / series.

【0085】すなわち、この従来技術では、一方の圧縮
室(低圧用圧縮要素)の吸込管と、他方の圧縮室(高圧
用圧縮要素)の吸込管とが逆止弁を介して接続され、高
圧用圧縮要素の吐出管が密閉容器内に開放され、二方に
分岐された低圧用圧縮要素の吐出管の一方が逆止弁を介
して密閉容器内と連通され、他方が切替用電磁弁を介し
て高圧用圧縮要素の吸入管と接続されている。そして、
運転条件によって変化する必要な能力や効率に応じて上
記の切替電磁弁の作動させて、2つの圧縮要素に冷媒が
並列に通流して1回圧縮される単段圧縮の運転と、2つ
の圧縮要素に冷媒が直列に通流して各圧縮要素で2回圧
縮される2段圧縮の運転とを切替えて、広範囲の運転条
件でより適切な能力を発揮させようとするものである。
That is, in this prior art, the suction pipe of one compression chamber (compression element for low pressure) and the suction pipe of the other compression chamber (compression element for high pressure) are connected via a check valve, The discharge pipe of the compression element for use is opened in the closed vessel, and one of the discharge pipes of the compression element for low pressure that is bifurcated is communicated with the inside of the closed vessel via a check valve, and the other is provided with a switching solenoid valve. It is connected to the suction pipe of the high-pressure compression element through the connection. And
The switching solenoid valve is actuated according to the required capacity and efficiency that varies depending on the operating conditions, and the single-stage compression operation in which the refrigerant is compressed once by flowing the refrigerant in parallel to the two compression elements; The operation is switched between a two-stage compression operation in which the refrigerant flows in series in the element and is compressed twice by each compression element, so as to exert more appropriate performance under a wide range of operating conditions.

【0086】この従来技術の圧縮機は、容器内が高圧用
圧縮要素から吐出される冷媒の圧力と等しくなるもので
あり、本実施例のように、上記低圧から上記中間圧にさ
れるものではい。本実施例は、上記の構成により、各貯
蔵室を複数の冷却器により冷却する際に、より適切な運
転を選択して、冷蔵庫の冷却、運転の効率を向上させて
いる。また、圧縮機の圧縮要素に通流させる冷媒の流れ
を切替える際に生じる、冷媒の流れの問題点を解決し
て、効率を向上させるものである。
In this prior art compressor, the pressure in the container is equal to the pressure of the refrigerant discharged from the high-pressure compression element, and as in this embodiment, the pressure is changed from the low pressure to the intermediate pressure. Yes. In the present embodiment, with the above configuration, when each storage room is cooled by a plurality of coolers, a more appropriate operation is selected to improve the cooling and operation efficiency of the refrigerator. Another object of the present invention is to improve the efficiency by solving the problem of the flow of the refrigerant that occurs when switching the flow of the refrigerant flowing through the compression element of the compressor.

【0087】さらに、このような構成により、冷媒とし
て可燃性冷媒である炭化水素系の冷媒を用いた場合、潤
滑油への解け込む冷媒の量が低減され冷蔵庫の冷凍サイ
クルに用いられる全体の冷媒量を低減されるので、可燃
性冷媒の漏洩による発火等の事故の可能性が低減され
る。
Further, with such a configuration, when a hydrocarbon-based refrigerant, which is a flammable refrigerant, is used as the refrigerant, the amount of the refrigerant dissolved into the lubricating oil is reduced, and the entire refrigerant used in the refrigeration cycle of the refrigerator is reduced. Since the amount is reduced, the possibility of an accident such as ignition due to leakage of the flammable refrigerant is reduced.

【0088】図10に冷蔵庫の冷凍室冷蔵室同時冷却運
転と冷凍室単独冷却運転の制御フローチャートを示す。
以下の処理は、制御装置101が行う。
FIG. 10 shows a control flowchart of the simultaneous freezing operation of the freezer compartment and the freezing compartment in the refrigerator.
The following processing is performed by the control device 101.

【0089】冷蔵庫の運転スイッチがONならば(30
0Y)、冷蔵室温度センサ9に冷蔵室温度Trを検知さ
せ(301)、冷蔵室温度Trが冷蔵室冷却開始温度T
rs以上かどうか判定する(302)。冷蔵室温度Tr
が冷蔵室冷却開始温度Trs以上ならば(302Y)、
凝縮器ファン30、冷凍室ファン31、冷蔵室ファン3
2、圧縮機10の運転を開始(303)、冷凍室冷蔵室
同時冷却運転を行う。
If the operation switch of the refrigerator is ON (30
0Y), the refrigerating room temperature sensor 9 detects the refrigerating room temperature Tr (301), and the refrigerating room temperature Tr becomes the refrigerating room cooling start temperature T.
It is determined whether it is equal to or greater than rs (302). Refrigerator temperature Tr
Is equal to or higher than the refrigerator compartment cooling start temperature Trs (302Y),
Condenser fan 30, freezer compartment fan 31, refrigerator compartment fan 3
2. The operation of the compressor 10 is started (303), and the simultaneous cooling operation of the freezer and the refrigerator is performed.

【0090】タイマーをスタートさせ(304)、所定
時間経過後に(305Y)、冷蔵室温度センサ9に冷蔵
室温度Trを検知させ(306)、冷蔵室温度Trが冷
蔵室冷却終了温度Tre以下かどうか判定する(30
7)。冷蔵室冷却終了温度Tre以下でなければ(30
7N)、ステップ304に戻り、冷蔵室温度Trが冷蔵
室冷却終了温度Tre以下になるまで、冷凍室冷蔵室同
時冷却運転を続ける。
A timer is started (304), and after a lapse of a predetermined time (305Y), the refrigerating compartment temperature sensor 9 detects the refrigerating compartment temperature Tr (306) to determine whether or not the refrigerating compartment temperature Tr is lower than the refrigerating compartment cooling end temperature Tre. Judgment (30
7). If the temperature is not lower than the refrigerator compartment cooling end temperature Tre (30
7N), the process returns to step 304, and the simultaneous freezing room cooling room cooling operation is continued until the refrigerator room temperature Tr becomes equal to or lower than the refrigerator room cooling end temperature Tre.

【0091】冷蔵室温度Trが冷蔵室冷却終了温度Tr
e以下ならば(307Y)、冷凍室温度センサ8に冷凍
室温度Tfを検知させ(308)、冷凍室温度Tfが冷
凍室冷却終了温度Tfe以下ならば(309Y)、圧縮
機10、凝縮器ファン30、冷凍室ファン31、冷蔵室
ファン32の運転を停止し、冷凍室冷蔵室同時冷却運転
を終了する(310)。
The refrigerator compartment temperature Tr is equal to the refrigerator compartment cooling end temperature Tr.
e (307Y), the freezing room temperature sensor 8 detects the freezing room temperature Tf (308). If the freezing room temperature Tf is lower than the freezing room cooling end temperature Tfe (309Y), the compressor 10, the condenser fan 30, the operation of the freezer compartment fan 31 and the refrigerating compartment fan 32 is stopped, and the simultaneous freezing compartment refrigerating compartment cooling operation is terminated (310).

【0092】タイマーをスタートさせ(311)、所定
時間経過後(312)、ステップ300に戻る。ステッ
プ302で、冷蔵室温度Trが冷蔵室冷却開始温度Tr
s未満ならば(302N)、次に、冷凍室温度センサ8
に冷凍室温度Tfを検知させ(320)、冷凍室温度T
fが冷凍室冷却開始温度Tfs以上かどうか判定する
(321)。冷凍室冷却開始温度Tfs未満ならば(3
21N)、ステップ311に移り、ステップ300に戻
る。
The timer is started (311), and after a predetermined time has elapsed (312), the process returns to step 300. In step 302, the refrigerator compartment temperature Tr becomes the refrigerator compartment cooling start temperature Tr.
s (302N), then the freezer compartment temperature sensor 8
The freezer compartment temperature Tf is detected (320).
It is determined whether or not f is equal to or higher than the freezing compartment cooling start temperature Tfs (321). If it is lower than the freezing compartment cooling start temperature Tfs (3
21N), proceed to step 311 and return to step 300.

【0093】冷凍室温度Tfが冷凍室冷却開始温度Tf
s以上ならば(321Y)、通電により電磁弁23,2
6を閉じ、凝縮器ファン30、冷凍室ファン31、圧縮
機10の運転を開始(322)、冷凍室単独冷却運転を
行う。
The freezing room temperature Tf is equal to the freezing room cooling start temperature Tf.
s or more (321Y), the solenoid valves 23, 2
6 is closed, the operation of the condenser fan 30, the freezing room fan 31, and the compressor 10 is started (322), and the freezing room alone cooling operation is performed.

【0094】タイマーをスタートさせ(323)、所定
時間経過後に(324Y)、冷蔵室温度センサ9に冷蔵
室温度Trを検知させ(325)、冷蔵室温度Trが冷
蔵室冷却開始温度Trs以上かどうか判定する(32
6)。冷蔵室冷却開始温度Trs以上ならば(326
Y)、冷蔵室ファン32の運転を開始し、電磁弁23,
26への通電をやめ、弁を開き(340)、冷凍室単独
冷却運転から冷凍室冷蔵室同時冷却運転に移行し、ステ
ップ304に移る。
A timer is started (323), and after a lapse of a predetermined time (324Y), the refrigerator compartment temperature sensor 9 detects the refrigerator compartment temperature Tr (325), and determines whether or not the refrigerator compartment temperature Tr is equal to or higher than the refrigerator compartment cooling start temperature Trs. Judgment (32
6). If the temperature is equal to or higher than the refrigerator compartment cooling start temperature Trs (326)
Y), the operation of the refrigerator compartment fan 32 is started, and the solenoid valve 23,
The energization to 26 is stopped, the valve is opened (340), and the freezing room independent cooling operation is shifted to the freezing room cooling room simultaneous cooling operation.

【0095】冷蔵室温度Trが冷蔵室冷却開始温度Tr
s未満ならば(326N)、冷凍室温度センサ8に冷凍
室温度Tfを検知させ(327)、冷凍室温度Tfが冷
凍室冷却終了温度Tfe以下かどうか判定する(32
8)。冷凍室温度Tfが冷凍室冷却終了温度Tfeより
高ければ(328N)、ステップ323に戻り、冷凍室
単独冷却運転を続ける。冷凍室冷却終了温度Tfe以下
ならば(328Y)、圧縮機10、凝縮器ファン30、
冷凍室ファン31の運転を停止し、電磁弁23,26へ
の通電をやめて弁を開き、冷凍室単独冷却運転を終了
し、ステップ311に進み、ステップ300に戻る。
The refrigerator compartment temperature Tr is equal to the refrigerator compartment cooling start temperature Tr.
If it is less than s (326N), the freezing room temperature sensor 8 detects the freezing room temperature Tf (327), and determines whether the freezing room temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe (32).
8). If the freezing room temperature Tf is higher than the freezing room cooling end temperature Tfe (328N), the process returns to step 323, and the freezing room independent cooling operation is continued. If it is lower than the freezing compartment cooling end temperature Tfe (328Y), the compressor 10, the condenser fan 30,
The operation of the freezer compartment fan 31 is stopped, the power supply to the solenoid valves 23 and 26 is stopped, the valves are opened, the freezing compartment independent cooling operation is terminated, the process proceeds to step 311 and returns to step 300.

【0096】ステップ309において、冷凍室温度Tf
が冷凍室冷却終了温度Tfeより高ければ(309
N)、電磁弁23,26への通電を行い弁を閉じ、冷蔵
室ファン32の運転を停止し、冷凍室冷蔵室同時冷却運
転から冷凍室単独冷却運転に移行し、ステップ323に
移る。
In step 309, the freezing room temperature Tf
Is higher than the freezing compartment cooling end temperature Tfe (309
N), the solenoid valves 23 and 26 are energized, the valves are closed, the operation of the refrigerator compartment fan 32 is stopped, the freezing compartment cooling compartment simultaneous cooling operation is shifted to the freezing compartment single cooling operation, and the routine proceeds to step 323.

【0097】上記の実施例の構成及び運転の制御によ
り、冷蔵室食品の凍結防止のためのヒータ加熱を不要と
し、冷凍室温度は、例えば−18℃以下、冷蔵室の温度
は、例えば0℃より高い5℃以下とすることができ、冷
凍室と冷蔵室の温度を適正に保つことができる。
By controlling the configuration and operation of the above-described embodiment, it is not necessary to heat the refrigerator to prevent freezing of the food in the refrigerator. The temperature of the refrigerator is, for example, −18 ° C. or less, and the temperature of the refrigerator is, for example, 0 ° C. The temperature can be set to 5 ° C. or less, which is higher, and the temperatures of the freezing compartment and the refrigerator compartment can be appropriately maintained.

【0098】また、冷凍室及び冷蔵室の並行冷却運転時
には、冷蔵室用蒸発器25からのガス冷媒を、さらに冷
凍室用蒸発器22の蒸発圧力レベルの低圧まで減圧し、
その低圧から圧縮するのではなく、冷蔵室用蒸発器の蒸
発圧力レベルの中間圧から圧縮するため、圧縮動力を低
減することができ、冷蔵庫の消費電力を大幅に低減する
ことができる。
During the parallel cooling operation of the freezer compartment and the refrigerator compartment, the gas refrigerant from the refrigerator compartment evaporator 25 is further reduced in pressure to the evaporation pressure level of the freezer compartment evaporator 22.
Since the compression is performed not from the low pressure but from the intermediate pressure of the evaporating pressure level of the refrigerator compartment evaporator, the compression power can be reduced, and the power consumption of the refrigerator can be greatly reduced.

【0099】さらに、圧縮機が二つの圧縮要素を有し、
冷凍室及び冷蔵室の並行冷却運転時には、2段の圧縮御
を行う構成としたため、各圧縮要素の圧縮室と吸入室と
の圧力差が小さくなり、圧縮過程の漏洩ガス量の低減に
効果があり、圧縮機の効率が向上し、冷蔵庫の効率を向
上させることができる。
Further, the compressor has two compression elements,
During the parallel cooling operation of the freezing compartment and the refrigerating compartment, two stages of compression control are performed, so the pressure difference between the compression compartment and the suction compartment of each compression element becomes small, which is effective in reducing the amount of leaked gas in the compression process. In addition, the efficiency of the compressor is improved, and the efficiency of the refrigerator can be improved.

【0100】さらに、冷凍室単独の冷却運転時において
は、圧縮機の二つの圧縮要素を並列に圧縮するように構
成したため、冷凍室冷却のための押しのけ量が冷凍室冷
蔵室同時冷却運転時の2倍となり、冷凍室冷凍能力を増
加させることができる。
Further, since the two compression elements of the compressor are configured to be compressed in parallel during the freezing operation of the freezing compartment alone, the displacement for the freezing compartment is reduced during the simultaneous cooling operation of the freezing compartment. It is doubled, and the freezing room refrigeration capacity can be increased.

【0101】また、冷凍室と冷蔵室に各々の蒸発器をも
つ冷蔵庫は、蒸発器1個で、冷凍室と冷蔵室の両方を冷
気の強制循環により冷却する冷蔵庫に比べて、冷蔵室用
蒸発器の蒸発温度を高くすることができるので、冷蔵室
への吐出冷気温度を高くでき、湿度を高く維持できるの
で、冷蔵室の食品の保存状態を良好にすることができ
る。
A refrigerator having an evaporator in each of a freezer compartment and a refrigerator compartment has a single evaporator, and has a smaller evaporator for the refrigerator compartment than a refrigerator in which both the refrigerator compartment and the refrigerator compartment are cooled by forced circulation of cool air. Since the evaporating temperature of the vessel can be increased, the temperature of cold air discharged into the refrigerator can be increased, and the humidity can be kept high, so that the preservation state of the food in the refrigerator can be improved.

【0102】また、冷蔵室用蒸発器への着霜量も低下す
るため、電気ヒータによる除霜の周期が延長され、消費
電力の低減に有効である。
Further, since the amount of frost formed on the evaporator for the refrigerator compartment also decreases, the cycle of defrosting by the electric heater is extended, which is effective in reducing power consumption.

【0103】また、冷凍室と冷蔵室の冷気が完全に分離
されているため、冷凍室と冷蔵室間の臭い移りを防止で
きる。
Further, since the cold air in the freezing room and the cold room are completely separated, the odor can be prevented from being transferred between the freezing room and the cold room.

【0104】また、圧縮要素の吸入通路と圧縮機の密閉
容器内とを連通する開口を備えているので、圧縮機の単
段圧縮時には密閉容器内の圧力が低圧となり、2段圧縮
時は密閉容器内の圧力が中間圧となる。このため、一回
転当たりの圧縮室と密閉容器内圧力との圧力差が小さ
く、圧縮過程の圧力差による漏洩ガス量の低減に効果が
あり、圧縮機の効率を向上させることができる。
Further, since an opening communicating the suction passage of the compression element and the inside of the closed vessel of the compressor is provided, the pressure in the closed vessel becomes low during single-stage compression of the compressor, and the pressure becomes low during two-stage compression. The pressure in the container becomes an intermediate pressure. For this reason, the pressure difference between the compression chamber and the pressure in the closed vessel per rotation is small, which is effective in reducing the amount of leaked gas due to the pressure difference in the compression process, and can improve the efficiency of the compressor.

【0105】また、圧縮機の密閉容器内圧力を低圧また
は中間圧としたため、潤滑油中に溶解する冷媒量を低減
でき、可燃性冷媒である炭化水素系冷媒への対応も容易
となる。
Further, since the pressure in the closed vessel of the compressor is set to a low pressure or an intermediate pressure, the amount of the refrigerant dissolved in the lubricating oil can be reduced, and it is easy to cope with the hydrocarbon-based refrigerant which is a flammable refrigerant.

【0106】また、逆止弁を密閉容器内に配置したた
め、圧縮機周りの配管をコンパクト化できる。
Further, since the check valve is arranged in the closed vessel, the piping around the compressor can be made compact.

【0107】また、2個の電磁弁23、26に同じ開閉
動作を行なわせているため、制御装置101における2
個の電磁弁の通電と非通電を一つの回路にすることがで
き、コストを抑えることができる。
Since the two solenoid valves 23 and 26 perform the same opening and closing operations,
The energization and non-energization of the individual solenoid valves can be made into one circuit, and the cost can be reduced.

【0108】〔実施例 2〕本発明の第2の実施例を図
11及び図12を参照して説明する。
Embodiment 2 A second embodiment of the present invention will be described with reference to FIGS.

【0109】図11は第2の実施例に係る冷蔵庫の冷凍
サイクル構成図、図12は図11の冷凍サイクルの電磁
弁の開閉動作を示す表である。同時に、実施例1に係る
冷蔵庫についても、その動作を示している。図11にお
いて、図1と同等部分には同一符号を付し、その説明は
省略する。
FIG. 11 is a configuration diagram of a refrigeration cycle of a refrigerator according to the second embodiment, and FIG. 12 is a table showing opening and closing operations of a solenoid valve of the refrigeration cycle of FIG. At the same time, the operation of the refrigerator according to the first embodiment is also shown. 11, the same reference numerals are given to the same parts as those in FIG. 1, and the description thereof will be omitted.

【0110】図11において、圧縮機10’は図1の圧
縮機10と同様に二つの圧縮要素(低段圧縮要素11、
高段圧縮要素12)をもつ。70a、70bはそれぞ
れ、冷凍室用蒸発器22の入口側、出口側に設けられた
電磁弁、71a、71bはそれぞれ、圧縮要素11、1
2の吸入通路11a、12a側、吐出通路11b、12
b側に設けられた電磁弁である。6個の電磁弁23、2
6、70a、70b、71a、71bの開閉の組み合わ
せにより、冷凍室と冷蔵室の同時冷却、冷凍室の単独冷
却、冷蔵室の単独冷却を行う。
In FIG. 11, a compressor 10 'has two compression elements (low-stage compression element 11,
It has a high-stage compression element 12). 70a and 70b are solenoid valves provided on the inlet side and outlet side of the freezer evaporator 22, respectively, and 71a and 71b are compression elements 11 and 1 respectively.
2, the suction passages 11a and 12a, and the discharge passages 11b and 12
This is a solenoid valve provided on the b side. 6 solenoid valves 23, 2
6, 70a, 70b, 71a, and 71b are combined to open and close to simultaneously cool the freezing room and the refrigerating room, individually cool the freezing room, and independently cool the refrigerating room.

【0111】以上のように構成する冷蔵庫の冷凍サイク
ルにおいて、冷凍室冷蔵室同時冷却運転、冷凍室単独冷
却運転及び冷蔵室単独冷却運転の動作について説明す
る。
In the refrigeration cycle of the refrigerator configured as described above, the operation of the simultaneous cooling operation of the freezer compartment, the freezing operation of the freezer compartment, and the operation of the freezer compartment alone cooling will be described.

【0112】冷凍室冷蔵室同時冷却運転時には、図12
に示すように、電磁弁23、26、70a、70bを開
き、電磁弁71a、70bを閉じる。この時、圧縮機1
0’の低段圧縮要素11、中間冷却器27、高段圧縮要
素12、凝縮器20、第1のキャピラリ21、冷凍室用
蒸発器22は、冷凍室冷却冷凍サイクルを形成するとと
もに、圧縮機10’の高段圧縮要素12、凝縮器20、
第2のキャピラリ24、冷蔵室用蒸発器25は、冷蔵室
冷却冷凍サイクルを形成する。圧縮機10’は、低段圧
縮要素11、高段圧縮要素12を直列に接続した2段圧
縮を行う。また、凝縮器ファン30、冷凍室用蒸発器フ
ァン31、冷蔵室用蒸発器ファン32を運転する。
In the simultaneous cooling operation of the freezer compartment and the refrigerator compartment, the operation shown in FIG.
As shown in (2), the solenoid valves 23, 26, 70a, 70b are opened, and the solenoid valves 71a, 70b are closed. At this time, the compressor 1
The 0 'low-stage compression element 11, the intercooler 27, the high-stage compression element 12, the condenser 20, the first capillary 21, and the freezer-room evaporator 22 form a freezer-room cooling / refrigeration cycle and a compressor. 10 'high stage compression element 12, condenser 20,
The second capillary 24 and the refrigerating compartment evaporator 25 form a refrigerating compartment cooling refrigerating cycle. The compressor 10 'performs two-stage compression in which a low-stage compression element 11 and a high-stage compression element 12 are connected in series. Also, the condenser fan 30, the freezer compartment evaporator fan 31, and the refrigerator compartment evaporator fan 32 are operated.

【0113】圧縮機10’の低段圧縮要素11は、冷凍
室用蒸発器22からのガス冷媒を冷凍室用蒸発器22の
蒸発圧力レベルの低圧(冷凍サイクルの最低圧力)か
ら、冷蔵室用蒸発器25の蒸発圧力レベルの中間圧まで
圧縮し、高段圧縮要素12は、低段圧縮要素11により
中間圧まで圧縮され、中間冷却器27により冷却された
ガス冷媒を、冷蔵室用蒸発器25からのガス冷媒ととも
に、中間圧から凝縮器13の凝縮圧力レベルの高圧(冷
凍サイクルの最高圧力)まで圧縮する。
The low-stage compression element 11 of the compressor 10 'converts the gas refrigerant from the freezer compartment evaporator 22 from the low pressure of the evaporation pressure level of the freezer compartment evaporator 22 (minimum pressure of the refrigeration cycle) to the refrigerator compartment. The high-stage compression element 12 compresses the gas refrigerant compressed to the intermediate pressure by the low-stage compression element 11 and is cooled by the intermediate cooler 27 to the intermediate pressure of the evaporation pressure level of the evaporator 25. With the gas refrigerant from 25, the gas is compressed from the intermediate pressure to a high pressure (the maximum pressure of the refrigeration cycle) of the condensation pressure level of the condenser 13.

【0114】以上の動作により、冷凍室と冷蔵室の同時
冷却運転を行う。
By the above operation, the simultaneous cooling operation of the freezing room and the refrigerating room is performed.

【0115】冷凍室単独冷却運転時には、図12に示す
ように、電磁弁70a、70b、71a、71bを開
き、電磁弁23、26を閉じる。この時、二つの圧縮要
素11、12は並列に接続される。電磁弁70aが開か
れ、電磁弁23が閉じられているため、冷凍室用蒸発器
22には冷媒が供給され、冷蔵室用蒸発器25には冷媒
が供給されない。電磁弁23、26が閉じていて、高段
圧縮要素12の吸入通路12aと連通する冷蔵室用蒸発
器25、中間冷却器27には冷媒が供給されないため、
高段圧縮要素12は開いている電磁弁71aを通して、
冷凍室用蒸発器22からのガス冷媒を吸入、圧縮する。
また、電磁弁26が閉じているため、低段圧縮要素11
の吐出ガスは開いている電磁弁71bを通過し、高段圧
縮要素12の吐出ガスと合流し、凝縮器20に入る。よ
って、二つの圧縮要素11、12、凝縮器20、第1の
キャピラリ21、冷凍室用蒸発器22からなる冷凍室単
独冷却冷凍サイクルを形成する。また、凝縮器ファン3
0、冷凍室用蒸発器ファン31を運転し、冷蔵室用蒸発
器ファン32は停止する。これにより、冷凍室の単独冷
却運転を行う。
In the freezing room independent cooling operation, as shown in FIG. 12, the solenoid valves 70a, 70b, 71a, 71b are opened, and the solenoid valves 23, 26 are closed. At this time, the two compression elements 11 and 12 are connected in parallel. Since the electromagnetic valve 70a is opened and the electromagnetic valve 23 is closed, the refrigerant is supplied to the freezer evaporator 22, and the refrigerant is not supplied to the refrigerator evaporator 25. Since the solenoid valves 23 and 26 are closed and the refrigerant is not supplied to the evaporator 25 for the refrigerator compartment and the intercooler 27 that communicate with the suction passage 12a of the high-stage compression element 12,
The high-stage compression element 12 passes through an open solenoid valve 71a.
The gas refrigerant from the freezer evaporator 22 is sucked and compressed.
Further, since the solenoid valve 26 is closed, the low-stage compression element 11
Discharge gas passes through the open electromagnetic valve 71 b, merges with the discharge gas of the high-stage compression element 12, and enters the condenser 20. Therefore, a freezing room independent cooling refrigeration cycle including the two compression elements 11 and 12, the condenser 20, the first capillary 21, and the freezing room evaporator 22 is formed. Also, condenser fan 3
0, the freezer compartment evaporator fan 31 is operated, and the refrigerator compartment evaporator fan 32 is stopped. As a result, an independent cooling operation of the freezing room is performed.

【0116】また、冷蔵室単独冷却運転時には、図12
に示すように、電磁弁23、71a、71bを開き、電
磁弁26、70a、70bを閉じる。この時、二つの圧
縮要素11、12は並列に接続される。電磁弁23が開
かれ、電磁弁70aが閉じられているため、冷蔵室用蒸
発器25には冷媒が供給され、冷凍室用蒸発器22には
冷媒が供給されない。電磁弁70bが閉じているため、
低段圧縮要素11は開いている電磁弁71aを通して、
冷蔵室用蒸発器25からのガス冷媒を吸入、圧縮する。
また、電磁弁26が閉じているため、低段圧縮要素11
の吐出ガスは開いている電磁弁71bを通過し、高段圧
縮要素12の吐出ガスと合流し、凝縮器20に入る。よ
って、二つの圧縮要素11、12、凝縮器20、第2の
キャピラリ24、冷蔵室用蒸発器25からなる冷蔵室単
独冷却冷凍サイクルを形成する。また、凝縮器ファン3
0、冷蔵室用蒸発器ファン32を運転し、冷凍室用蒸発
器ファン31は停止する。これにより、冷蔵室の単独冷
却運転を行う。
In the cooling operation of the refrigerator compartment alone, FIG.
As shown in (2), the solenoid valves 23, 71a, 71b are opened, and the solenoid valves 26, 70a, 70b are closed. At this time, the two compression elements 11 and 12 are connected in parallel. Since the electromagnetic valve 23 is opened and the electromagnetic valve 70a is closed, the refrigerant is supplied to the refrigerator compartment evaporator 25 and the refrigerant is not supplied to the freezer compartment evaporator 22. Because the solenoid valve 70b is closed,
The low-stage compression element 11 passes through an open solenoid valve 71a.
The gas refrigerant from the refrigerator compartment evaporator 25 is sucked and compressed.
Further, since the solenoid valve 26 is closed, the low-stage compression element 11
Discharge gas passes through the open electromagnetic valve 71 b, merges with the discharge gas of the high-stage compression element 12, and enters the condenser 20. Therefore, a refrigerator-only cooling refrigeration cycle including the two compression elements 11 and 12, the condenser 20, the second capillary 24, and the refrigerator evaporator 25 is formed. Also, condenser fan 3
0, the refrigerator compartment evaporator fan 32 is operated, and the freezer compartment evaporator fan 31 is stopped. As a result, a single cooling operation of the refrigerator compartment is performed.

【0117】なお、中間冷却器27でのガス冷媒圧力
は、吸入通路12a内のガス冷媒圧力と同じ、冷蔵室用
蒸発器25の蒸発圧力レベルであるが、中間冷却器27
の温度は、冷蔵庫本体1の底部の空気温度とほぼ等しく
なるため、冷蔵室用蒸発器25の蒸発温度より高く、し
たがって、ガス冷媒が中間冷却器27で凝縮し滞留する
という問題を防止できる。また、電磁弁70a、70b
が閉じているため、冷凍サイクルを循環しているガス冷
媒が冷凍室用蒸発器22に冷却され、凝縮し滞留すると
いう問題を防止できる。
The pressure of the gas refrigerant in the intercooler 27 is the same as the pressure of the gas refrigerant in the suction passage 12a.
Is substantially equal to the air temperature at the bottom of the refrigerator main body 1 and is higher than the evaporating temperature of the refrigerator compartment evaporator 25. Therefore, it is possible to prevent the problem that the gas refrigerant is condensed and stays in the intercooler 27. Also, the solenoid valves 70a, 70b
Is closed, the problem that the gas refrigerant circulating in the refrigeration cycle is cooled by the freezer compartment evaporator 22, condensed, and stays can be prevented.

【0118】本実施例では、冷凍室と冷蔵室の同時(並
行)の冷却運転、冷凍室単独の冷却運転及び冷蔵室単独
の冷却運転を切り替え可能としたため、第1の実施例と
同様に、冷蔵室食品の凍結防止のためのヒータ加熱を不
要とし、例えば、冷凍室温度は−18℃以下、冷蔵室温
度は0℃より高い5℃以下とすることができ、冷凍室と
冷蔵室の温度を適正に保つことができる。
In this embodiment, the simultaneous (parallel) cooling operation of the freezer and the refrigerator compartment, the cooling operation of the freezer compartment alone, and the cooling operation of the refrigerator compartment alone can be switched. Therefore, as in the first embodiment, Eliminates the need for heater heating to prevent freezing of food in the refrigerator compartment. For example, the freezer compartment temperature can be -18 ° C or lower, and the refrigerator compartment temperature can be 5 ° C or lower, which is higher than 0 ° C. Can be properly maintained.

【0119】また、第1の実施例に比べて、冷蔵室の単
独冷却運転も可能としたため、冷蔵室だけ冷却を必要と
する場合に、第1の実施例のように冷凍室も同時に冷却
するのではなく、冷蔵室だけの冷却が可能なため、冷凍
室の余剰な冷却を防止することができる。
Further, as compared with the first embodiment, a single cooling operation of the refrigerator compartment is also possible, so that when only the refrigerator compartment needs to be cooled, the freezer compartment is also cooled as in the first embodiment. Instead, since only the refrigerator compartment can be cooled, excess cooling of the freezer compartment can be prevented.

【0120】また、冷凍室冷蔵室同時冷却運転時には、
冷蔵室用蒸発器からのガス冷媒を、さらに冷凍室用蒸発
器の蒸発圧力レベルの低圧まで減圧し、その低圧から圧
縮するのではなく、冷蔵室用蒸発器の蒸発圧力レベルの
中間圧から圧縮するため、圧縮動力を低減することがで
き、冷蔵庫の消費電力を大幅に低減することができる。
In the simultaneous cooling operation of the freezer and refrigerator,
The gas refrigerant from the refrigerator compartment evaporator is further reduced to a low pressure of the evaporation pressure level of the freezer compartment evaporator, and is not compressed from the low pressure, but is compressed from the intermediate pressure of the refrigerator compartment evaporator. Therefore, the compression power can be reduced, and the power consumption of the refrigerator can be significantly reduced.

【0121】さらに、圧縮機を二つの圧縮要素をもち、
冷凍室冷蔵室同時冷却運転時には、2段圧縮御を行う構
成としたため、各圧縮要素の圧縮室と吸入室との圧力差
が小さくなり、圧縮過程の漏洩ガス量の低減に効果があ
り、圧縮機の効率向上し、冷蔵庫の効率を向上させるこ
とができる。
Further, the compressor has two compression elements,
During the simultaneous cooling operation of the freezer and refrigerator, the two-stage compression control is performed, so that the pressure difference between the compression chamber and the suction chamber of each compression element is reduced, which is effective in reducing the amount of leaked gas in the compression process. The efficiency of the refrigerator can be improved, and the efficiency of the refrigerator can be improved.

【0122】さらに、冷凍室(または冷蔵室)単独冷却
運転時においては、圧縮機の二つの圧縮要素を並列に圧
縮するように構成したため、冷凍室(または冷蔵室)冷
却のための押しのけ量が冷凍室冷蔵室同時冷却運転時の
2倍(または4倍)となり、冷凍室(または冷蔵室)冷
凍能力を増加させることができる。
Furthermore, in the freezing room (or refrigeration room) single cooling operation, since the two compression elements of the compressor are configured to be compressed in parallel, the displacement for freezing room (or refrigeration room) cooling is reduced. This is twice (or four times) that of the simultaneous cooling operation of the freezing compartment and the freezing compartment, and the freezing capacity of the freezing compartment (or the refrigerating compartment) can be increased.

【0123】また、冷凍室と冷蔵室に各々の蒸発器をも
つ冷蔵庫は、蒸発器1個で、冷凍室と冷蔵室の両方を冷
気の強制循環により冷却する冷蔵庫に比べて、冷蔵室用
蒸発器の蒸発温度を高くすることができるので、冷蔵室
への吐出冷気温度を高くでき、湿度を高く維持できるの
で、冷蔵室の食品の保存状態を良好にすることができ
る。
The refrigerator having the evaporator in the freezer compartment and the refrigerator compartment has a single evaporator, and has a smaller evaporator for the refrigerator compartment than the refrigerator in which both the freezer compartment and the refrigerator compartment are cooled by forced circulation of cool air. Since the evaporating temperature of the vessel can be increased, the temperature of cold air discharged into the refrigerator can be increased, and the humidity can be kept high, so that the preservation state of the food in the refrigerator can be improved.

【0124】また、冷蔵室用蒸発器への着霜量も低下す
るため、電気ヒータによる除霜の周期が延長され、消費
電力の低減に有効である。
Further, since the amount of frost formed on the evaporator for the refrigerator compartment also decreases, the cycle of defrosting by the electric heater is extended, which is effective in reducing power consumption.

【0125】また、冷凍室と冷蔵室の冷気が完全に分離
されているため、冷凍室と冷蔵室間の臭い移りを防止で
きる。
Further, since the cold air in the freezing room and the cold room are completely separated, the odor can be prevented from being transferred between the freezing room and the cold room.

【0126】〔実施例 3〕本発明の第3の実施例を図
13ないし図20を参照して説明する。
[Embodiment 3] A third embodiment of the present invention will be described with reference to FIGS.

【0127】図13は、本発明の第3の実施例に係る冷
蔵庫の冷凍サイクルの概略を示す冷蔵庫の斜視図であ
り、その内部の構造を示す透視図である。図14は、図
13に示す冷蔵庫の構造の概略を示す縦断面図である。
図15は、図13示す冷蔵庫に設けられた冷蔵庫の操作
を行うパネルの摸式図である。図16は、図13に示す
冷蔵庫の冷凍サイクルの電磁弁の開閉動作を示す表であ
る。図17乃至図20は、図13に示す冷蔵庫の運転の
制御フローを示すフローチャートである。
FIG. 13 is a perspective view of a refrigerator schematically showing a refrigerating cycle of the refrigerator according to the third embodiment of the present invention, and is a perspective view showing the internal structure thereof. FIG. 14 is a longitudinal sectional view schematically showing the structure of the refrigerator shown in FIG.
FIG. 15 is a schematic view of a panel provided in the refrigerator shown in FIG. 13 for operating the refrigerator. FIG. 16 is a table showing the opening / closing operation of the solenoid valve of the refrigeration cycle of the refrigerator shown in FIG. 17 to 20 are flowcharts showing a control flow of the operation of the refrigerator shown in FIG.

【0128】図13、図14において、図1〜図3と同
等部分には同一符号を付し、その説明は省略する。本実
施例の冷凍サイクル構成は、第1の実施例の図1に示す
冷凍サイクル構成と同等であり、図1を参照する場合、
符号10を10’’とする。
In FIGS. 13 and 14, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted. The refrigeration cycle configuration of the present embodiment is equivalent to the refrigeration cycle configuration of the first embodiment shown in FIG. 1, and when referring to FIG.
Reference numeral 10 is set to 10 ″.

【0129】本実施の例に示す冷蔵庫が図1に示す実施
例の冷蔵庫と異なる点は、本実施例の冷蔵庫が冷蔵室3
Aの下方に配置された野菜室3Bの後方に冷蔵室用蒸発
器25及び冷蔵室用ファン32が配置されており、冷蔵
室3A内の冷蔵庫後方側の壁面には、上記ファン32の
駆動により冷蔵室3Aに供給される冷却器25で冷却さ
れた空気が流れる冷気の通路と、この通路内から冷蔵室
3A内に設けられた棚によって区分けされる空間に前記
冷気が流入する開口とを備えている点である。また、冷
蔵室3Aの冷蔵庫前面側に配置された扉上には、使用者
が操作可能な操作パネルが設けられ、この操作パネルの
操作によって、使用者は冷蔵庫の運転を調節して所望の
運転を行わせることができる。
The difference between the refrigerator shown in this embodiment and the refrigerator in the embodiment shown in FIG.
A refrigerator compartment evaporator 25 and a refrigerator compartment fan 32 are arranged behind the vegetable compartment 3B arranged below A, and a wall behind the refrigerator in the refrigerator compartment 3A is driven by the fan 32. A cool air passage through which air cooled by the cooler 25 supplied to the refrigerator compartment 3A flows, and an opening through which the cool air flows into a space defined by a shelf provided in the refrigerator compartment 3A from the passage. That is the point. An operation panel that can be operated by a user is provided on a door disposed on the front side of the refrigerator of the refrigerator compartment 3A, and the operation of the operation panel allows the user to adjust the operation of the refrigerator and perform a desired operation. Can be performed.

【0130】また、野菜室3Bの下方には、冷蔵庫内を
上下に区画する断熱材を備えた断熱仕切壁が配置され、
この断熱仕切壁の下方に冷凍室2が設けられている。こ
の冷凍室は、上下に複数の室に区画され、それぞれの室
内に上方が開放されて形成された容器2A,2Bが配置
され、それらの前面には、冷蔵庫の前後方向に移動して
それぞれの室を開閉する扉が複数設けられている。そし
て、これらの扉の開閉動作による移動に伴って、前記容
器が冷蔵庫前後方向に移動する。
[0130] Below the vegetable compartment 3B, a heat insulating partition wall provided with a heat insulating material for vertically dividing the inside of the refrigerator is arranged.
A freezing compartment 2 is provided below the heat insulating partition wall. This freezer compartment is vertically divided into a plurality of compartments, and containers 2A and 2B each having an open top are arranged in each compartment, and are moved in the front-rear direction of the refrigerator on the front surface thereof. A plurality of doors for opening and closing the room are provided. The container moves in the front-rear direction of the refrigerator as the doors open and close.

【0131】複数の室に区画された冷凍室2の後方に
は、冷凍室用蒸発器22と冷凍室用ファン31が配置さ
れており、冷凍室用ファンの駆動により蒸発器22によ
り冷却された空気が冷凍室2内に供給される。供給され
た冷気は、本実施例では、容器2A,2Bの開放された
上方から容器内に流入するよう供給され、容器内側から
容器の外側を流れ、または直接容器外側を流れて容器及
び容器内を冷却して、容器2B後方に設けられた冷気の
戻り口から蒸発器22に向かい流れ、蒸発器22で再度
冷却される。
An evaporator 22 for the freezer compartment and a fan 31 for the freezer compartment are arranged behind the freezer compartment 2 divided into a plurality of compartments, and are cooled by the evaporator 22 by driving the freezer compartment fan. Air is supplied into the freezer 2. In this embodiment, the supplied cold air is supplied so as to flow into the container from above the containers 2A and 2B, and flows from the inside of the container to the outside of the container, or directly flows to the outside of the container to flow into the container and the inside of the container. Is cooled, flows toward the evaporator 22 from the return port of the cool air provided behind the container 2B, and is cooled again by the evaporator 22.

【0132】図13において、圧縮機10’’には、図
3に示す圧縮機10と同様に、二つの圧縮要素、低段圧
縮要素(第1の圧縮要素)及び高段圧縮要素(第2の圧
縮要素)、と二つの逆止弁とが密閉容器40’’内に配
置されている。高段の圧縮要素の吐出管12b’’は、
図3に示す圧縮機10と異なり、密閉容器40’’の側
面から容器外側に延びるよう設けられている。このこと
により、高温の吐出ガスができるだけ早く密閉容器4
0’’外に出されて、吐出ガスより温度の低いガスへの
加熱の影響が減らされると共に、管11a’、11
b’、12a’と離すことによりこれら配管の溶接の作
業に必要な空間を確保して作業が容易になる。
In FIG. 13, the compressor 10 ″ has two compression elements, a low-stage compression element (first compression element) and a high-stage compression element (second compression element), similarly to the compressor 10 shown in FIG. And two check valves are arranged in a closed container 40 ''. The discharge pipe 12b '' of the high-stage compression element is
Unlike the compressor 10 shown in FIG. 3, the compressor 10 is provided so as to extend from the side surface of the closed container 40 ″ to the outside of the container. As a result, the high-temperature discharge gas is supplied to the closed container 4 as soon as possible.
0 ", the influence of heating on gas having a lower temperature than the discharge gas is reduced, and the tubes 11a ', 11
By separating them from b ′ and 12a ′, the space necessary for the work of welding these pipes is secured and the work is facilitated.

【0133】この図において、20Aは凝縮器であり、
例えば、冷媒管上にフィンが挿入や巻き付け等によって
設けられた構成を備え、冷蔵庫本体1’の背面側の底部
に設けられ圧縮機10’’や中間冷却器27とともにこ
の凝縮機20Aを収容する空間である機械室内に配置さ
れている。また、20Bは前記凝縮機の冷媒管と接続さ
れたパイプで冷蔵庫本体1’の側面や背面等をなす外板
である鋼板に接触して密着するように設けられている。
このことにより、パイプ20B内を流れる冷媒は外板
(鋼板)を介して外部の空間と熱交換して放熱を行なう
ことができる。
In this figure, 20A is a condenser,
For example, a structure is provided in which fins are provided on the refrigerant pipe by insertion, winding, or the like, and is provided at the bottom on the back side of the refrigerator main body 1 'and accommodates the condenser 20A together with the compressor 10''and the intercooler 27. It is located in the machine room, which is a space. Reference numeral 20B denotes a pipe connected to the refrigerant pipe of the condenser, which is provided so as to be in contact with and in close contact with a steel plate which is an outer plate forming a side surface, a back surface, and the like of the refrigerator main body 1 '.
Thus, the refrigerant flowing in the pipe 20B can exchange heat with an external space via the outer plate (steel plate) to release heat.

【0134】上記の通り、中間冷却器27が機械室内に
配置されており、本実施例では凝縮器20Aと同じフィ
ン付パイプとして、凝縮器20Aと中間冷却器27とを
一体の熱交換器として構成し一つにまとめて配置してい
る。このことにより、冷蔵庫のコストが低減され、ま
た、機械室の大きさを低減して冷蔵庫内の貯蔵室を大き
く確保することができる。
As described above, the intercooler 27 is disposed in the machine room. In this embodiment, the same finned pipe as the condenser 20A is used, and the condenser 20A and the intercooler 27 are integrated heat exchangers. It is composed and arranged together. As a result, the cost of the refrigerator can be reduced, and the size of the machine room can be reduced, and a large storage room in the refrigerator can be secured.

【0135】上記の通り、図14において、冷蔵庫1’
は冷凍室を二つ(2A、2B)、冷蔵室3A、野菜室3
Bをもつ。80、81はそれぞれ冷凍室用蒸発器22、
冷蔵室用蒸発器25の表面温度を検知する温度センサで
ある。101’は、本実施例の冷蔵庫の制御装置であ
る。また、106’は冷蔵室3Aの扉に設けた操作パネ
ルである。
As described above, in FIG. 14, the refrigerator 1 '
Means two freezer compartments (2A, 2B), refrigerator compartment 3A, vegetable compartment 3
It has B. 80, 81 are freezer evaporators 22,
This is a temperature sensor for detecting the surface temperature of the refrigerator evaporator 25. 101 'is a control device of the refrigerator of the present embodiment. Reference numeral 106 'denotes an operation panel provided on the door of the refrigerator compartment 3A.

【0136】本実施例の冷蔵庫では、図3に示す冷蔵庫
と同様、制御装置101’は、冷凍室用の温度センサ
8、冷蔵室用の温度センサ9(野菜室用の温度センサは
図示していないが設けても良い)あるいは上記冷凍室用
蒸発器22の温度センサ80、冷蔵室用蒸発器の温度セ
ンサ81等からの信号が入力され、これらの信号に基づ
いて、圧縮機10’’,ファン30,31,31、蒸発
器用ヒータ6,7、電磁弁23,26の動作を調節す
る。
In the refrigerator of this embodiment, similarly to the refrigerator shown in FIG. 3, the control device 101 'comprises a temperature sensor 8 for the freezer compartment and a temperature sensor 9 for the refrigerator compartment (the temperature sensor for the vegetable compartment is shown in the drawing). However, signals from the temperature sensor 80 of the freezer compartment evaporator 22, the temperature sensor 81 of the refrigerator compartment evaporator, and the like are input, and based on these signals, the compressors 10 ″, The operation of the fans 30, 31, 31, the evaporator heaters 6, 7, and the solenoid valves 23, 26 is adjusted.

【0137】図15において、操作パネル106’は、
急速冷却ボタン90、急速冷凍ボタン91、冷蔵室温度
設定ボタン92、冷凍室温度設定ボタン93、急速冷却
および急速冷凍の運転状態を示すLED90a、91
a、設定された温度や検知された温度或いはこれらの差
を示すLED92a、93aを備えている。これらのボ
タンの操作により、使用者は冷蔵庫に対して所望の運転
を行うよう指令することができる。
In FIG. 15, the operation panel 106 ′
Quick cooling button 90, quick freezing button 91, cold room temperature setting button 92, freezing room temperature setting button 93, LEDs 90a, 91 indicating the operating state of quick cooling and quick freezing.
a, LEDs 92a and 93a indicating a set temperature, a detected temperature, or a difference therebetween. By operating these buttons, the user can instruct the refrigerator to perform a desired operation.

【0138】本実施例では、操作パネル106上の上記
ボタン、或いは直接LEDを操作することで、冷蔵室温
度および冷凍室温度を、それぞれ冷却の強・中・弱のに
よる設定で選択できる。冷却の設定が選択されると、選
択された強・中・弱のいずれかに対応した冷蔵室3Aあ
るいは冷凍室2A,2Bそれぞれの、冷却を開始する温
度及び冷却を終了する温度が設定される。本実施例で
は、強・中・弱の順に冷却を終了する温度が高くなるよ
うに設定される。この設定温度と前記センサ8,9によ
り検知されて出力された信号とに基づいて、制御装置1
01’が冷蔵庫の運転及び動作を判断し、調節する。
In this embodiment, by operating the above button on the operation panel 106 or directly operating the LED, the temperature of the refrigerator compartment and the temperature of the freezer compartment can be selected according to the setting of strong, medium, and weak cooling, respectively. When the setting of cooling is selected, the temperature at which cooling is started and the temperature at which cooling is ended are set for each of the refrigerator compartment 3A or the freezer compartments 2A and 2B corresponding to the selected strong, medium, or weak. . In this embodiment, the temperature at which the cooling is completed is set to be higher in the order of strong, medium, and weak. On the basis of the set temperature and the signals detected and output by the sensors 8 and 9, the control device 1
01 'determines and adjusts the operation and operation of the refrigerator.

【0139】以上の構成を備えた冷蔵庫は、図16に示
すように、電磁弁23、26の開閉の調節により、冷凍
室及び冷蔵室の並行冷却運転A、冷凍室及び冷蔵室並行
冷却運転B、冷凍室単独の冷却運転の三つの運転モード
で運転される。本実施例において、冷媒としてR134
aまたはR600aを用い、冷凍室用蒸発器22の蒸発
温度を−26℃、冷蔵室用蒸発器25の蒸発温度を−8
℃とすると、冷媒のガスの比容積の関係から、第1の運
転モードである電磁弁23、26をともに開いた状態で
の冷蔵庫及び冷凍サイクルの運転では、冷凍室2A,2
Bの冷凍能力と冷蔵室3Aの冷凍能力の比は約1対1と
なる。
As shown in FIG. 16, in the refrigerator having the above-described configuration, the parallel cooling operation A of the freezing room and the refrigerator compartment and the parallel cooling operation B of the freezing room and the refrigerator room are performed by adjusting the opening and closing of the solenoid valves 23 and 26. The operation is performed in three operation modes, that is, the cooling operation of the freezing room alone. In this embodiment, R134 is used as the refrigerant.
a or R600a, the evaporation temperature of the freezer compartment evaporator 22 is -26 ° C, and the evaporation temperature of the refrigerator compartment evaporator 25 is -8.
° C, in the operation of the refrigerator and the refrigeration cycle in which the solenoid valves 23 and 26 are both opened in the first operation mode from the relation of the specific volume of the refrigerant gas, the freezer compartments 2A and 2A are operated.
The ratio of the refrigerating capacity of B to the refrigerating capacity of refrigerating room 3A is about 1: 1.

【0140】また、第2の運転モードである電磁弁23
を開状態とし、電磁弁26を閉状態として冷蔵庫及び冷
凍サイクルの運転状態では、冷凍室2A,2Bの冷凍能
力と冷蔵室3Aの冷凍能力の比は約1対2となる。これ
らの第1,2の運転モードでは、冷蔵室3Aと冷凍室2
A,2Bとが並行して(同時に)冷却される。これら第
1、第2の運転モードは、冷蔵室3A及び冷凍室2A,
2Bに必要な冷却能力の大きさの比が異ならせて冷蔵室
及び冷凍室を同時に(並行して)冷却する運転である。
Further, the solenoid valve 23 in the second operation mode
Is opened, the solenoid valve 26 is closed, and the refrigerator and the refrigeration cycle are operating, the ratio of the refrigerating capacity of the freezing compartments 2A and 2B to the refrigerating capacity of the refrigerating compartment 3A is about 1: 2. In these first and second operation modes, the refrigerating compartment 3A and the freezing compartment 2
A and 2B are cooled in parallel (simultaneously). These first and second operation modes include the refrigerator compartment 3A and the freezer compartment 2A,
This is an operation in which the refrigerating room and the freezing room are cooled simultaneously (in parallel) by making the ratio of the magnitude of the cooling capacity necessary for 2B different.

【0141】さらに、第3の運転モードである電磁弁2
3、26をともに閉じた状態で行われる冷凍室単独の冷
却運転は冷凍室のみが冷却され、冷蔵室の冷却は行なわ
ない。
Further, in the third operation mode, the solenoid valve 2
In the cooling operation of the freezing room alone performed in a state in which both the cooling rooms 3 and 26 are closed, only the freezing room is cooled, and the cooling room is not cooled.

【0142】上記の冷凍室及び冷蔵室の並行した冷却運
転Aは、第1の実施例で述べた冷凍室及び冷蔵室の同時
(並行)冷却運転と同じである。また、冷凍室単独の冷
却運転は第1の実施例で述べた冷凍室の単独冷却運転と
同じである。したがって、第3の実施例では、第1の実
施例に比べて、冷蔵室冷凍能力が冷凍室冷凍能力の約2
倍となる運転モードが追加されることにより、冷蔵庫の
冷凍室負荷と冷蔵室負荷に対応した運転が可能となり、
使用者の要求にさらに細かく対応が可能となり、無駄な
冷却を抑えるとともに冷却の効率を向上して、消費電力
を低減することが可能となる。
The parallel cooling operation A of the freezing room and the refrigerating room is the same as the simultaneous (parallel) cooling operation of the freezing room and the refrigerating room described in the first embodiment. The cooling operation of the freezing room alone is the same as the cooling operation of the freezing room described in the first embodiment. Therefore, in the third embodiment, compared to the first embodiment, the refrigerating room freezing capacity is about 2 times lower than the freezing room refrigerating capacity.
By adding the double operation mode, it becomes possible to operate in accordance with the refrigerator compartment load and the refrigerator compartment load of the refrigerator,
It is possible to respond more finely to the demands of the user, and it is possible to suppress unnecessary cooling and improve cooling efficiency, thereby reducing power consumption.

【0143】冷凍室及び冷蔵室の同時冷却運転Aと冷凍
室単独冷却運転については、実施例1で詳細に述べてい
るのでここでは省略し、冷凍室冷蔵室同時冷却運転Bに
ついて、改めて図1,13,14及び16を参照して、
以下に説明する。
The simultaneous cooling operation A of the freezer compartment and the refrigerator compartment and the cooling operation of the freezer compartment alone have been described in detail in the first embodiment, and therefore are omitted here. , 13, 14 and 16,
This will be described below.

【0144】冷凍室及び冷蔵室の並行冷却運転Bでは、
電磁弁23が開状態であるために、冷凍室用蒸発器22
と冷蔵室用蒸発器25の両方に冷媒が供給され通流す
る。圧縮機10’’の第1の圧縮要素(低段圧縮要素)
11は冷凍室用蒸発器22出口のガス冷媒を吸入し圧縮
を行なう。しかし、電磁弁26が閉じられているため、
中間冷却器27には冷媒は流れず、吐出側逆止弁13b
の反対側の第2の圧縮要素(高段圧縮要素)12の吐出
通路12b内のガス冷媒圧力より高い圧力まで、第1の
圧縮要素11のガス冷媒は圧縮され、逆止弁13bを通
過する。一方、高段圧縮要素12は冷蔵室用蒸発器25
出口のガス冷媒を吸入し圧縮を行なう。この時、冷蔵室
用蒸発器25の蒸発圧力は冷凍室用蒸発器22の蒸発圧
力より高いため、逆止弁13aは閉じた状態となる。
In the parallel cooling operation B of the freezer compartment and the refrigerator compartment,
Since the solenoid valve 23 is open, the evaporator 22
The refrigerant is supplied to and flows through both the evaporator 25 and the refrigerator compartment evaporator 25. First compression element (low-stage compression element) of compressor 10 ″
Numeral 11 sucks the gas refrigerant at the outlet of the freezer evaporator 22 and performs compression. However, since the solenoid valve 26 is closed,
No refrigerant flows into the intercooler 27, and the discharge-side check valve 13b
The gas refrigerant in the first compression element 11 is compressed to a pressure higher than the gas refrigerant pressure in the discharge passage 12b of the second compression element (high-stage compression element) 12 on the opposite side, and passes through the check valve 13b. . On the other hand, the high-stage compression element 12 is an evaporator 25 for a refrigerator.
The gas refrigerant at the outlet is sucked and compressed. At this time, since the evaporating pressure of the refrigerating room evaporator 25 is higher than the evaporating pressure of the freezing room evaporator 22, the check valve 13a is closed.

【0145】すなわち、圧縮機10’’の低段圧縮要素
11は、冷凍室用蒸発器22からのガス冷媒を冷凍室用
蒸発器22の蒸発圧力レベルの低圧から、凝縮器13の
凝縮圧力レベルの高圧まで圧縮し、凝縮器20、第1の
キャピラリ21、冷凍室用蒸発器22とともに、冷凍室
を冷却する冷凍サイクルを形成する。一方、高段圧縮要
素12は冷蔵室用蒸発器25のからのガス冷媒を冷蔵室
用蒸発器22の蒸発レベルの中間圧から、凝縮器13の
凝縮圧力レベルの高圧まで圧縮し、凝縮器20、第2の
キャピラリ24、冷蔵室用蒸発器22とともに、冷蔵室
を冷却する冷凍サイクルを形成する。この時、圧縮機1
0’’の密閉容器40内圧力は高段圧縮要素12の吸入
ガスの圧力である中間圧となっている。
That is, the low-stage compression element 11 of the compressor 10 ″ converts the gas refrigerant from the freezer compartment evaporator 22 from the low evaporation pressure level of the freezer compartment evaporator 22 to the condensation pressure level of the condenser 13. To form a refrigeration cycle for cooling the freezer together with the condenser 20, the first capillary 21, and the freezer evaporator 22. On the other hand, the high-stage compression element 12 compresses the gas refrigerant from the refrigerator compartment evaporator 25 from the intermediate pressure at the evaporation level of the refrigerator compartment evaporator 22 to the high pressure at the condensation pressure level of the condenser 13. , The second capillary 24 and the refrigerator evaporator 22 form a refrigeration cycle for cooling the refrigerator. At this time, the compressor 1
The pressure in the sealed container 40 of 0 ″ is an intermediate pressure which is the pressure of the suction gas of the high-stage compression element 12.

【0146】また、このとき、凝縮器ファン30、冷凍
室ファン31、冷蔵室ファン32を運転する。本運転で
は、冷蔵室用蒸発器25からのガス冷媒を、さらに冷凍
室用蒸発器22の蒸発圧力レベルの低圧まで減圧し、そ
の低圧から圧縮するのではなく、冷蔵室用蒸発器の蒸発
圧力レベルの中間圧から圧縮するため、圧縮動力を低減
することができ、本運転中の冷蔵庫の消費電力を大幅に
低減することができる。
At this time, the condenser fan 30, the freezer compartment fan 31, and the refrigerator compartment fan 32 are operated. In this operation, the gas refrigerant from the refrigerator compartment evaporator 25 is further reduced to a low pressure of the evaporation pressure level of the freezer compartment evaporator 22 and is not compressed from the low pressure. Since the compression is performed from the intermediate pressure at the level, the compression power can be reduced, and the power consumption of the refrigerator during the main operation can be significantly reduced.

【0147】なお、中間冷却器27の温度は冷蔵庫本体
底部の空気温度とほぼ等しくなり、冷蔵室用蒸発器25
の蒸発温度より高くなるため、ガス冷媒が中間冷却器2
7内で凝縮し滞留するという問題はない。
The temperature of the intercooler 27 is substantially equal to the air temperature at the bottom of the refrigerator main body, and
Gas refrigerant is higher than the evaporation temperature of the intercooler 2
There is no problem of condensing and staying in 7.

【0148】この時、例えば、冷媒としてR134aま
たはR600aを用い、冷凍室蒸発温度−26℃、冷蔵
室蒸発温度−8℃とすると、低段圧縮要素11と高段圧
縮要素12の押しのけ量が同等またはほぼ同等で、高段
圧縮要素12の吸入ガスの比容積が低段圧縮要素11の
吸入ガスの比容積のほぼ半分となるため、高段圧縮要素
12の冷媒質量流量は低段圧縮要素11の冷媒質量流量
の約2倍となり、冷凍$室冷凍能力と冷蔵室冷凍能力の
比は約1対2となる。
At this time, for example, if R134a or R600a is used as the refrigerant and the freezing compartment evaporation temperature is -26 ° C. and the refrigerating compartment evaporation temperature is -8 ° C., the displacements of the low stage compression element 11 and the high stage compression element 12 are equal. Or approximately the same, the specific volume of the intake gas of the high-stage compression element 12 is substantially half of the specific volume of the intake gas of the low-stage compression element 11. And the ratio of the freezing room freezing capacity to the refrigerating room freezing capacity is about 1: 2.

【0149】次に図17〜図20を参照して、本実施例
での制御フローチャートを説明する。以下の処理は制御
装置101’が行なう。操作パネル106’から使用者
の指令を受け付けた場合については後述する。
Next, a control flowchart in this embodiment will be described with reference to FIGS. The following processing is performed by the control device 101 '. The case where a user's command is received from the operation panel 106 'will be described later.

【0150】本制御では、その時々の運転状態に合わせ
て冷蔵室温度および冷凍室温度の組合せを4通りに分
け、それぞれに対して、冷凍室及び冷蔵室の並行(同
時)冷却運転A、冷凍室及び冷蔵室の並行(同時)冷却
運転B、冷凍室の単独冷却運転および停止を行なわせる
ものである。この処理をフローチャートに沿って説明す
る。
In this control, the combination of the refrigerator compartment temperature and the freezer compartment temperature is divided into four types in accordance with the respective operating conditions, and the parallel (simultaneous) cooling operation A of the freezer compartment and the freezer compartment is performed for each of them. The parallel and simultaneous cooling operation B of the room and the refrigerating room and the independent cooling operation and stop of the freezing room are performed. This processing will be described with reference to a flowchart.

【0151】図17において、冷蔵庫の運転スイッチが
ONならば(400Y)、運転停止の状態で冷蔵室温度
センサ9、冷凍室温度センサ8にそれぞれ冷蔵室温度T
r、冷凍室温度Tfを検知させ(401)、冷蔵室温度
Trが冷蔵室の冷却開始温度Trs以上か否か、及び冷
凍室温度Tfが冷凍室冷却開始温度Tfs以上か否かを
判定する(402)。
In FIG. 17, if the operation switch of the refrigerator is turned on (400Y), the refrigerator compartment temperature sensor 9 and the freezer compartment temperature sensor 8 indicate the refrigerator compartment temperature T when the operation is stopped.
r, the freezing room temperature Tf is detected (401), and it is determined whether or not the refrigerating room temperature Tr is equal to or higher than the cooling start temperature Trs of the refrigerating room, and whether or not the freezing room temperature Tf is equal to or higher than the freezing room cooling start temperature Tfs ( 402).

【0152】冷蔵室温度Trが冷蔵室冷却開始温度Tr
s以上かつ冷凍室温度Tfが冷凍室冷却開始温度Tfs
以上ならば(402a)、凝縮器ファン30、冷凍室フ
ァン31、冷蔵室ファン32、圧縮機10の運転を開始
し(403)、冷凍室冷凍能力と冷蔵室冷凍能力がほぼ
同等な冷凍室及び冷蔵室の並行冷却運転Aを行い、符号
へ移行する。
The refrigerator compartment temperature Tr is equal to the refrigerator compartment cooling start temperature Tr.
s or more and the freezing room temperature Tf is equal to the freezing room cooling start temperature Tfs.
If this is the case (402a), the operation of the condenser fan 30, the freezer compartment fan 31, the refrigerator compartment fan 32, and the compressor 10 is started (403). The parallel cooling operation A of the refrigerator compartment is performed, and the process proceeds to the code.

【0153】また、冷蔵室温度Trが冷蔵室冷却開始温
度Trs以上かつ冷凍室温度Tfが冷凍室冷却開始温度
Tfs未満ならば(402b)、電磁弁26へ通電を行
ない弁を閉じ、凝縮器ファン30、冷凍室ファン31、
冷蔵室ファン32、圧縮機10の運転を開始し(42
0)、冷蔵室冷凍能力が冷凍室冷凍能力の約2倍となる
冷凍室及び冷蔵室の並行冷却運転Bを行ない、符号
(D)へ移行する。
If the refrigerator compartment temperature Tr is equal to or higher than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is lower than the freezer compartment cooling start temperature Tfs (402b), the solenoid valve 26 is energized and the valve is closed to close the condenser fan. 30, freezer fan 31,
The operation of the refrigerator compartment fan 32 and the compressor 10 is started (42).
0), a parallel cooling operation B of the freezing room and the refrigerating room where the refrigerating room refrigerating capacity is about twice the freezing room refrigerating capacity is performed, and the process shifts to the symbol (D).

【0154】また、冷蔵室温度Trが冷蔵室冷却開始温
度Trs未満かつ冷凍室温度Tfが冷凍室冷却開始温度
Tfs以上ならば(402b)、電磁弁23、26へ通
電を行ない弁を閉じ、凝縮器ファン30、冷凍室ファン
31、圧縮機10の運転を開始し(430)、冷凍室単
独の冷却運転を行ない、符号(E)へ移行する。
If the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is higher than the freezer compartment cooling start temperature Tfs (402b), the solenoid valves 23 and 26 are energized to close the valves and condense. The operation of the cooling fan 30, the freezing room fan 31, and the compressor 10 is started (430), the freezing operation of the freezing room alone is performed, and the process shifts to the symbol (E).

【0155】また、冷蔵室温度Trが冷蔵室冷却開始温
度Trs未満かつ冷凍室温度Tfが冷凍室冷却開始温度
Tfs未満ならば(402b)、運転停止の状態を継続
し、符号(C)へ移行する。
If the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is lower than the freezer compartment cooling start temperature Tfs (402b), the operation is stopped and the operation proceeds to the sign (C). I do.

【0156】冷凍室及び冷蔵室並行冷却運転Aを行なっ
ている場合、図18の符号(B)を経て、タイマーをス
タートさせ(404)、所定時間経過後に(405
Y)、温度センサ8、9に冷凍室温度Tfと冷蔵室温度
Trを検知させ(406)、冷蔵室温度Trが冷蔵室冷
却終了温度Tre以下かどうかと、冷凍室温度Tfが冷
凍室冷却終了温度Tfe以下かどうかを判定する(40
7)。
When the freezing room and refrigerating room parallel cooling operation A is being performed, a timer is started (404) via a code (B) in FIG. 18 and after a predetermined time elapses (405).
Y), making the temperature sensors 8 and 9 detect the freezer compartment temperature Tf and the refrigerator compartment temperature Tr (406), and determine whether or not the refrigerator compartment temperature Tr is equal to or lower than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf ends the freezer compartment cooling. It is determined whether the temperature is lower than the temperature Tfe (40).
7).

【0157】冷蔵室温度Trが冷蔵室冷却終了温度Tr
e以下かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe
以下ならば(407a)、圧縮機10、凝縮器ファン3
0、冷凍室ファン31、冷蔵室ファン32の運転を停止
し(408)、冷凍室及び冷蔵室の並行冷却運転Aを終
了し、符号(C)へ移行する。
The refrigerator compartment temperature Tr is equal to the refrigerator compartment cooling end temperature Tr.
e and the freezing room temperature Tf is equal to the freezing room cooling end temperature Tfe.
If not (407a), the compressor 10, the condenser fan 3
0, the operation of the freezer compartment fan 31 and the refrigerating compartment fan 32 is stopped (408), the parallel cooling operation A of the freezer compartment and the refrigerating compartment is terminated, and the process proceeds to the symbol (C).

【0158】また、冷蔵室温度Trが冷蔵室冷却終了温
度Tre以下かつ冷凍室温度Tfが冷凍室冷却終了温度
Tfeより高ければ(407b)、電磁弁23、26を
閉じ、冷蔵室ファン32の運転を停止し(440)、冷
凍室及び冷蔵室の並行冷却運転Aから冷凍室単独冷却運
転に移行し、符号(E)へ移る。
If the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (407b), the solenoid valves 23 and 26 are closed, and the refrigerator compartment fan 32 is operated. Is stopped (440), the parallel cooling operation A of the freezing room and the refrigerating room is shifted to the freezing room independent cooling operation, and the process moves to the sign (E).

【0159】また、冷蔵室温度Trが冷蔵室冷却終了温
度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了
温度Tfe以下ならば(407c)、電磁弁26を閉じ
(441)、冷凍室冷蔵室同時冷却運転Aから冷凍室及
び冷蔵室の並行冷却運転Bに移行し、符号(D)へ移
る。
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is lower than the freezer compartment cooling end temperature Tfe (407c), the solenoid valve 26 is closed (441), and the freezer compartment refrigerator compartment is closed. The process shifts from the simultaneous cooling operation A to the parallel cooling operation B for the freezer compartment and the refrigerator compartment, and then moves to the symbol (D).

【0160】また、冷蔵室温度Trが冷蔵室冷却終了温
度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了
温度Tfeより高いならば(407d)、冷凍室冷蔵室
同時冷却運転Aを継続し、符号(B)へ戻る。
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (407d), the freezer compartment refrigerator compartment simultaneous cooling operation A is continued. It returns to code (B).

【0161】運転停止状態の場合、符号(C)を経て、
タイマーをスタートさせ(409)、所定時間経過後に
(410Y)、符号(A)に戻る。
In the case of the operation stop state, through the symbol (C),
The timer is started (409), and after a predetermined time has elapsed (410Y), the process returns to the code (A).

【0162】冷凍室及び冷蔵室の並行冷却運転Bを行な
っている場合、図19の符号(D)を経て、タイマーを
スタートさせ(421)、所定時間経過後に(422
Y)、温度センサ8、9に冷凍室温度Tfと冷蔵室温度
Trを検知させ(423)、冷蔵室温度Trが冷蔵室冷
却終了温度Tre以下かどうかと、冷凍室温度Tfが冷
凍室冷却終了温度Tfe以下かどうかを判定する(42
4)。
When the parallel cooling operation B of the freezer compartment and the refrigerating compartment is performed, the timer is started (421) via the reference (D) in FIG.
Y), making the temperature sensors 8 and 9 detect the freezer compartment temperature Tf and the refrigerator compartment temperature Tr (423), and determine whether or not the refrigerator compartment temperature Tr is equal to or lower than the refrigerator compartment finish temperature Tre, and the freezer compartment temperature Tf is finished. It is determined whether the temperature is lower than the temperature Tfe (42).
4).

【0163】冷蔵室温度Trが冷蔵室冷却終了温度Tr
e以下かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe
以下ならば(424a)、圧縮機10、凝縮器ファン3
0、冷凍室ファン31、冷蔵室ファン32の運転を停止
し(408)、冷凍室及び冷蔵室の並行冷却運転Bを終
了し、符号(C)へ移行する。
The refrigerator compartment temperature Tr is equal to the refrigerator compartment cooling end temperature Tr.
e and the freezing room temperature Tf is equal to the freezing room cooling end temperature Tfe.
If it is less than (424a), the compressor 10, the condenser fan 3
0, the operation of the freezer compartment fan 31 and the refrigerating compartment fan 32 is stopped (408), the parallel cooling operation B of the freezer compartment and the refrigerating compartment is terminated, and the process proceeds to the symbol (C).

【0164】また、冷蔵室温度Trが冷蔵室冷却終了温
度Tre以下かつ冷凍室温度Tfが冷凍室冷却終了温度
Tfeより高ければ(424b)、電磁弁23を閉じ、
冷蔵室ファン32の運転を停止し(426)、冷凍室及
び冷蔵室の並行冷却運転Bから冷凍室単独冷却運転に移
行し、符号(E)へ移る。
If the refrigerator compartment temperature Tr is equal to or lower than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (424b), the solenoid valve 23 is closed.
The operation of the refrigerating compartment fan 32 is stopped (426), and the parallel cooling operation B of the refrigerating compartment and the refrigerating compartment is shifted to the freezing compartment individual cooling operation, and the process moves to the symbol (E).

【0165】また、冷蔵室温度Trが冷蔵室冷却終了温
度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了
温度Tfe以下ならば(424c)、冷凍室及び冷蔵室
の並行冷却運転Bを継続し、符号(D)に戻る。
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is equal to or lower than the freezer compartment cooling end temperature Tfe (424c), the parallel cooling operation B of the freezer compartment and the refrigerator compartment is continued. , And return to code (D).

【0166】また、冷蔵室温度Trが冷蔵室冷却終了温
度Treより高くかつ冷凍室温度Tfが冷凍室冷却終了
温度Tfeより高いならば(424d)、電磁弁26を
開き(427)、冷凍室及び冷蔵室の並行冷却運転Bか
ら冷凍室冷蔵室冷却運転Aに移行し、符号(B)へ移
る。
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling end temperature Tre and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (424d), the solenoid valve 26 is opened (427), and the freezer compartment is opened. A transition is made from the parallel cooling operation B of the refrigerator compartment to the refrigerator compartment cooling operation A of the freezer compartment, and then to the symbol (B).

【0167】冷凍室単独の冷却運転を行なっている場
合、図20の符号(E)を経て、タイマーをスタートさ
せ(431)、所定時間経過後に(432Y)、温度セ
ンサ8、9に冷凍室温度Tfと冷蔵室温度Trを検知さ
せ(433)、冷蔵室温度Trが冷蔵室冷却開始温度T
rs以上かどうかと、冷凍室温度Tfが冷凍室冷却終了
温度Tfe以下かどうかを判定する(434)。
When the freezing operation of the freezing compartment alone is being performed, the timer is started (431) via the symbol (E) in FIG. 20, and after a predetermined time has passed (432Y), the temperature sensors 8 and 9 are supplied with the freezing compartment temperature. Tf and the refrigerator compartment temperature Tr are detected (433), and the refrigerator compartment temperature Tr becomes the refrigerator compartment cooling start temperature T.
It is determined whether the temperature is equal to or higher than rs, and whether the freezing room temperature Tf is equal to or lower than the freezing room cooling end temperature Tfe (434).

【0168】冷蔵室温度Trが冷蔵室冷却開始温度Tr
s以上かつ冷凍室温度Tfが冷凍室冷却終了温度Tfe
以下ならば(434a)、冷蔵室ファン32の運転を開
始し、電磁弁23を開き(435)、冷凍室単独冷却運
転から冷凍室冷蔵室同時冷却運転Bに移行し、符号
(D)へ移る。
The refrigerator compartment temperature Tr is equal to the refrigerator compartment cooling start temperature Tr.
s or more and the freezing room temperature Tf is equal to the freezing room cooling end temperature Tfe.
If it is below (434a), the operation of the refrigerator compartment fan 32 is started, the solenoid valve 23 is opened (435), and the freezing room cooling operation is shifted to the freezing room simultaneous cooling operation B, and the process moves to the symbol (D). .

【0169】また、冷蔵室温度Trが冷蔵室冷却開始温
度Trs以上かつ冷凍室温度Tfが冷凍室冷却終了温度
Tfeより高ければ(434b)、冷蔵室ファン32の
運転を開始し、電磁弁23、26を開き(436)、冷
凍室単独冷却運転から冷凍室冷蔵室同時冷却運転Aに移
行し、符号(B)へ移る。
If the refrigerator compartment temperature Tr is higher than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (434b), the operation of the refrigerator compartment fan 32 is started, and the solenoid valve 23 is activated. 26 is opened (436), and the operation proceeds from the freezing compartment independent cooling operation to the freezing compartment cooling room simultaneous cooling operation A, followed by reference numeral (B).

【0170】また、冷蔵室温度Trが冷蔵室冷却開始温
度Trs未満かつ冷凍室温度Tfが冷凍室冷却終了温度
Tfeより高ければ(434c)、冷凍室単独冷却運転
を継続し、符号(E)に戻る。
If the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is higher than the freezer compartment cooling end temperature Tfe (434c), the freezing compartment independent cooling operation is continued and the symbol (E) is reached. Return.

【0171】また、冷蔵室温度Trが冷蔵室冷却開始温
度Trs未満かつ冷凍室温度Tfが冷凍室冷却終了温度
Tfe以下ならば(434d)、圧縮機10、凝縮器フ
ァン30、冷凍室ファン31の運転を停止し、電磁弁2
3、26を開いて(437)、冷凍室単独運転を終了
し、符号(C)へ移行する。
If the refrigerator compartment temperature Tr is lower than the refrigerator compartment cooling start temperature Trs and the freezer compartment temperature Tf is less than the freezer compartment cooling end temperature Tfe (434d), the compressor 10, the condenser fan 30, and the freezer compartment fan 31 Stop the operation, solenoid valve 2
After opening 3 and 26 (437), the freezer operation is terminated, and the process proceeds to the symbol (C).

【0172】圧縮機回転数の設定は、例えば、冷蔵室温
度Trと冷蔵室冷却終了温度Treとの温度差と冷凍室
温度Tfと冷凍室冷却終了温度Tfeとの温度差のうち
大きい方の温度差にほぼ比例させて制御を行なう。
The setting of the compressor rotation speed is, for example, the larger of the temperature difference between the refrigerator compartment temperature Tr and the refrigerator compartment cooling end temperature Tre and the temperature difference between the freezer compartment temperature Tf and the freezer compartment cooling termination temperature Tfe. The control is performed almost in proportion to the difference.

【0173】除霜運転制御に関しては、例えば、冷凍室
ファン31の運転時間を積算し、所定の時間になると、
除霜用電気ヒータ6,7が通電され、各蒸発器22,2
6の霜取りを行ない、蒸発器の表面温度を温度センサ8
0,81で検知し、各蒸発器が所定の温度以上になった
らそれぞれの電気ヒータ6,7への通電を停止し、霜取
り運転を停止する。
With respect to the defrosting operation control, for example, the operation time of the freezer compartment fan 31 is integrated, and when a predetermined time is reached,
The electric heaters 6 and 7 for defrosting are energized, and the evaporators 22 and 2 are turned on.
6 is defrosted and the surface temperature of the evaporator is measured by a temperature sensor 8
When the temperature is detected at 0 and 81, and the temperature of each evaporator becomes equal to or higher than a predetermined temperature, the power supply to the electric heaters 6 and 7 is stopped, and the defrosting operation is stopped.

【0174】使用者により操作パネル106’の急速冷
却ボタン90が操作されると、優先的に冷蔵室の冷却運
転が行なわれる。この時、冷蔵室の冷却運転が強制的に
強に設定され、これに沿って冷蔵室及び冷凍室の温度の
設定がなされる。そして、冷蔵室の冷凍能力が冷凍室冷
凍能力より大きい冷凍室及び冷蔵室の並行冷却運転Bを
一定時間行なう。また、圧縮機の回転数は、冷蔵室温度
Trと冷蔵室冷却終了温度Treとの温度差にほぼ比例
させて設定され、この比例定数を通常より大きい値に設
定される。このことにより、冷凍サイクルの冷却能力は
通常運転の場合よりも大きくなり、冷蔵室内がより短時
間で冷却され、また低い温度で冷却される。
When the user operates the rapid cooling button 90 on the operation panel 106 ', the cooling operation of the refrigerator compartment is performed preferentially. At this time, the cooling operation of the refrigerating compartment is forcibly set to be strong, and the temperatures of the refrigerating compartment and the freezing compartment are set accordingly. Then, the parallel cooling operation B of the freezing room and the refrigerating room in which the refrigerating capacity of the refrigerating room is larger than the freezing room refrigerating capacity is performed for a predetermined time. The rotation speed of the compressor is set substantially in proportion to the temperature difference between the refrigerator compartment temperature Tr and the refrigerator compartment cooling end temperature Tre, and this proportionality constant is set to a value larger than usual. As a result, the cooling capacity of the refrigeration cycle is greater than in the normal operation, and the refrigerator compartment is cooled in a shorter time and at a lower temperature.

【0175】また、使用者により操作パネル106’の
急速冷凍ボタン90が押されると、優先的に冷凍室の冷
凍運転が行なわれる。この時、冷凍室の冷却運転が強制
的に強に設定され、これに沿って冷凍室の温度の設定が
行われる。そして冷凍室単独の冷却運転が所定の時間行
なわれる。また、本実施例では、この運転の際の圧縮機
の回転数は、圧縮機の最高回転数に設定される。
When the user presses the quick freezing button 90 on the operation panel 106 ', the freezing operation of the freezing compartment is performed preferentially. At this time, the cooling operation of the freezer compartment is forcibly set to a high level, and the temperature of the freezer compartment is set accordingly. Then, the cooling operation of the freezing room alone is performed for a predetermined time. In this embodiment, the rotation speed of the compressor during this operation is set to the maximum rotation speed of the compressor.

【0176】以上のように、本実施例では三つの運転モ
ードを通常の運転時に負荷に合わせて使い分けることに
より、冷蔵庫の消費電力をより低減することができる。
As described above, in this embodiment, the power consumption of the refrigerator can be further reduced by properly using the three operation modes according to the load during the normal operation.

【0177】また、使用者の指令に合わせた運転モード
を選択することにより、効率的な運転を行なうことがで
きる。
Further, by selecting an operation mode in accordance with a user's command, efficient operation can be performed.

【0178】上記説明した実施例に係る冷蔵庫の効果に
ついて、以下に、そのデータを示す。図21は、上記本
発明の実施例に係る冷蔵庫と従来技術による冷蔵庫の消
費電力とを示すグラフである。図21に示すように、冷
凍室のみの冷却が必要な時の消費電力は、冷凍室冷蔵室
同時冷却運転のみの従来例では、本発明と比較して、冷
蔵室冷却による消費電力(圧縮機入力、ファン入力等)
と冷蔵室食品の凍結防止のためのヒータ消費電力(冷蔵
室冷却能力と同等分)が余分に必要となる。したがっ
て、この時、従来例に比べて、上記本発明の実施例で
は、例えば、約3分の1の消費電力で済み、大幅な消費
電力低減が可能である。
The data of the effects of the refrigerator according to the above-described embodiment will be described below. FIG. 21 is a graph showing the power consumption of the refrigerator according to the embodiment of the present invention and the conventional refrigerator. As shown in FIG. 21, the power consumption when only the freezer compartment needs to be cooled is lower in the conventional example in which only the freezer compartment cooler simultaneous cooling operation is performed than in the present invention, as compared with the present invention. Input, fan input, etc.)
In addition, heater power consumption (equivalent to the cooling capacity of the refrigerator) for preventing the freezing of food in the refrigerator is required. Therefore, at this time, in the embodiment of the present invention, the power consumption is, for example, about one-third as compared with the conventional example, and the power consumption can be significantly reduced.

【0179】本発明の直接の対象は冷蔵庫であるが、蒸
発温度の異なる複数の蒸発器をもち、複数の部屋を冷却
する冷蔵庫以外の冷凍空調装置にも適用できる。
Although a direct object of the present invention is a refrigerator, the present invention can be applied to a refrigerating air conditioner other than a refrigerator having a plurality of evaporators having different evaporation temperatures and cooling a plurality of rooms.

【0180】また、第1の実施例の冷蔵庫は、図2に示
すように冷蔵庫本体(箱体)が冷凍室と冷蔵室を一体と
した構成としたが、本発明は、冷凍室と冷蔵室が別々の
箱体となって複数の箱体から構成される冷蔵庫にも適用
できる。
In the refrigerator of the first embodiment, as shown in FIG. 2, the refrigerator main body (box) has a structure in which a freezer compartment and a refrigerator compartment are integrated. Can be applied to a refrigerator composed of a plurality of boxes as separate boxes.

【0181】また、第1の実施例では、圧縮機として、
ローラ部とベーン部が一体に形成された(シリンダ内を
運動するピストンのローラ部がベーン部を有している)
2シリンダロータリ圧縮機を用いて説明したが、本発明
は、2個以上の複数の圧縮要素を持つその他の圧縮機、
例えば、ローラ部とベーン部が別体となったロータリ圧
縮機やレシプロ圧縮機、スクロール圧縮機を用いても良
い。また、1個の圧縮要素を持つ圧縮機を複数組み合わ
せて構成しても良い。
In the first embodiment, the compressor is
Roller part and vane part are formed integrally (the roller part of the piston that moves in the cylinder has a vane part)
Although described using a two-cylinder rotary compressor, the present invention relates to other compressors having two or more compression elements,
For example, a rotary compressor, a reciprocating compressor, or a scroll compressor in which the roller section and the vane section are separate bodies may be used. Further, a plurality of compressors having one compression element may be combined.

【0182】[0182]

【発明の効果】以上説明したように、本発明によれば、
複数の貯蔵室を個別に冷却する冷却器を備え効率良く庫
内を冷却する冷蔵庫を提供できる。
As described above, according to the present invention,
A refrigerator that includes a cooler that individually cools a plurality of storage rooms and efficiently cools the inside of the refrigerator can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る冷蔵庫の冷凍サイ
クルの構成を示す概略図である。
FIG. 1 is a schematic diagram illustrating a configuration of a refrigeration cycle of a refrigerator according to a first embodiment of the present invention.

【図2】図1に示す実施例の冷凍サイクルを用いた冷蔵
庫の概略を示す縦断面図である。
FIG. 2 is a longitudinal sectional view schematically showing a refrigerator using the refrigeration cycle of the embodiment shown in FIG.

【図3】図1に示す冷凍サイクルを構成する圧縮機の構
造を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing a structure of a compressor included in the refrigeration cycle shown in FIG.

【図4】図3に示す圧縮機の部品である第2のシリン
ダ、仕切り板、第1のシリンダ、副軸受、第1の吐出室
カバーの構造を示す斜視図である。
FIG. 4 is a perspective view showing a structure of a second cylinder, a partition plate, a first cylinder, an auxiliary bearing, and a first discharge chamber cover which are parts of the compressor shown in FIG.

【図5】図3に示す圧縮機の部品である弁の構造を示す
斜視図である。
FIG. 5 is a perspective view showing a structure of a valve which is a component of the compressor shown in FIG.

【図6】図3に示す圧縮機の部品である主軸受、第2の
吐出室副カバー、第2の吐出室主カバーの構造を示す斜
視図である。
6 is a perspective view showing a structure of a main bearing, a second discharge chamber sub-cover, and a second discharge chamber main cover which are components of the compressor shown in FIG.

【図7】図3に示す圧縮機のX−X断面の第2のシリン
ダ部側の構造を示す断面図である。
FIG. 7 is a cross-sectional view showing a structure of a second cylinder portion side in a cross section XX of the compressor shown in FIG. 3;

【図8】図3に示す圧縮機が2段圧縮を行うときの一回
転中の圧縮室圧力と密閉容器内圧力の圧力差を示すグラ
フである。
8 is a graph showing a pressure difference between a pressure in a compression chamber and a pressure in a closed vessel during one rotation when the compressor shown in FIG. 3 performs two-stage compression.

【図9】図3に示した圧縮機が単段圧縮を行うときの一
回転中の圧縮室圧力と密閉容器内圧力の圧力差を示すグ
ラフである。
9 is a graph showing a pressure difference between a pressure in a compression chamber and a pressure in a closed vessel during one rotation when the compressor shown in FIG. 3 performs single-stage compression.

【図10】図2の冷蔵庫の運転制御フローチャートであ
る。
10 is an operation control flowchart of the refrigerator of FIG. 2;

【図11】本発明の第2の実施例に係る冷蔵庫の冷凍サ
イクルの構成を示す概略図である。
FIG. 11 is a schematic diagram illustrating a configuration of a refrigeration cycle of a refrigerator according to a second embodiment of the present invention.

【図12】図11の冷凍サイクルの電磁弁の開閉動作を
示す表である。
FIG. 12 is a table showing an opening / closing operation of a solenoid valve of the refrigeration cycle of FIG. 11;

【図13】本発明の第3の実施例に係る冷蔵庫の冷凍サ
イクルの概略を示す冷蔵庫の透視図である。
FIG. 13 is a perspective view of a refrigerator schematically showing a refrigerating cycle of the refrigerator according to a third embodiment of the present invention.

【図14】図13の冷蔵庫の概略を示す縦断面図であ
る。
FIG. 14 is a longitudinal sectional view schematically showing the refrigerator of FIG.

【図15】図14の冷蔵庫の操作パネルである。FIG. 15 is an operation panel of the refrigerator in FIG. 14;

【図16】図13の冷凍サイクルの電磁弁の開閉動作を
示す表である。
FIG. 16 is a table showing an opening and closing operation of a solenoid valve of the refrigeration cycle of FIG.

【図17】図14の冷蔵庫の運転制御フローを示すフロ
ーチャートの一部である。
FIG. 17 is a part of a flowchart showing the operation control flow of the refrigerator in FIG. 14;

【図18】図14の冷蔵庫の運転制御フローを示すフロ
ーチャートの一部である。
FIG. 18 is a part of a flowchart showing the operation control flow of the refrigerator in FIG.

【図19】図14の冷蔵庫の運転制御フローを示すフロ
ーチャートの一部である。
FIG. 19 is a part of a flowchart showing the operation control flow of the refrigerator in FIG. 14;

【図20】図14の冷蔵庫の運転制御フローを示すフロ
ーチャートの一部である。
20 is a part of a flowchart showing the operation control flow of the refrigerator in FIG.

【図21】本発明の実施例に係る冷蔵庫と従来技術によ
る冷蔵庫の消費電力とを示すグラフである。
FIG. 21 is a graph showing the power consumption of the refrigerator according to the embodiment of the present invention and the conventional refrigerator.

【符号の説明】 1,1’…冷蔵庫本体 2,2A,2B…冷凍室 3,3A…冷蔵室 3B…野菜室 6,7…除霜用電気ヒータ 8,9…温度センサ 10,10’,10’’…圧縮機 11…低段圧縮要素 11a’…低段圧縮要素吸入管 11b’…低段圧縮要素吐出管 12…高段圧縮要素 12a’…高段圧縮要素吸入管 12b’,12b’’…高段圧縮要素吐出管 12c…密閉容器内圧力形成通路 13a、13b…逆止弁 20,20A,20B…凝縮器 21, 24…キャピラリ 22…冷凍室蒸発器 23,26,70a、70b、71a、71b…電磁弁 25…冷蔵室蒸発器 27…中間冷却器 40…密閉容器 42…クランク軸 44…主軸受 45、 47…シリンダ 46…仕切り板 48…副軸受 49,50,51…吐出室カバー 52,53…ローラ 63…油ポケット 101,101’ …制御装置 102,103,104,105…インバータ 106,106’…操作スイッチ[Description of Signs] 1,1 ': Refrigerator body 2, 2A, 2B ... Freezer room 3, 3A ... Refrigerator room 3B ... Vegetable room 6, 7 ... Electric heater for defrosting 8, 9 ... Temperature sensor 10, 10', 10 ″ compressor 11 low-stage compression element 11a ′ low-stage compression element suction pipe 11b ′ low-stage compression element discharge pipe 12 high-stage compression element 12a ′ high-stage compression element suction pipe 12b ′, 12b ′ '... High-stage compression element discharge pipe 12c ... Pressure forming passage in closed container 13a, 13b ... Check valve 20, 20A, 20B ... Condenser 21, 24 ... Capillary 22 ... Freezer evaporator 23,26,70a, 70b, 71a, 71b ... solenoid valve 25 ... refrigerator evaporator 27 ... intercooler 40 ... airtight container 42 ... crankshaft 44 ... main bearing 45, 47 ... cylinder 46 ... partition plate 48 ... sub-bearing 49, 50, 51 ... discharge chamber Cover 52,5 3. Roller 63 ... Oil pocket 101, 101 '... Control device 102, 103, 104, 105 ... Inverter 106, 106' ... Operation switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 健一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 川南 茂也 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 石山 明彦 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 早瀬 功 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 松嶋 弘章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kenichi Oshima 800, Tomita, Ohira-machi, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Inside the Cooling and Refrigerating Business Dept., Hitachi, Ltd. (72) Inventor: Akihiko Ishiyama 800, Oda-machi, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Inside Hitachi, Ltd.Cooling Division (72) Inventor: Isao Hayase 502, Kandachicho, Tsuchiura-shi, Ibaraki Prefecture Hitachi, Ltd. Inside the Machinery Research Laboratory (72) Inventor Hiroaki Matsushima 502, Kandamachi, Tsuchiura-shi, Ibaraki Pref.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】冷凍室内を冷却する第1の蒸発器と、冷蔵
室内を冷却する第2の蒸発器と、冷媒を圧縮する第1の
圧縮要素と第2の圧縮要素とを有する圧縮機と、凝縮器
とが接続された冷凍サイクルを備えた冷蔵庫において、 前記第1の蒸発器と第1の圧縮要素とが連通された第1
の冷媒の流路と、前記第1の圧縮要素から第2の圧縮要
素とを連通する第2の冷媒の流路と、前記第2の蒸発器
と前記第2の冷媒通路とを連通する第3の冷媒の流路と
を備えた冷蔵庫。
1. A compressor having a first evaporator for cooling a freezer compartment, a second evaporator for cooling a refrigerator compartment, and a first compression element and a second compression element for compressing a refrigerant. A refrigerator provided with a refrigeration cycle connected to a condenser, wherein the first evaporator and the first compression element are in communication with each other.
, A second refrigerant flow path communicating the first compression element to the second compression element, and a second flow path communicating the second evaporator and the second refrigerant path. 3. A refrigerator comprising:
【請求項2】冷凍室内を冷却する第1の蒸発器と、冷蔵
室内を冷却する第2の蒸発器と、冷媒を圧縮する第1の
圧縮要素と第2の圧縮要素とを有する圧縮機と、凝縮器
とが接続され、前記凝縮機から前記第1及び第2の蒸発
器に冷媒が分かれて流れる冷凍サイクルを備えた冷蔵庫
において、 前記第1の蒸発器と第1の圧縮要素とが連通された第1
の冷媒の流路と、前記第1の圧縮要素から第2の圧縮要
素とを連通する第2の冷媒の流路と、前記第2の蒸発器
と前記第2の冷媒通路とを連通する第3の冷媒の流路
と、前記凝縮機から前記第2の蒸発器に向かう冷媒の流
れを抑止する手段を備えた冷蔵庫。
2. A compressor having a first evaporator for cooling a freezer compartment, a second evaporator for cooling a refrigerator compartment, and a first compression element and a second compression element for compressing a refrigerant. A refrigerator connected to a condenser and having a refrigeration cycle in which a refrigerant flows from the condenser to the first and second evaporators separately, wherein the first evaporator communicates with the first compression element. The first
, A second refrigerant flow path communicating the first compression element to the second compression element, and a second flow path communicating the second evaporator and the second refrigerant path. A refrigerator comprising: a refrigerant flow path of No. 3; and means for suppressing a flow of refrigerant from the condenser to the second evaporator.
【請求項3】前記第1及び第2の蒸発器から前記第1及
び第2及び第3の冷媒の流路を冷媒が流れる運転と、前
記凝縮機から前記第2の蒸発器に向かう冷媒の流れが抑
止され前記第1の蒸発器を通り前記圧縮機に冷媒が流れ
る運転とを備えた請求項1または2に記載の冷蔵庫。
3. An operation in which the refrigerant flows from the first and second evaporators through the flow paths of the first, second and third refrigerants, and an operation of the refrigerant flowing from the condenser to the second evaporator. 3. The refrigerator according to claim 1, further comprising an operation in which a flow is suppressed and a refrigerant flows through the first evaporator to the compressor. 4.
【請求項4】前記凝縮機から前記第1の蒸発器に向かう
冷媒の流れが抑止され、前記第2の蒸発器を通り前記圧
縮機に冷媒が流れる請求項3に記載の冷蔵庫。
4. The refrigerator according to claim 3, wherein a flow of the refrigerant from the condenser to the first evaporator is suppressed, and the refrigerant flows to the compressor through the second evaporator.
【請求項5】冷凍室内を冷却する第1の蒸発器と、冷蔵
室内を冷却する第2の蒸発器と、冷媒を圧縮する第1の
圧縮要素と第2の圧縮要素とを有する圧縮機と、凝縮器
とが接続された冷凍サイクルを備えた冷蔵庫において、 前記冷媒が前記第1の蒸発器、第1の圧縮要素、第2の
圧縮要素の順に流れるとともに前記第2の蒸発器、前記
第2の圧縮要素の順に流れる第1の冷媒の流れと、前記
冷媒が前記第1の蒸発器を通って前記圧縮機に流れる第
2の冷媒の流れとを備え、前記第1の冷媒の流れと前記
第2の冷媒の流れとを切替えて運転する冷蔵庫。
5. A compressor having a first evaporator for cooling a freezer compartment, a second evaporator for cooling a refrigerator compartment, and a first compression element and a second compression element for compressing a refrigerant. A refrigerator having a refrigerating cycle connected to a condenser, wherein the refrigerant flows in the order of the first evaporator, the first compression element, the second compression element, and the second evaporator, A flow of a first refrigerant flowing in the order of two compression elements, and a flow of a second refrigerant in which the refrigerant flows through the first evaporator to the compressor. A refrigerator that operates by switching the flow of the second refrigerant.
【請求項6】前記第2の蒸発器を通って前記圧縮機に冷
媒が流れる第3の冷媒の流れに切替えて運転する請求項
5に記載の冷蔵庫。
6. The refrigerator according to claim 5, wherein the refrigerator is operated by switching to a flow of a third refrigerant in which the refrigerant flows through the second evaporator to the compressor.
【請求項7】前記冷媒が前記第1の蒸発器を通って前記
第1及び第2の圧縮要素に流れる場合には、前記第1の
圧縮要素と前記第2の圧縮要素とに並列に冷媒が流れる
請求項5または6に記載の冷蔵庫。
7. When the refrigerant flows through the first evaporator to the first and second compression elements, the refrigerant flows in parallel with the first compression element and the second compression element. The refrigerator according to claim 5 or 6, wherein the flow is carried out.
【請求項8】前記冷蔵庫の扉に設けられ使用者が操作し
て冷蔵庫の運転を調節可能な操作手段を備え、前記第1
または第2または第3の冷媒の流れによる運転のいずれ
かが選択可能な冷蔵庫。
8. An operation means provided on a door of the refrigerator, the operation means being capable of being operated by a user to adjust the operation of the refrigerator, and
Alternatively, a refrigerator capable of selecting any one of the operations based on the flow of the second or third refrigerant.
【請求項9】前記圧縮機を駆動する電動機の回転を可変
に調節する調節手段と、前記操作手段の操作により前記
前記第2の冷媒の流れによる運転が選択されるとともに
前記調節手段により前記圧縮機の回転数が増大される冷
蔵庫。
9. An adjusting means for variably adjusting the rotation of an electric motor for driving the compressor, and an operation by the flow of the second refrigerant is selected by operating the operating means, and the compression means is selected by the adjusting means. Refrigerator with increased rotation speed.
【請求項10】第1の貯蔵室を冷却する第1の冷却器
と、第2の貯蔵室を冷却する第2の冷却器と、第1及び
第2の圧縮要素を有する圧縮機と、凝縮器とが接続され
た冷凍サイクルを備えた冷蔵庫において、 前記第1の圧縮要素からの吐出通路と前記凝縮器の入口
とに接続された冷媒管と、前記凝縮器の出口と第1の冷
却器及び第2の冷却器とに接続された冷媒管と、前記第
1の冷却器と前記第1の圧縮要素とに接続された第1の
吸入通路と、前記第2の冷却器と前記第2の圧縮要素と
に接続された第2の吸入通路と、前記第1及び第2の吸
入通路とに接続された通路に設けられ前記第1の吸入通
路から第2の吸入通路への冷媒の流れを止める第1の弁
手段と、前記第1の圧縮要素からの吐出通路と前記第2
の圧縮要素からの吐出通路とに接続された通路に設けら
れ前記第1の圧縮要素の吐出通路から前記第2の圧縮要
素の吐出通路への冷媒の流れを止める第2の弁手段と、
前記第2圧縮要素からの吐出通路と前記第1の吸入通路
との接続通路と、前記第1の冷却器と前記第1の吸入通
路とを通る冷媒の流れと前記第2の圧縮要素から前記第
1の圧縮要素に流れる冷媒の流れを調節する調節手段を
備えた冷蔵庫。
10. A first cooler for cooling a first storage chamber, a second cooler for cooling a second storage chamber, a compressor having first and second compression elements, and a condenser. A refrigerator having a refrigeration cycle connected to a condenser, a refrigerant pipe connected to a discharge passage from the first compression element and an inlet of the condenser, an outlet of the condenser, and a first cooler. And a refrigerant pipe connected to the second cooler, a first suction passage connected to the first cooler and the first compression element, a second cooler and the second cooler. Refrigerant flowing from the first suction passage to the second suction passage provided in a second suction passage connected to the second compression passage and a passage connected to the first and second suction passages; First valve means for stopping pressure, a discharge passage from the first compression element and the second valve means.
A second valve means provided in a passage connected to a discharge passage from the compression element for stopping a flow of refrigerant from a discharge passage of the first compression element to a discharge passage of the second compression element;
A connection passage between a discharge passage from the second compression element and the first suction passage, a flow of a refrigerant passing through the first cooler and the first suction passage, and a flow of the refrigerant from the second compression element. A refrigerator comprising an adjusting means for adjusting a flow of a refrigerant flowing through a first compression element.
【請求項11】前記調節手段は、前記凝縮器と前記第1
及び第2の冷却器とを接続する冷媒管上に設けられ前記
第1及び第2の冷却器に冷媒管を分岐する分岐部と、こ
の分岐部と前記第1の冷却器との間の冷媒管上に設けら
れこの管内の冷媒の流れを調節する第1の調節手段と、
前記第2の圧縮要素からの吐出通路と前記第1の吸入通
路との接続通路上に設けられこの通路内の冷媒の流れを
調節する第2の調節手段と、前記第1及び第2の調節手
段を調節する制御手段を備えた請求項10に記載の冷蔵
庫。
11. The condenser according to claim 11, wherein said adjusting means comprises:
And a branch portion provided on a refrigerant pipe connecting the first and second coolers, and branching the refrigerant pipe to the first and second coolers, and a refrigerant between the branch portion and the first cooler. First adjusting means provided on the tube for adjusting the flow of the refrigerant in the tube;
Second adjusting means provided on a connection passage between the discharge passage from the second compression element and the first suction passage for adjusting the flow of the refrigerant in the passage, and the first and second adjustments 11. A refrigerator according to claim 10, comprising control means for adjusting the means.
【請求項12】前記第1または第2の調節手段が電磁弁
であり、前記制御手段が前記電磁弁を調節する請求項1
1に記載の冷蔵庫。
12. The apparatus according to claim 1, wherein said first or second adjusting means is an electromagnetic valve, and said control means adjusts said electromagnetic valve.
The refrigerator according to claim 1.
【請求項13】前記第2の圧縮要素からの吐出通路と前
記第1の吸入通路との接続通路上に設けられた熱交換器
と、この熱交換器と前記第2の圧縮要素からの吐出通路
との間に設けられた前記第2の調節手段とを備えた請求
項11また12に記載の冷蔵庫。
13. A heat exchanger provided on a connecting passage between a discharge passage from the second compression element and the first suction passage, and a discharge from the heat exchanger and the second compression element. 13. The refrigerator according to claim 11, further comprising the second adjusting means provided between the refrigerator and a passage.
【請求項14】第1の貯蔵室を冷却する第1の冷却器
と、第2の貯蔵室を冷却する第2の冷却器と、第1及び
第2の圧縮要素を有する圧縮機と、凝縮器とが接続され
た冷凍サイクルを備えた冷蔵庫において、 前記第1の圧縮要素からの吐出通路と前記凝縮器の入口
とに接続された冷媒管と、前記凝縮器の出口と第1の冷
却器及び第2の冷却器とに接続された冷媒管と、前記第
1の冷却器と前記第1の圧縮要素とに接続された第1の
吸入通路と、前記第2の冷却器と前記第2の圧縮要素と
に接続された第2の吸入通路と、前記第2圧縮要素から
の吐出通路と前記第1の吸入通路との接続通路と、前記
第1の圧縮要素と前記第2の圧縮要素が内側に配置され
た密閉容器と、前記第1の吸入通路と前記密閉容器内の
空間とに連通する開口部を備えた冷蔵庫。
14. A compressor having a first cooler for cooling a first storage chamber, a second cooler for cooling a second storage chamber, a compressor having first and second compression elements, and a condenser. A refrigerator having a refrigeration cycle connected to a condenser, a refrigerant pipe connected to a discharge passage from the first compression element and an inlet of the condenser, an outlet of the condenser, and a first cooler. And a refrigerant pipe connected to the second cooler, a first suction passage connected to the first cooler and the first compression element, a second cooler and the second cooler. A second suction passage connected to the second compression element, a connection passage between the discharge passage from the second compression element and the first suction passage, the first compression element and the second compression element. Provided with an airtight container arranged inside, and an opening communicating with the first suction passage and a space in the airtight container. refrigerator.
【請求項15】前記第1及び第2の吸入通路とに接続す
る通路に設けられ前記第1の吸入通路から第2の吸入通
路への冷媒の流れを止める第1の弁手段と、前記第1の
圧縮要素からの吐出通路と前記第2の圧縮要素からの吐
出通路とに接続する通路に設けられ前記第1の圧縮要素
の吐出通路から前記第2の圧縮要素の吐出通路への冷媒
の流れを止める第2の弁手段と、前記第1の冷却器と前
記第1の吸入通路とを通る冷媒の流れと前記第2の圧縮
要素から前記第1の圧縮要素に流れる冷媒の流れを調節
する調節手段を備えた請求項14に記載の冷蔵庫。
15. A first valve means provided in a passage connected to the first and second suction passages for stopping a flow of refrigerant from the first suction passage to the second suction passage, and the first valve means; The refrigerant flowing from the discharge passage of the first compression element to the discharge passage of the second compression element is provided in a passage connected to a discharge passage from the first compression element and a discharge passage from the second compression element. A second valve means for stopping flow, a refrigerant flow passing through the first cooler and the first suction passage and a refrigerant flow flowing from the second compression element to the first compression element are adjusted. 15. The refrigerator according to claim 14, further comprising an adjusting means for adjusting the temperature.
【請求項16】前記調節手段は、前記第2の冷却器に供
給される冷媒が前記第1及び第2の圧縮要素を順に通過
する運転と、前記第2の冷却器に供給される冷媒が前記
第1の圧縮要素と第2の圧縮要素とに分流して通過する
運転とを切替える請求項10乃至15のいずれかに記載
の冷蔵庫。
16. An operation in which the refrigerant supplied to the second cooler passes through the first and second compression elements in order, and the refrigerant supplied to the second cooler is The refrigerator according to any one of claims 10 to 15, wherein an operation of diverting and passing the first compression element and the second compression element is switched.
【請求項17】前記調節手段は、前記第2の冷却器に供
給される冷媒が前記第1及び第2の圧縮要素を順に通過
する運転と、前記第2の冷却器に供給される冷媒が前記
第1の圧縮要素と第2の圧縮要素とに分流して通過する
運転と、前記第2の冷却器に供給される冷媒が前記第2
の圧縮要素のみ通過する運転とを切替える請求項10乃
至15のいずれかに記載の冷蔵庫。
17. An operation in which the refrigerant supplied to the second cooler passes through the first and second compression elements in order, and the controller supplies the refrigerant supplied to the second cooler. An operation in which the refrigerant is divided into the first compression element and the second compression element and passes therethrough;
The refrigerator according to any one of claims 10 to 15, wherein the operation is switched to the operation that passes only the compression element.
【請求項18】室内を冷却するための第1の蒸発器及び
第2の蒸発器と、冷媒を圧縮する第1の圧縮要素と第2
の圧縮要素とを有する圧縮機と、凝縮器とが接続された
冷凍サイクルを備えた冷凍空調装置において、 前記第1の蒸発器と第1の圧縮要素とが連通された第1
の冷媒の流路と、前記第1の圧縮要素から第2の圧縮要
素とを連通する第2の冷媒の流路と、前記第2の蒸発器
と前記第2の冷媒通路とを連通する第3の冷媒の流路と
を備えた冷凍空調装置。
18. A first evaporator and a second evaporator for cooling a room, a first compression element for compressing a refrigerant, and a second evaporator.
A refrigerating and air-conditioning apparatus having a refrigerating cycle in which a compressor having a compression element and a condenser are connected, wherein a first evaporator and a first compression element are communicated with each other.
, A second refrigerant flow path communicating the first compression element to the second compression element, and a second flow path communicating the second evaporator and the second refrigerant path. A refrigeration / air-conditioning apparatus comprising:
【請求項19】室内を冷却するための第1の蒸発器及び
第2の蒸発器と、冷媒を圧縮する第1の圧縮要素と第2
の圧縮要素とを有する圧縮機と、凝縮器とが接続され、
前記凝縮機から前記第1及び第2の蒸発器に冷媒が分か
れて流れる冷凍サイクルを備えた冷凍空調装置におい
て、 前記第1の蒸発器と第1の圧縮要素とが連通された第1
の冷媒の流路と、前記第1の圧縮要素から第2の圧縮要
素とを連通する第2の冷媒の流路と、前記第2の蒸発器
と前記第2の冷媒通路とを連通する第3の冷媒の流路
と、前記凝縮機から前記第2の蒸発器に向かう冷媒の流
れを抑止する手段を備えた冷凍空調装置。。
19. A first evaporator and a second evaporator for cooling a room, a first compression element for compressing a refrigerant, and a second evaporator.
A compressor having a compression element and a condenser,
In a refrigeration / air-conditioning apparatus provided with a refrigeration cycle in which refrigerant flows separately from the condenser to the first and second evaporators, a first refrigeration system in which the first evaporator and a first compression element are communicated with each other.
, A second refrigerant flow path communicating the first compression element to the second compression element, and a second flow path communicating the second evaporator and the second refrigerant path. A refrigeration / air-conditioning apparatus comprising: a refrigerant flow path of No. 3; and means for suppressing a flow of the refrigerant from the condenser to the second evaporator. .
【請求項20】前記第1及び第2の蒸発器から前記第1
及び第2及び第3の冷媒の流路を冷媒が流れる運転と、
前記凝縮機から前記第2の蒸発器に向かう冷媒の流れが
抑止され前記第1の蒸発器を通り前記圧縮機に冷媒が流
れる運転とを備えた請求項18または19に記載の冷凍
空調装置。
20. The method according to claim 19, wherein the first and second evaporators are connected to the first evaporator.
And an operation in which the refrigerant flows through the flow paths of the second and third refrigerants;
20. The refrigerating and air-conditioning apparatus according to claim 18, further comprising: an operation in which a flow of the refrigerant from the condenser to the second evaporator is suppressed, and the refrigerant flows through the first evaporator to the compressor.
JP2001073278A 2000-03-15 2001-03-15 refrigerator Expired - Fee Related JP4300712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073278A JP4300712B2 (en) 2000-03-15 2001-03-15 refrigerator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-77772 2000-03-15
JP2000077772 2000-03-15
JP2001073278A JP4300712B2 (en) 2000-03-15 2001-03-15 refrigerator

Publications (2)

Publication Number Publication Date
JP2001330360A true JP2001330360A (en) 2001-11-30
JP4300712B2 JP4300712B2 (en) 2009-07-22

Family

ID=26587928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073278A Expired - Fee Related JP4300712B2 (en) 2000-03-15 2001-03-15 refrigerator

Country Status (1)

Country Link
JP (1) JP4300712B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262416A (en) * 2002-03-12 2003-09-19 Sanyo Electric Co Ltd Air conditioner
CN100343519C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
CN100343522C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
CN100343520C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
CN100343521C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
EP1978350A2 (en) 2003-12-02 2008-10-08 Fujifilm Corporation Method for measuring surface plasmon resonance
CN102062496A (en) * 2009-11-18 2011-05-18 Lg电子株式会社 Heat pump
JP2013545073A (en) * 2010-12-10 2013-12-19 ワールプール,ソシエダッド アノニマ Method for controlling a compressor with a double suction function for a cooling system
WO2016113785A1 (en) * 2015-01-15 2016-07-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device and compressor used in same
EP2389516B1 (en) * 2009-01-23 2024-01-10 BITZER Kühlmaschinenbau GmbH Compressors with different volume indexes and method for same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262416A (en) * 2002-03-12 2003-09-19 Sanyo Electric Co Ltd Air conditioner
CN100343519C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
CN100343522C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
CN100343520C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
CN100343521C (en) * 2003-07-26 2007-10-17 Lg电子株式会社 Variable capacity scroll compressor
EP1978350A2 (en) 2003-12-02 2008-10-08 Fujifilm Corporation Method for measuring surface plasmon resonance
EP2389516B1 (en) * 2009-01-23 2024-01-10 BITZER Kühlmaschinenbau GmbH Compressors with different volume indexes and method for same
CN102062496A (en) * 2009-11-18 2011-05-18 Lg电子株式会社 Heat pump
KR101155494B1 (en) * 2009-11-18 2012-06-15 엘지전자 주식회사 Heat pump
CN102062496B (en) * 2009-11-18 2013-06-12 Lg电子株式会社 Heat pump
US8671706B2 (en) 2009-11-18 2014-03-18 Lg Electronics Inc. Heat pump
WO2011062348A1 (en) * 2009-11-18 2011-05-26 Lg Electronics Inc. Heat pump
JP2013545073A (en) * 2010-12-10 2013-12-19 ワールプール,ソシエダッド アノニマ Method for controlling a compressor with a double suction function for a cooling system
WO2016113785A1 (en) * 2015-01-15 2016-07-21 パナソニックIpマネジメント株式会社 Refrigeration cycle device and compressor used in same
JPWO2016113785A1 (en) * 2015-01-15 2017-10-26 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and compressor used therefor

Also Published As

Publication number Publication date
JP4300712B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
US6189335B1 (en) Multi-stage compressing refrigeration device and refrigerator using the device
US6568198B1 (en) Multi-stage compression refrigerating device
US6581408B1 (en) Multi-stage compression refrigerating device
JPH10170083A (en) Freezing system
AU2009323588A1 (en) Refrigerating apparatus
CA2310871A1 (en) Capacity control of compressors
JP2701658B2 (en) Air conditioner
US20220090829A1 (en) High performance compressors and vapor compression systems
US20060193732A1 (en) Variable capacity compressor and starting method thereof
JP2000054975A (en) Two-stage compressor
JPH05223368A (en) Refrigerator
CN107191372B (en) Rotary compressor and refrigerating device with same
JP4300712B2 (en) refrigerator
JPH02230995A (en) Compressor for heat pump and operating method thereof
JP4078994B2 (en) Fluid machinery and waste heat recovery system
KR100361787B1 (en) A refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP3321192B2 (en) Refrigeration circuit
JP2007232280A (en) Refrigeration unit
CN105909495B (en) The Special pulse valve of compresser cylinder
JP4018908B2 (en) Refrigeration air conditioner
JPH0211886A (en) Refrigerating cycle device
JP2006275494A (en) Refrigerating device, refrigerator and compressor
JP3847493B2 (en) Two-stage compression refrigeration system
JP3548017B2 (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees