JPH0543307B2 - - Google Patents

Info

Publication number
JPH0543307B2
JPH0543307B2 JP61247348A JP24734886A JPH0543307B2 JP H0543307 B2 JPH0543307 B2 JP H0543307B2 JP 61247348 A JP61247348 A JP 61247348A JP 24734886 A JP24734886 A JP 24734886A JP H0543307 B2 JPH0543307 B2 JP H0543307B2
Authority
JP
Japan
Prior art keywords
solar cell
transparent
cell module
module according
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61247348A
Other languages
Japanese (ja)
Other versions
JPS63102277A (en
Inventor
Kazutomi Suzuki
Hiroshi Okaniwa
Kenji Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61247348A priority Critical patent/JPS63102277A/en
Publication of JPS63102277A publication Critical patent/JPS63102277A/en
Publication of JPH0543307B2 publication Critical patent/JPH0543307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<利用分野> 本発明は電力用に好適な太陽電池モジユールに
関する。更に詳細には軽量で十分な強度が得られ
太陽電池モジユールに関する。 <従来技術> 太陽電池モジユール(以下「モジユール」とい
う)は、透明窓に強化ガラス、太陽光発電要素と
して各種の太陽電池、封止材に金属シートなどを
用い、これらの構造要素を充填材にポリビニルブ
チラールやエチレンビニルアセテート樹脂を用い
て張り合わせ、金属枠やプラスチツク枠で封止し
た構造等が知られている(例えば、高橋、小長井
共著(昭晃堂発行)「アモルフアス太陽電池」17
〜18頁参照)。 かかる構造のモジルールは、モジユールの重量
が必然的に大きくなり、かかる重量物を発電ユニ
ツトとして設置するために基礎及び架台を強度的
に信頼のおける建築物(アレー)にする必要があ
つた。太陽光発電コストは太陽電池モジユールの
コストのほかにかかる周辺部材のコストから構成
されており、モジルールコストのみならず周辺部
材のコストの低減が太陽光発電を実用化レベルに
引き上げる上で必然である。 このような視点から、太陽電池のモジユールの
軽量化をはかり、基礎及び架台への負担を軽減し
周辺部材のコスト低減をするため封止材及ひ風圧
力に対する支持体としてアルミニウムハニカム構
造体、ペーパーハニカム構造体、リブ構造体を利
用し、機械的強度を維持しながらモジユールの軽
量化をはかる提案がなされている(テクニカルダ
イジエスト オブ ザ インターナシヨナルピー
ヴイエスイーシー1(Technical Digest of the
International PVSEF−1)665〜668頁参照)。 しかし、この場合にも透明窓材には降雹に対す
る強度や風圧に対する強度を保証するため厚さ
3.2mm以上の強化ガラスを用いる必要があり、特
にガラス基板を用いたアモルフアス太陽電池の場
合は、太陽光の入射側の窓が2重ガラスとなり、
モジユールの軽量化に限界がある。また、かかる
ハニカム構造体及びリブ構造体は断熱層として、
働き、太陽電池の表面温度が上がり、光電変換効
率を低下せしめる。 このような観点から我々は、支持体として中空
構造の透明複層板を太陽光電要素の採用側に積層
した太陽電池モジユールを先に特願昭61−141421
号明細書で提案した。しかしこの構造では支持体
の透明複層板の中間部材に重なる部分では透過率
減少による光電変換効率が低下するという問題が
あつた。 <発明の目的> 本発明の目的は、従来技術のこれらの欠点を解
決し、太陽電池モジユールの軽量化をはかり、太
陽光発電コストの低減とそれに伴なう種々の用途
の拡大を可能ならしめる太陽電池モジユールを提
供することにある。 <発明の構成、作用> すなわち、本発明は、太陽光発電要素の採光側
に非金属材料からなる複数の透明板が中間部材に
より所定間隔で配置された中間部材により係合さ
れた中空構造の透明複層板からなる支持体が積層
された太陽電池モジユールにおいて、該太陽光発
電要素の収集のバスバーと該支持体の中間部材と
が重なり合うように積層されていることを特徴と
する太陽電池モジユールである。 この様な構成にすることにより、透過率減少の
原因になる支持体の中間部材が非発電領域である
収集電極のバスバーに重なり合うため発電領域の
有効利用が画られより多くの電力が得られるよう
になる。 ところで、本発明の窓材として用いる透明複層
板とは、複数の透明板が中空部材を介して所定間
隔で結合された中空の軽量な透明複層板であり、
例えば耐衝撃性が大きくしかも加工性の良い合成
樹脂板間を所定間隔のリブ、波板等の中間部材の
橋渡しで結合して強度を確保すると共に透明板間
は空隙として軽量化を計つた構造体である。この
透明板に用いる合成樹脂としては透明であれば特
に限定されず、ポリカーボネート樹脂、アクリル
樹脂など透明板材として公知のものが全て適用で
きる。耐衝撃性の見地からポリカーボネート樹脂
が優れており、好ましい。また、中間部材は、軽
量で強度があれば特に限定されないが、複層板の
光透過性の低下の少ないものが好ましい。従つ
て、中間部材としては、板状体、柱状体、これら
の枠組み構成等適用できるが、強度面及び光透過
性面から板状体を多数のセル室を有するように配
置したセル構造体が好ましく適用される。かかる
セル構成体としては、透明シートを一定間隔のリ
ブで結合しシート面に平行な柱状セルを有するよ
うにしたマルチリブ構造等が挙げられる。 マルチリブ構造の複層板は、ポリカーボネート
樹脂等を複層板の側断面構造と同じのリブ構造を
有するダイから押し出し成型することにより得る
ことができる。なかでも、得られた複層構造体の
太陽光透過性、及び生産性の見地から、上述の一
体成型された中間に空気層をもつマルチリブ構造
の透明な合成樹脂からなる複層板は、本発明の窓
材として好適に使用できる。なお、かかるマルチ
リブ構造の複層板としては透光断熱材料として市
販のパンライトユニ(商品名:帝人化成(株)製)が
ある。 しかるに、かかる合成樹脂が水蒸気透過率が大
きい場合複数シートを通して水分の移動がある。
その結果中空部内で結露現象が観察され透明窓が
曇り光線透過率が低下する。また、透過した水分
は太陽光発電要素の表面に達すると、電極表面の
腐蝕を促進し、長期安定性の点で好ましくない。
また、かかる複層板は断熱層として働き太陽光発
電要素の表面温度を上昇せしめ光電変換効率を必
然的に低下せしめる。 かかる欠点を回避し、複層板の利点を十分に発
現させるため本発明者は更なる改良を行つた。す
なわち、合成樹脂の水蒸気透過率を軽減するた
め、複層板を太陽光発電要素側の表面に耐透湿性
防止膜を設けたものとした。又、複層板の中空部
を外部に連通した構造とし、中空部は大気に連通
したまま封止するモジユール構成とし、中空部の
断熱作用を低減させた。前述のマルチリブ構造に
より中空部が平行な柱状セルのものは換気が容易
な点で好ましい。特にかかる複層板のモジユール
で構造体を組立てるに際しては、柱状セルを水平
面に対し傾斜して配置することが好ましい。 かかる構造により柱状セルが複数の煙突効果を
発揮し、空気の流れが起り表面の温度上昇を防止
できる。更に合成樹脂を透過して柱状セル内に入
る水分の結露はこの空気流により防止された。 一方、耐透湿性防止膜は、複層板の太陽光発電
要素に対面する側に設けることにより、水分の太
陽光発電要素への進入が防止できる。かかる耐透
湿防止膜はアモルフアスシリコン膜や酸化イジウ
ム膜などの無機薄膜、ポリフツ化ビニリデン膜な
どの有機薄膜があるが、なかでも酸化インジウム
膜が透明性及び隣接する層に対する接着性の観点
から好ましい。 また必要に応じて、この複層板の表面に耐擦傷
性、耐摩耗性を改善する目的で光硬化あるいは熱
硬化型の樹脂層からなる透明な耐擦傷膜を設ける
ことが好ましい。かかる耐擦傷膜には公知のもの
がそのまま適用できる。更に耐光性を改善する目
的で紫外線吸収剤をこれらの層に含ませても良
く、その下に積層しても良い。 次に本発明に用いる太陽光発電要素は、特に限
定されず、公知の太陽電池がそのまま適用でき、
例えば単結晶、多結晶系のシリコン半導体層はも
とより非晶質シリコン半導体層を起動力層に用い
るシリコン系太陽電池、−族、−族系の
半導体層を起電力層に用いるいわゆる化合物系太
陽電池が挙げられる。なかでも電気絶縁性の同一
基板状に形成された複数の太陽電池のセルを直並
列接続したいわゆる集積構造にした集積型太陽電
池は好適に利用できる。かかる集積型太陽電池に
は非晶質シリコン太陽電池や−族化合物半導
体系太陽電池が代表的であるが、なかでも可撓性
のある電気絶縁基板上に形成した非晶質シリコン
系の集積型太陽電池は、薄膜構造であること、軽
量であることなどの特徴を生かすことができる点
及び後述の実施例に示すようにロールによる連続
積層化できる点等で好ましい。かかる非晶質シリ
コン半導体層を起電力層として用いる集積型太陽
電池は次の方法により実現できる。 例えば電気絶縁基板としては、高分子フイル
ム、セラミツク板、ガラス板あるいは絶縁性層を
表面に設けた金属フオイルが使用出来、特に連続
膜形成及び分割加工が適用できる長尺可撓性基板
が有利である。又、その上に設ける金属電極層に
はTi、Ag、W、Pt、Ni、Co、Cr、ニクロムな
どの単体金属、合金金属が使用出来る。又起電力
層の非晶質シリコン半導体層の構成としてもpin
の他、pin/pin、pin/pin/pin等の他多層タン
デム構造はもちろんのこと、非晶質シリコンゲル
マニウム、非晶質シリコンカーバイドなどのナロ
ーバンドギヤツプあるいはワイドバンドギヤツプ
の非晶質シリコン半導体層を適時用いる事も出来
る。さらに透明電極層としては酸化スズ、スズ酸
カドミウム等公知の透明導電層が適用できる。以
上の所定の面積の連続した非晶質シリコン太陽電
池の発電層をレーザ罫書法やナイフカツテイング
法などで適当な面積を有するセルに分割した後、
セル間を電気的に接続して集積型太陽電池を得
る。分割されたセル間を電気接続する方法として
は、接続する一方のセルの上部電極と他方のセル
の下部電極とを電気的に接続できるものであれ
ば、特に限定されず、リード線で接続する方法、
PVD方等による金属薄膜からなる接続層を形成
する方法、スクリーン印刷法により導電性樹脂層
よりなる接続層を形成する方法等公知の方法が適
用できる。中でも生産性面、設備面からスクリー
ン印刷法による電気接続が好ましく適用される。 この様な方法により、可撓性高分子フイルム基
板上に光発電層か非晶質シリコン半導体である集
積型太陽電池が得られる。 次に、上述の太陽光発電要素を封止する封止材
としては、水分の侵入を防止できるものであれ
ば、良く、腐蝕防止した金属シートや、アルミニ
ウム金属箔をポリエステルフイルムやポリフツ化
ビニリデンフイルムなどで張り合わせたいわゆる
防湿性フイルムが用いられる。なかでもアルミニ
ウム金属箔をポリエステルフイルムなどで張り合
わせた防湿フイルムは軽量性の点で本発明の目的
に合うため好ましい材料の一つである。 また、上述の支持体、太陽光発電要素、更には
封止材を接着すると共に封止し、クツシヨン層と
もなる充填材(“ポツタント”とも云う)として
は耐光性があり、かつ各構成部材と密着力の優れ
たポリビニルブチラール樹脂やエチレンビニルア
セテート樹脂等が用いられる。 本発明の太陽電池モジユールは透明複層構造
体、太陽光発電要素必要な場合は封止材を太陽光
入射側から順に上記充填材を糊材として張り合わ
せ、必要に応じて更に周囲を枠体で封止すること
により構成される。 ところで、太陽光発電要素は有効に光電流を回
収するために、第1図に示す如く収集電極として
バスバーイやフインガーロが、Ag系の樹脂によ
るスクリーン印刷もしくはAg、Alなどの蒸着、
スパツタリング、もしくは金属箔の接着などの方
法により形成される。本発明の特徴はこの収集電
極のバスバーと中空構造の透明複層板の中間部材
とが重なり合つて積層されていることにある。上
述した電気的に直列、並列接続した集積型構造の
場合は、その接続部分に収集電極のバスバーが形
成されていると光電変換部が増加することになり
好ましい。 そしてこの本発明の太陽電池モジユールは、例
えば厚さ4mmのポリカーボネート製のマルチリブ
構造の複層構造体、厚さ0.1mmのポリエステルフ
イルム基板を用いた集積型非晶質シリコン太陽電
池、ポリフツ化ビニリデン/Al金属箔/ポリフ
ツ化ビニリデンからなる封止材(厚さ0.3mm)で
構成した場合、全体厚さは高々4.5mm、重さは約
1.0Kg/m2で、耐衝撃強さは鋼球500gの落下高さ
5mに耐える。一方、該複層構造体の代りに厚さ
3.2mmの強化ガラスを用いた同一構成の太陽電池
の場合は全体厚さは3.7mmと、本発明構成体より
若干薄いが重さは約9.0Kg/m2と大巾に増え、耐
衝撃強さは鋼球225gの落下高さ1.5mと大巾に下
がる。この事実からも明らかな様に本発明の太陽
電池モジユールは、機械的な強度を損うことなく
軽量化をはかることができ、しかも積層体構造の
簡略化が可能なことがわかつた。 以下、本発明を実施例に基いて説明する。 <実施例> 光発電要素 第2図に実施例の光発電要素の側断面図を示
す。本例は高分子フイルムの基板21上に設けら
れた複数の発電ユニツトを直列接続し、その接続
部分に収集電極のバスバーが形成されている例
で、その平面図は第1図とセル数を除いて略同様
である。図示の基板21の高分子フイルムとして
は非晶質シリコン堆積に必要な耐熱性を有する高
分子フイルムならどれでも良いが、好ましくはポ
リエチレンテレフタレート(PET)フイルム、
ポリイミドフイルムなどが用いられる。図の例は
PETフイルムを用いてある。 金属電極層22として、0.5μm程度のAl層と30
Å程度のステンレス(SUS)層を基板21上に
順次スパツタリング法を用いて堆積したAl/
SUS積層体を用いた。 光起電力層の非晶質シリコン半導体層23は周
知のpin形構成を採用し、特開昭59−34668号公報
に開示のものと同様なシランガス等のグロー放電
分解法を用いて金属電極層22のステンレス層上
に堆積した。 次にレーザスクライブ法による分割等の際の電
極間短絡防止のために非晶質シリコン半導体層2
3と透明電極層24との界面に設ける電気絶縁性
の絶縁樹脂層25として、非晶質シリコン半導体
層23上にエポキシ樹脂をスクリーン印刷法を用
いてレーザーでセル20aに分割加工する溝部位
にあらかじめ設けた。 次に透明電極層24としてITO(酸化インジウ
ム・酸化スズ)層を電子ビーム蒸着あるいはスパ
ツタリング法によつて600Å程度に堆積し、PET
Al/SUS非晶質シリコンpinパターン化し
たエポキシ樹脂層/ITO構造の大面積の非晶質薄
膜太陽電池を得た。 次いで、このPETAl/SUS非晶質シリコ
ンpinパターン化したエポキシ樹脂層ITO構
造の非晶質太陽電池の10cm×10cm角セルをYAG
レーザーで、エポキシ樹脂層からなる前述の絶縁
樹脂層25上を走査して金属電極層22まで及び
透明電極層24のみを夫々溶融・蒸発させると共
に必要に応じて除去して分割溝26を形成し、こ
れに前記と同様の絶縁樹脂を充填し、3個の略3
cm×10cm角のセル20aに分解した。なお、これ
ら分解された3個のセル20aを直列接続するた
めに、第1図のようにバスバー部とフインガー部
とを有するクシ形の導電性インクからなる収集電
極27を該セル20a上にスクリーン印刷法を用
いて設けた。その後バスバー部位の接続個所28
にレーザ光を照射して隣り合つたセル20aの収
集電極27すなわち透明電極24と一方の金属電
極層22とを溶融接続して電気的接続をとり、光
発電要素20としてセル20aを3直列した集積
型非晶質太陽電池を作つた。 被層構造体 窓及び支持体となる被層板10は、ポリカーボ
ネート樹脂で押し出し成型により製造された帝人
化成(株)製パンライトユニ(商品名)を110mm×110
mmにチツプソーにより切断して用いた。第3図、
第4図に図示の通り用いたパンライトユニは、厚
さ1mmの2枚のシート12,13を30mm間隔で設
けた厚さ1mmで高さ7mmのリブからなる中間部材
11で結合し、30mm×7mmの角柱状のセル室14
を有するマルチリブ構造で全体の厚さは9mmその
重さは約2Kg/m2であつた。そして、その一方の
面に約300Å厚の酸化インジウムからなる耐湿膜
15を設けた。 モジユールの製造 上記複層板10と前述の集積型非晶質シリコン
太陽電池からなる光発電要素20とを張り合せる
に際して充填層31として厚さ0.4mmのエチレン
ビニルアセテート樹脂を両者の間に挿入する。一
方光発電要素の20の反対側の面に同様第2の充
填層32として厚さ0.4mmのエチレンビニルアセ
テート樹脂を介して封止材40を重ね合せた。な
お封止材40としては厚さ0.015mmのアルミニウ
ム金属フオイル、エチレンビニルアセテート樹
脂、厚さ、0.075mmのポリエステルフイルムの3
層構成の防湿性フイルムを用いた。次いで、この
重ね合せ体を90℃と180℃の熱ロール間に複層板
10が90℃の熱ロール側になるように送り込み、
全体を熱圧着し本発明の太陽電池本体モジユール
を得た。 次いで、この本体モジユールをシール剤33に
フチルゴムを用いてアルミニウム製の枠50によ
り封止して第3図、第4図に示す以下の太陽電池
モジユールを形成した。 第3図は平面図であり、第4図はそのA−B断
面図である。 なお、これらのモジユールを作製する際、第5
図に示す如く光発電要素20の収集電極のバスバ
ーイが複層板10の中間部材11に重なる様にし
て、光発電要素20と複層板10を貼り合わせて
実施例のモジユールを得た。又比較例としてそれ
らが互いに直角に交わるように貼り合わせたモジ
ユールを作成した。そしてAM1(100mw/cm2
ソーラーシミユレーター光下で両モジユールのセ
ル性能を測定した。セル性能の測定結果を表−1
に示す。
<Field of Application> The present invention relates to a solar cell module suitable for electric power. More specifically, the present invention relates to a solar cell module that is lightweight and has sufficient strength. <Prior art> Solar cell modules (hereinafter referred to as "modules") use tempered glass for transparent windows, various solar cells as photovoltaic elements, metal sheets as sealing materials, and these structural elements are used as fillers. Structures in which polyvinyl butyral or ethylene vinyl acetate resin is laminated together and sealed with a metal frame or plastic frame are known (for example, "Amorphous Solar Cell" co-authored by Takahashi and Konagai (published by Shokodo) 17
(See pages 18 to 18). In a module with such a structure, the weight of the module is inevitably large, and in order to install such a heavy object as a power generation unit, it is necessary to construct a structure (array) with a reliable foundation and frame. Solar power generation costs consist of the costs of peripheral materials in addition to the cost of solar cell modules, and reducing not only the module cost but also the cost of peripheral materials is essential in raising solar power generation to a practical level. be. From this point of view, aluminum honeycomb structures and paper are used as encapsulants and supports against wind pressure in order to reduce the weight of solar cell modules, reduce the burden on foundations and frames, and reduce the cost of peripheral components. Proposals have been made to reduce the weight of modules while maintaining mechanical strength by using honeycomb structures and rib structures.
International PVSEF-1) (see pages 665-668). However, even in this case, the thickness of the transparent window material is required to ensure strength against hail and wind pressure.
It is necessary to use tempered glass of 3.2 mm or more, and especially in the case of amorphous solar cells that use glass substrates, the window on the sunlight incident side is double-glazed.
There are limits to how lightweight modules can be made. In addition, such honeycomb structure and rib structure can be used as a heat insulating layer.
As a result, the surface temperature of the solar cell increases and the photoelectric conversion efficiency decreases. From this point of view, we first proposed a solar cell module in which a transparent multilayer plate with a hollow structure is laminated on the side of the photovoltaic element as a support by patent application No. 61-141421.
proposed in the specification. However, this structure has a problem in that the photoelectric conversion efficiency decreases due to a decrease in transmittance in the portion of the support overlapping the intermediate member of the transparent multilayer plate. <Object of the invention> The object of the present invention is to solve these drawbacks of the conventional technology, reduce the weight of the solar cell module, and make it possible to reduce the cost of solar power generation and expand various applications accordingly. Our goal is to provide solar cell modules. <Structure and operation of the invention> That is, the present invention has a hollow structure in which a plurality of transparent plates made of a non-metallic material are engaged with each other by an intermediate member arranged at predetermined intervals on the daylighting side of a solar power generation element. A solar cell module in which supports made of transparent multilayer plates are laminated, characterized in that the solar cell module is laminated so that the collection bus bar of the solar power generation elements and the intermediate member of the support are overlapped. It is. With this configuration, the intermediate member of the support, which causes a decrease in transmittance, overlaps the bus bar of the collecting electrode, which is the non-generating area, so that the generating area can be used effectively and more power can be obtained. become. By the way, the transparent multi-layer board used as the window material of the present invention is a hollow, lightweight transparent multi-layer board in which a plurality of transparent boards are connected at predetermined intervals via hollow members,
For example, a structure in which synthetic resin plates with high impact resistance and good workability are connected by bridging intermediate members such as ribs or corrugated plates at predetermined intervals to ensure strength and to reduce weight by creating voids between transparent plates. It is the body. The synthetic resin used for this transparent plate is not particularly limited as long as it is transparent, and all known transparent plate materials such as polycarbonate resin and acrylic resin can be used. Polycarbonate resin is excellent in terms of impact resistance and is preferred. Further, the intermediate member is not particularly limited as long as it is lightweight and strong, but it is preferably one that does not reduce the light transmittance of the multilayer board. Therefore, as the intermediate member, plate-shaped bodies, columnar bodies, framework structures of these bodies, etc. can be used, but from the viewpoint of strength and light transmission, a cell structure in which plate-shaped bodies are arranged so as to have a large number of cell chambers is preferable. Preferably applied. Examples of such a cell structure include a multi-rib structure in which transparent sheets are joined by ribs at regular intervals to have columnar cells parallel to the sheet surface. A multi-rib structure multi-layer board can be obtained by extrusion molding polycarbonate resin or the like through a die having the same rib structure as the side cross-sectional structure of the multi-rib structure. In particular, from the viewpoint of sunlight transmittance and productivity of the obtained multilayer structure, the above-mentioned multi-layer board made of a transparent synthetic resin with an integrally molded multi-rib structure with an air layer in the middle is considered to be the best choice. It can be suitably used as a window material of the invention. As a multi-layer board having such a multi-rib structure, Panlight Uni (trade name: manufactured by Teijin Kasei Ltd.) is commercially available as a light-transmitting heat insulating material. However, if such a synthetic resin has a high water vapor permeability, there will be movement of water through the plurality of sheets.
As a result, dew condensation is observed within the hollow portion, causing the transparent window to become foggy and the light transmittance to decrease. Furthermore, when the permeated moisture reaches the surface of the photovoltaic element, it promotes corrosion of the electrode surface, which is unfavorable in terms of long-term stability.
Furthermore, such a multilayer plate acts as a heat insulating layer and increases the surface temperature of the photovoltaic element, inevitably reducing the photoelectric conversion efficiency. In order to avoid such drawbacks and fully realize the advantages of the multilayer board, the present inventor made further improvements. That is, in order to reduce the water vapor permeability of the synthetic resin, the multilayer plate was provided with a moisture permeability prevention film on the surface facing the photovoltaic element. In addition, the hollow part of the multi-layer board is structured to communicate with the outside, and the hollow part is sealed while remaining open to the atmosphere, thereby reducing the heat insulating effect of the hollow part. The multi-rib structure described above with columnar cells in which the hollow portions are parallel is preferred in terms of easy ventilation. Particularly when assembling a structure using such multilayer board modules, it is preferable to arrange the columnar cells at an angle with respect to the horizontal plane. With this structure, the columnar cells exhibit a plurality of chimney effects, allowing air to flow and preventing a rise in surface temperature. Furthermore, this airflow prevented condensation of moisture that permeated the synthetic resin and entered the columnar cells. On the other hand, by providing the moisture permeability prevention film on the side of the multilayer plate facing the photovoltaic element, it is possible to prevent moisture from entering the photovoltaic element. Such moisture permeation prevention films include inorganic thin films such as amorphous silicon films and idium oxide films, and organic thin films such as polyvinylidene fluoride films, but indium oxide films are particularly preferred from the viewpoint of transparency and adhesion to adjacent layers. preferable. Further, if necessary, it is preferable to provide a transparent scratch-resistant film made of a photocurable or thermosetting resin layer on the surface of the multilayer board for the purpose of improving scratch resistance and abrasion resistance. Any known scratch-resistant film can be used as is. Furthermore, for the purpose of improving light resistance, an ultraviolet absorber may be included in these layers, or may be laminated thereunder. Next, the solar power generation element used in the present invention is not particularly limited, and known solar cells can be used as they are.
For example, silicon-based solar cells that use not only single-crystalline and polycrystalline silicon semiconductor layers but also amorphous silicon semiconductor layers as motive force layers, and so-called compound solar cells that use - group and - group semiconductor layers as electromotive force layers. can be mentioned. Among these, an integrated solar cell having a so-called integrated structure in which a plurality of solar cells formed on the same electrically insulating substrate are connected in series and parallel can be suitably used. Typical examples of such integrated solar cells are amorphous silicon solar cells and - group compound semiconductor solar cells, but among these, amorphous silicon integrated solar cells formed on a flexible electrically insulating substrate are typical examples of such integrated solar cells. Solar cells are preferable because they can take advantage of characteristics such as having a thin film structure and being lightweight, and can be continuously laminated using rolls as shown in Examples below. An integrated solar cell using such an amorphous silicon semiconductor layer as an electromotive force layer can be realized by the following method. For example, as an electrically insulating substrate, a polymer film, a ceramic plate, a glass plate, or a metal foil with an insulating layer provided on the surface can be used. In particular, a long flexible substrate that can be used for continuous film formation and dividing processing is advantageous. be. Further, for the metal electrode layer provided thereon, single metals and alloy metals such as Ti, Ag, W, Pt, Ni, Co, Cr, and nichrome can be used. Also, as a configuration of the amorphous silicon semiconductor layer of the electromotive layer, pin
In addition, there are other multilayer tandem structures such as pin/pin, pin/pin/pin, as well as narrow band gap or wide band gap amorphous structures such as amorphous silicon germanium and amorphous silicon carbide. A silicon semiconductor layer can also be used as appropriate. Further, as the transparent electrode layer, a known transparent conductive layer such as tin oxide or cadmium stannate can be used. After dividing the continuous power generation layer of the amorphous silicon solar cell having a predetermined area into cells having an appropriate area by a laser scoring method or a knife cutting method,
An integrated solar cell is obtained by electrically connecting cells. The method of electrically connecting the divided cells is not particularly limited as long as the upper electrode of one cell to be connected and the lower electrode of the other cell can be electrically connected, and the method is to connect with a lead wire. Method,
Known methods such as forming a connection layer made of a metal thin film by PVD or the like, forming a connection layer made of a conductive resin layer by screen printing, etc. can be applied. Among these, electrical connection by screen printing is preferably applied from the viewpoint of productivity and equipment. Such a method provides an integrated solar cell with a photovoltaic layer or an amorphous silicon semiconductor on a flexible polymeric film substrate. Next, as the sealing material for sealing the above-mentioned solar power generation element, as long as it can prevent the intrusion of moisture, a corrosion-proof metal sheet, an aluminum metal foil, a polyester film, a polyvinylidene fluoride film, etc. are suitable. A so-called moisture-proof film is used. Among these, a moisture-proof film made by laminating aluminum metal foil with a polyester film or the like is one of the preferred materials because it is lightweight and meets the purpose of the present invention. In addition, the filler (also referred to as "pottant") that adheres and seals the above-mentioned support, photovoltaic element, and sealing material and also serves as a cushion layer has light resistance and is compatible with each component. Polyvinyl butyral resin, ethylene vinyl acetate resin, etc., which have excellent adhesion, are used. The solar cell module of the present invention is a transparent multilayer structure, a solar power generating element, and if necessary, a sealing material is laminated with the above-mentioned filler as a glue from the sunlight incident side, and if necessary, the surrounding area is further covered with a frame. Constructed by sealing. By the way, in order to effectively collect photocurrent in solar power generation elements, as shown in Fig. 1, a busbar or finger electrode is used as a collection electrode by screen printing with Ag-based resin or vapor deposition of Ag, Al, etc.
It is formed by a method such as sputtering or adhesion of metal foil. The feature of the present invention is that the bus bar of the collector electrode and the intermediate member of the transparent multi-layer plate having a hollow structure are laminated in an overlapping manner. In the case of the above-mentioned integrated structure in which electrical connections are made in series and parallel, it is preferable that a bus bar of a collecting electrode be formed at the connection portion, since this increases the number of photoelectric conversion units. The solar cell module of the present invention includes, for example, a 4 mm thick polycarbonate multi-rib multilayer structure, an integrated amorphous silicon solar cell using a 0.1 mm thick polyester film substrate, polyvinylidene fluoride/ When constructed with a sealing material (thickness 0.3 mm) consisting of Al metal foil/polyvinylidene fluoride, the total thickness is at most 4.5 mm and the weight is approx.
At 1.0Kg/m2, the impact resistance can withstand a 5m drop from a 500g steel ball. On the other hand, instead of the multilayer structure, the thickness
In the case of a solar cell with the same configuration using 3.2 mm tempered glass, the overall thickness is 3.7 mm, which is slightly thinner than the structure of the present invention, but the weight is significantly increased to approximately 9.0 kg/m 2 , and the impact resistance is increased. A 225g steel ball falls to a height of 1.5m. As is clear from this fact, it was found that the solar cell module of the present invention can be made lighter without impairing its mechanical strength, and can also have a simpler laminate structure. The present invention will be explained below based on examples. <Example> Photovoltaic element FIG. 2 shows a side sectional view of a photovoltaic element of an example. In this example, a plurality of power generation units provided on a polymer film substrate 21 are connected in series, and a collector electrode bus bar is formed at the connection part. Almost the same except for The illustrated polymer film for the substrate 21 may be any polymer film that has the heat resistance necessary for amorphous silicon deposition, but preferably polyethylene terephthalate (PET) film,
Polyimide film or the like is used. The example in the diagram is
It uses PET film. As the metal electrode layer 22, an Al layer of about 0.5 μm and 30
A stainless steel (SUS) layer with a thickness of approximately Å is deposited sequentially on the substrate 21 using the sputtering method.
A SUS laminate was used. The amorphous silicon semiconductor layer 23 of the photovoltaic layer adopts a well-known pin-type structure, and is formed into a metal electrode layer using a glow discharge decomposition method using silane gas or the like similar to that disclosed in Japanese Patent Application Laid-Open No. 59-34668. No. 22 was deposited on the stainless steel layer. Next, an amorphous silicon semiconductor layer 2 is used to prevent short circuits between electrodes during division using the laser scribing method.
As an electrically insulating insulating resin layer 25 provided at the interface between 3 and the transparent electrode layer 24, an epoxy resin is applied to the amorphous silicon semiconductor layer 23 using a screen printing method in the groove portions to be divided into cells 20a using a laser. Set up in advance. Next, as the transparent electrode layer 24, an ITO (indium oxide/tin oxide) layer is deposited to a thickness of about 600 Å by electron beam evaporation or sputtering, and
We obtained a large-area amorphous thin-film solar cell with an Al/SUS amorphous silicon pin patterned epoxy resin layer/ITO structure. Next, this PETAl/SUS amorphous silicon pin patterned epoxy resin layer ITO structure amorphous solar cell 10cm x 10cm square cell was
A laser scans the above-mentioned insulating resin layer 25 made of an epoxy resin layer to melt and evaporate only the metal electrode layer 22 and the transparent electrode layer 24, respectively, and remove them as necessary to form the dividing grooves 26. This is filled with the same insulating resin as above, and three approximately 3
It was disassembled into cells 20a of cm x 10 cm square. In order to connect these three disassembled cells 20a in series, a comb-shaped collection electrode 27 made of conductive ink having a bus bar part and a finger part is screened onto the cell 20a as shown in FIG. It was installed using a printing method. After that, the connection point 28 of the bus bar part
A laser beam is irradiated to fuse and connect the collecting electrodes 27, that is, the transparent electrodes 24 of the adjacent cells 20a, and one metal electrode layer 22 to establish an electrical connection, and three cells 20a are connected in series as the photovoltaic element 20. We created an integrated amorphous solar cell. Covering structure The covering plate 10 that serves as the window and the support is made of Panlite Uni (trade name) manufactured by Teijin Kasei Ltd., manufactured by extrusion molding from polycarbonate resin, and is made of 110 mm x 110 mm.
It was cut into mm pieces using a tip saw. Figure 3,
As shown in FIG. 4, the panlite uni used is made by joining two sheets 12 and 13 with a thickness of 1 mm with an intermediate member 11 consisting of ribs with a thickness of 1 mm and a height of 7 mm provided at an interval of 30 mm. ×7mm prismatic cell chamber 14
It had a multi-rib structure with a total thickness of 9 mm and a weight of about 2 kg/m 2 . Then, a moisture-resistant film 15 made of indium oxide and having a thickness of about 300 Å was provided on one side. Manufacture of module When laminating the multilayer plate 10 and the photovoltaic element 20 made of the integrated amorphous silicon solar cell described above, an ethylene vinyl acetate resin having a thickness of 0.4 mm is inserted as a filling layer 31 between the two. . On the other hand, on the opposite side of the photovoltaic element 20, a sealing material 40 was laminated as a second filling layer 32 via an ethylene vinyl acetate resin having a thickness of 0.4 mm. The sealing material 40 was made of aluminum metal foil with a thickness of 0.015 mm, ethylene vinyl acetate resin, and polyester film with a thickness of 0.075 mm.
A moisture-proof film with a layered structure was used. Next, this stacked body is sent between 90°C and 180°C hot rolls so that the multilayer board 10 is on the 90°C hot roll side.
The whole was thermocompressed to obtain a solar cell main module of the present invention. Next, this main body module was sealed with an aluminum frame 50 using phthyl rubber as the sealant 33 to form the following solar cell module shown in FIGS. 3 and 4. FIG. 3 is a plan view, and FIG. 4 is a sectional view taken along the line A-B. In addition, when producing these modules, the fifth
As shown in the figure, the photovoltaic element 20 and the multilayer plate 10 were bonded together so that the bus-bye of the collector electrode of the photovoltaic element 20 overlapped with the intermediate member 11 of the multilayer plate 10 to obtain the module of the example. In addition, as a comparative example, a module was created in which these components were pasted together so that they intersected each other at right angles. and AM1 (100mw/cm 2 )
The cell performance of both modules was measured under solar simulator light. Table 1 shows the measurement results of cell performance.
Shown below.

【表】 表−1の結果からわかるように本発明のモジユ
ールでは、光電変換に寄与しないバスバー部イ、
直列接続部28が、支持体の複層板10の中間部
材のリブ11の位置に重なつているためモジユー
ル化に伴なう実質的な光電変換領域の面積の減少
が必要最少限となる。その結果、比較例に比し短
絡電流が増加し、変換効率が改善される。
[Table] As can be seen from the results in Table 1, in the module of the present invention, the busbar part i, which does not contribute to photoelectric conversion,
Since the series connection portion 28 overlaps the rib 11 of the intermediate member of the multilayer plate 10 of the support body, the reduction in the area of the photoelectric conversion region due to modularization is kept to the necessary minimum. As a result, short circuit current increases and conversion efficiency improves compared to the comparative example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる太陽光発電要素のバ
スバー、フインガーを示す平面図、第2図は、実
施例の光発電要素の側断面図、第3図は実施例の
太陽電池モジユールの平面図、第4図は第3図A
−Bでの断面図、第5図は実施例の積層構成の説
明図である。 10:複層板、20:光発電要素、31,3
2:充填層、40:封止材、33:シール剤、5
0:枠。
FIG. 1 is a plan view showing a bus bar and fingers of a photovoltaic element according to the present invention, FIG. 2 is a side sectional view of a photovoltaic element according to an embodiment, and FIG. 3 is a plan view of a solar cell module according to an embodiment. Figure 4 is Figure 3A
5 is an explanatory diagram of the laminated structure of the embodiment. 10: Multilayer board, 20: Photovoltaic element, 31,3
2: Filling layer, 40: Sealing material, 33: Sealing agent, 5
0: Frame.

Claims (1)

【特許請求の範囲】 1 太陽光発電要素の採光側に、非金属材料から
なる複数の透明板が所定間隔で配置した中間部材
により結合された中空構造の透明複層板からなる
支持体が積層された太陽電池モジユールにおい
て、該太陽光発電要素の収集電極のバスバーと該
支持体の中間部材とが重なり合うように積層され
ていることを特徴とする太陽電池モジユール。 2 該太陽光発電要素が、可撓性の同一電気絶縁
基板上に設けられた複数の発電ユニツトを直列及
び/又は並列接続した集積型構成であり、かつそ
の直列及び/又は並列接続された場所に収集電極
のバスバーが形成されている特許請求の範囲第1
項記載の太陽電池モジユール。 3 前記透明複層板の中空部は全て外部に連通し
ており、この中空部が大気に連通するように封止
されている特許請求の範囲第1項及び第2項記載
の太陽電池モジユール。 4 前記透明複層板はその中間部材が一定間隔で
配されたリブであり、中空部が平行な柱状セルに
区画されている特許請求の範囲第3項記載の太陽
電池モジユール。 5 前記柱状セルが傾斜するように配置されてい
る特許請求の範囲第4項記載の太陽電池モジユー
ル。 6 前記透明複層板は合成樹脂製である特許請求
の範囲第1項〜第5項記載のいずれかの太陽電池
モジユール。 7 前記透明複層板はポリカーボネート樹脂製で
ある特許請求の範囲第6項記載の太陽電池モジユ
ール。 8 前記透明複層板は、その太陽光発電要素に面
する側の面に透明な耐湿膜が形成された透明複層
板である特許請求の範囲第6項若しくは第7項記
載の太陽電池モジユール。 9 前記透明複層板は、その大気に面する面に透
明な耐擦傷膜が形成された透明複層板である特許
請求の範囲第1項〜第8項記載のいずれかの太陽
電池モジユール。 10 前記太陽光発電要素の背面側を封止材で封
止した特許請求の範囲第1項〜第8項記載のいず
れかの太陽電池モジユール。 11 前記可撓性基板が高分子フイルムであり、
かつ発電ユニツトが非晶質半導体である特許請求
の範囲第10項記載の太陽電池モジユール。
[Scope of Claims] 1. A support body consisting of a transparent multi-layer plate with a hollow structure, in which a plurality of transparent plates made of non-metallic materials are connected by intermediate members arranged at predetermined intervals, is laminated on the lighting side of the solar power generation element. A solar cell module characterized in that the bus bar of the collector electrode of the photovoltaic element and the intermediate member of the support are laminated so as to overlap. 2. Where the solar power generation element has an integrated configuration in which multiple power generation units installed on the same flexible electrically insulating substrate are connected in series and/or in parallel, and where the solar power generation elements are connected in series and/or in parallel. Claim 1, wherein the bus bar of the collector electrode is formed in the first aspect of the present invention.
The solar cell module described in Section 1. 3. The solar cell module according to claims 1 and 2, wherein all of the hollow portions of the transparent multilayer plate communicate with the outside, and the hollow portions are sealed so as to communicate with the atmosphere. 4. The solar cell module according to claim 3, wherein the intermediate member of the transparent multi-layer plate is ribs arranged at regular intervals, and the hollow portion is divided into parallel columnar cells. 5. The solar cell module according to claim 4, wherein the columnar cells are arranged to be inclined. 6. The solar cell module according to any one of claims 1 to 5, wherein the transparent multilayer plate is made of synthetic resin. 7. The solar cell module according to claim 6, wherein the transparent multilayer plate is made of polycarbonate resin. 8. The solar cell module according to claim 6 or 7, wherein the transparent multi-layer plate is a transparent multi-layer plate on which a transparent moisture-resistant film is formed on the side facing the photovoltaic element. . 9. The solar cell module according to any one of claims 1 to 8, wherein the transparent multilayer plate is a transparent multilayer plate on which a transparent scratch-resistant film is formed on the surface facing the atmosphere. 10. The solar cell module according to any one of claims 1 to 8, wherein the back side of the solar power generation element is sealed with a sealing material. 11 The flexible substrate is a polymer film,
11. The solar cell module according to claim 10, wherein the power generation unit is an amorphous semiconductor.
JP61247348A 1986-10-20 1986-10-20 Solar cell module Granted JPS63102277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247348A JPS63102277A (en) 1986-10-20 1986-10-20 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247348A JPS63102277A (en) 1986-10-20 1986-10-20 Solar cell module

Publications (2)

Publication Number Publication Date
JPS63102277A JPS63102277A (en) 1988-05-07
JPH0543307B2 true JPH0543307B2 (en) 1993-07-01

Family

ID=17162074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247348A Granted JPS63102277A (en) 1986-10-20 1986-10-20 Solar cell module

Country Status (1)

Country Link
JP (1) JPS63102277A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287647B2 (en) * 1992-06-08 2002-06-04 鐘淵化学工業株式会社 Solar cell module
JP7094668B2 (en) * 2016-09-21 2022-07-04 株式会社東芝 Solar cell module and photovoltaic system

Also Published As

Publication number Publication date
JPS63102277A (en) 1988-05-07

Similar Documents

Publication Publication Date Title
JPH065782B2 (en) Solar cell module
US6420645B1 (en) Roof with plurality of solar cell modules having filler layer of varying thickness and manufacturing method thereof
JP3738129B2 (en) Solar cell module
US7804023B2 (en) Bifacial thin film solar cell and method for making the same
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
US6307145B1 (en) Solar cell module
KR20070098723A (en) Photovoltaic module
JPH10294485A (en) Module for large size solar cell
CN102916067A (en) Building material type double-sided glass photovoltaic component and manufacturing method thereof
EP2449597A2 (en) Bifacial photovoltaic module with reflective elements and method of making same
JP2006019440A (en) Solar battery module
JP2002168062A (en) Solar battery module and window structure
WO2010010821A1 (en) Solar battery module and method for manufacturing the same
CN115172535A (en) Preparation method of photovoltaic module and photovoltaic module
CN211125670U (en) Tower-type laminated tile solar photovoltaic module capable of being integrated on roof of automobile
JP2008282944A (en) Solar cell module and manufacturing method
JP2728416B2 (en) Solar cell sheet
JPH0543307B2 (en)
JPH0294574A (en) Flexible solar cell sheet
CN116072753A (en) Photovoltaic module and preparation method
JPH11214734A (en) Solar battery module, its manufacture and execution method and solar battery power generation system
JPH0623000Y2 (en) Solar cell module
JPS61292971A (en) Solar cell module
JPH0779004A (en) Thin film solar cell
JP5258851B2 (en) Solar cell module

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees