JPS63102277A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JPS63102277A
JPS63102277A JP61247348A JP24734886A JPS63102277A JP S63102277 A JPS63102277 A JP S63102277A JP 61247348 A JP61247348 A JP 61247348A JP 24734886 A JP24734886 A JP 24734886A JP S63102277 A JPS63102277 A JP S63102277A
Authority
JP
Japan
Prior art keywords
solar cell
transparent
cell module
power generation
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61247348A
Other languages
Japanese (ja)
Other versions
JPH0543307B2 (en
Inventor
Kazutomi Suzuki
鈴木 和富
Hiroshi Okaniwa
宏 岡庭
Kenji Nakatani
健司 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61247348A priority Critical patent/JPS63102277A/en
Publication of JPS63102277A publication Critical patent/JPS63102277A/en
Publication of JPH0543307B2 publication Critical patent/JPH0543307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To effectively utilize a generating region and to reduce the weight of a solar cell module thereby to decrease a solar light generating cost by so laminating an intermediate member of a support which causes a transmissibility to reduce as to superposed on a bus bar of a collecting electrode of a nongenerating region. CONSTITUTION:An optically generating element 20 is bonded to a composite layer plate 10 to form a module so that the bus bar (a) of the collecting electrode of the element 20 is overlapped on an intermediate member 11 of the plate 10. Since the bar (a) which does not contribute to a photoelectric conversion, and a series connection unit are superposed at a position of a rib 11 of the intermediate member of the plate 10 in this module, a reduction in the area of a substantial photoelectric conversion region upon moduling is minimized as required. Thus, a short-circuit current increases to enhance the conversion efficiency.

Description

【発明の詳細な説明】 く利用分野〉 本発明は電力用に好適な太陽電池モジュールに関する。[Detailed description of the invention] Field of use〉 The present invention relates to a solar cell module suitable for electric power.

更に詳細にはinで十分な強度が得られ太陽電池モジュ
ールに関する。
More specifically, the present invention relates to a solar cell module in which sufficient strength can be obtained using an in-container method.

〈従来技術〉 太陽電池モジュール(以下「モジュール」という)は、
透明窓に強化ガラス、太陽光発電要素として各種の太陽
電池、封止材に金属シートなどを用い、これらの構造要
素を充填材にポリビニルブチラールやエチレンビニルア
セテート樹脂を用いて張り合わせ、金属枠やプラスチッ
ク枠で封止した構造等が知られている(例えば、高橋、
小長井共著(昭晃堂発行)「アモルファス太陽電池」1
7〜18頁参照)。
<Prior art> A solar cell module (hereinafter referred to as "module") is
Tempered glass is used for the transparent window, various solar cells are used as the photovoltaic elements, and metal sheets are used as the sealing material. These structural elements are laminated together using polyvinyl butyral or ethylene vinyl acetate resin as the filler, and then the metal frame or plastic is used. Structures sealed with a frame are known (for example, Takahashi,
Co-authored by Konagai (published by Shokodo) “Amorphous Solar Cell” 1
(See pages 7-18).

かかる構造のモジュールは、モジュールの重量が必然的
に大きくなり、かかる重量物を発電ユニットとして設置
するために基礎及び架台を強度的に信頼のおける建築物
(アレー)にする必要があった。太陽光発電コストは太
陽電池モジュールのコストのほかにかかる周辺部材のコ
ストから構成されており、モジュールコストのみならず
周辺部材のコストの低減が太陽光発電を実用化レベルに
引き上げる上で必然である。
A module with such a structure inevitably has a large weight, and in order to install such a heavy object as a power generation unit, it is necessary to construct a building (array) with a reliable foundation and frame. Solar power generation costs consist of the costs of peripheral components in addition to the cost of solar cell modules, and it is necessary to reduce not only the module cost but also the cost of peripheral components in order to bring solar power generation to a practical level. .

このような視点から、太陽電池のモジュールの軽量化を
はかり、基礎及び架台への負担を軽減し周辺部材のコス
ト低減をするため封止材及び風圧力に対する支持体とし
てアルミニウムハニカム構造体、ペーパーハニカム構造
体、リブ構造体を利用し、機械的強度を維持しながらモ
ジュールの軽量化をはかる提案がなされている(テクニ
カルダイジェスト オブ ザ インターナショナルビー
ヴイエスイーシ−1(Technical  Q ig
estof  the  I nternationa
l  P V S E C−1)665〜668頁参照
)。
From this perspective, in order to reduce the weight of solar cell modules, reduce the burden on the foundation and frame, and reduce the cost of surrounding components, aluminum honeycomb structures and paper honeycomb structures are used as sealing materials and supports against wind pressure. Proposals have been made to reduce the weight of modules while maintaining mechanical strength by using structures and rib structures.
est of the internationala
(See pages 665-668).

しかし、この場合にも透明窓材には降霜に対する強度や
風圧に対する強度を保証するため厚さ3.2順以上の強
化ガラスを用いる必要があり、特にガラス基板を用いた
アモルファス太陽電池の場合は、太陽光の入射側の窓が
2重ガラスとなり、モジュールの軽量化に限界がある。
However, even in this case, it is necessary to use tempered glass with a thickness of 3.2 or higher to ensure strength against frost and wind pressure, especially in the case of amorphous solar cells using glass substrates. , the window on the side where sunlight enters is double-glazed, which limits the ability to reduce the weight of the module.

また、かかるハニカム構造体及びリブ構造体は断熱層と
して、働き、太陽電池の表面温度が上がり、光電変換効
率を低下せしめる。
In addition, such honeycomb structures and rib structures act as a heat insulating layer, increasing the surface temperature of the solar cell and reducing photoelectric conversion efficiency.

このような観点から我々は、支持体として中空構造の透
明複層板を太陽光発電要素の採光側に積層した太陽電池
モジュールを先に特願昭61−141421号明細書で
提案した。しかしこの構造では支持体の透明複層板の中
間部材に重なる部分では透過:$減少による光電変換効
率が低下するという問題があった。
From this point of view, we previously proposed in Japanese Patent Application No. 141421/1982 a solar cell module in which a hollow transparent multilayer plate is laminated as a support on the daylight side of a photovoltaic element. However, this structure has a problem in that the photoelectric conversion efficiency decreases due to a decrease in transmission in the portion of the support that overlaps with the intermediate member of the transparent multilayer plate.

〈発明の目的〉 本発明の目的は、従来技術のこれらの欠点を解決し、太
陽電池モジュールの軽量化をはかり、太陽光発電コスト
の低減とそれに伴なう種々の用途の拡大を可能ならしめ
る太陽電池モジュールを提供することにある。
<Objective of the Invention> The object of the present invention is to solve these drawbacks of the prior art, reduce the weight of the solar cell module, and make it possible to reduce the cost of solar power generation and expand various applications accordingly. Our goal is to provide solar cell modules.

〈発明の構成9作用〉 すなわち、本発明は、太陽光発電要素の採光側に非金属
材料からなる複数の透明板が中間部材により所定間隔で
配置された中間部材により結合された中空構造の透明複
層板からなる支持体が積層された太陽電池モジュールに
おいて、該太陽光発電要素の収集電極のバスバーと該支
持体の中間部材とが重なり合うように積層されているこ
とを特徴とする太陽電池モジュールである。
<Structure 9 of the Invention> In other words, the present invention provides a transparent structure with a hollow structure in which a plurality of transparent plates made of a non-metallic material are connected by an intermediate member arranged at predetermined intervals on the daylighting side of a solar power generation element. A solar cell module in which supports made of multilayer plates are laminated, characterized in that the bus bars of the collecting electrodes of the photovoltaic elements and the intermediate members of the supports are laminated so as to overlap with each other. It is.

この様な構成にすることにより、透過率減少の原因にな
る支持体の中間部材が非発電領域である収集電極のバス
バーに重なり合うため発電領域の有効利用が画られより
多くの電力が得られるようになる。
With this configuration, the intermediate member of the support, which causes a decrease in transmittance, overlaps the bus bar of the collecting electrode, which is the non-generating area, so that the generating area can be used effectively and more power can be obtained. become.

ところで、本発明の窓材として用いる透明複層板とは、
複数の透明板が中間部材を介して所定間隔で結合された
中空の軽量な透明複層板であり、例えば耐衝撃性が大き
くしかも加工性の良い合成樹脂板間を所定間隔のリブ、
波板等の中間部材のVA渡しで結合して強度を確保する
と共に透明板間は空隙として軽量化を計った構造体であ
る。この透明板に用いる合成樹脂としては透明であれば
特に限定されず、ポリカーボネート樹脂、アクリル樹脂
など透明板材として公知のものが全て適用できる。耐衝
撃性の見地からポリカーボネート樹脂が優れており、好
ましい。また、中間部材は、軽量で強度があれば特に限
定されないが、複層板の光透過性の低下の少ないものが
好ましい。従って、中間部材としては、板状体、柱状体
、これらの枠組み構成等適用できるが、強度面及び光透
過性面から板状体を多数のセル空を有するように配置し
たセル構造体が好ましく適用される。かかるセル構成体
としては、透明シートを一定間隔のりブで結合しシート
面に平行な柱状セルを有するようにしたマルチリブ構造
等が挙げられる。
By the way, the transparent multi-layer board used as the window material of the present invention is
It is a hollow, lightweight transparent multi-layer board in which a plurality of transparent plates are connected at predetermined intervals via intermediate members. For example, ribs at predetermined intervals are connected between synthetic resin plates with high impact resistance and good workability.
It is a structure in which strength is ensured by connecting intermediate members such as corrugated plates with VA connections, and weight reduction is achieved by leaving gaps between the transparent plates. The synthetic resin used for this transparent plate is not particularly limited as long as it is transparent, and all known transparent plate materials such as polycarbonate resin and acrylic resin can be used. Polycarbonate resin is excellent in terms of impact resistance and is preferred. Further, the intermediate member is not particularly limited as long as it is lightweight and strong, but it is preferably one that does not reduce the light transmittance of the multilayer board. Therefore, plate-shaped bodies, columnar bodies, framework structures of these bodies, etc. can be used as the intermediate member, but from the viewpoint of strength and light transmission, a cell structure in which plate-shaped bodies are arranged so as to have a large number of cells is preferable. Applicable. Examples of such a cell structure include a multi-rib structure in which transparent sheets are joined by ribs at regular intervals to have columnar cells parallel to the sheet surface.

マルチリブ構造の複層板は、ポリカーボネート樹脂等を
複層板の側断面構造と同じ型のリブ構造を有するダイか
ら押し出し成型することにより得ることができる。なか
でも、得られた複層構造体の太陽光透過性、及び生産性
の見地から、上述の一体成型された中間に空気層をもつ
マルチリブ構造の透明な合成樹脂からなる複層板は、本
発明の窓材として好適に使用できる。なお、かかるマル
チリブ構造の複層板としては透光断熱材料として市販の
パンライトユニ(商品名:余人化成@製)がある。
A multi-rib structure multi-layer board can be obtained by extruding polycarbonate resin or the like through a die having a rib structure of the same type as the side cross-sectional structure of the multi-rib structure. In particular, from the viewpoint of sunlight transmittance and productivity of the obtained multilayer structure, the above-mentioned multi-layer board made of a transparent synthetic resin with an integrally molded multi-rib structure with an air layer in the middle is considered to be the best choice. It can be suitably used as a window material of the invention. Incidentally, as a multi-layer board having such a multi-rib structure, Panlight Uni (trade name: manufactured by Yojin Kasei@) is commercially available as a light-transmitting heat insulating material.

しかるに、かかる合成樹脂が水蒸気透過率が大きい場合
複数シートを通して水分の移動がある。
However, if such a synthetic resin has a high water vapor permeability, there will be movement of water through the plurality of sheets.

その結果中空部内で結露現象が観察され透明窓が曇り光
線透過率が低下する。また、透過した水分は太陽光発電
要素の表面に達すると、電極表面の腐蝕を促進し、長期
安定性の点で好ましくない。
As a result, dew condensation is observed within the hollow portion, causing the transparent window to become foggy and the light transmittance to decrease. Furthermore, when the permeated moisture reaches the surface of the photovoltaic element, it promotes corrosion of the electrode surface, which is unfavorable in terms of long-term stability.

また、かかる複層板は断熱層として働き太陽光発電要素
の表面温度を上昇せしめ光電変換効率を必然的に低下せ
しめる。
Furthermore, such a multilayer plate acts as a heat insulating layer and increases the surface temperature of the photovoltaic element, inevitably reducing the photoelectric conversion efficiency.

かかる欠点を回避し、複層板の利点を十分に発現させる
ため本発明者は更なる改良を行った。すなわち、合成樹
脂の水蒸気透過率を軽減するため、複層板を太陽光発電
要素側の表面に耐透湿性防止膜を設けたものとした。又
、複層板の中空部を外部に連通した構造とし、中空部は
大気に連通したまま封止するモジュール構成とし、中空
部の断熱作用を低減させた。前述のマルチリブ構造によ
り中空部が平行な柱状セルのものは換気が容易な点で好
ましい。特にかかる複層板のモジュールで構造体を組立
てるに際しては、柱状セルを水平面に対し傾斜して配置
することが好ましい。
In order to avoid such drawbacks and fully realize the advantages of the multilayer board, the present inventor made further improvements. That is, in order to reduce the water vapor permeability of the synthetic resin, the multilayer plate was provided with a moisture permeability prevention film on the surface facing the photovoltaic element. In addition, the hollow part of the multilayer board is structured to communicate with the outside, and the hollow part is sealed while remaining open to the atmosphere, thereby reducing the heat insulating effect of the hollow part. The multi-rib structure described above with columnar cells in which the hollow portions are parallel is preferred in terms of easy ventilation. Particularly when assembling a structure using such multilayer board modules, it is preferable to arrange the columnar cells at an angle with respect to the horizontal plane.

かかる構造により柱状セルが複数の煙突効果を発揮し、
空気の流れが起り表面の温度上昇を防止できる。更に合
成樹脂を透過して柱状セル内に結露した水分はこの空気
流により取り除かれた。
With this structure, the columnar cells exhibit multiple chimney effects,
This creates a flow of air and prevents the surface temperature from rising. Furthermore, moisture that had permeated the synthetic resin and condensed inside the columnar cells was removed by this air flow.

一方、耐透湿防止膜は、複層板の太陽光発電要素に対面
する側に設けることにより、水分の太陽光発電要素への
浸入が防止できる。かかる耐透湿防止膜はアモルファス
シリコン膜や酸化インジ、ウム膜などの無礪薄膜、ポリ
フッ化ビニリデン膜などの有機薄膜があるが、なかでも
酸化インジウム膜が透明性及び隣接する層に対する接着
性の観点から好ましい。
On the other hand, by providing the moisture permeation prevention film on the side of the multilayer plate facing the solar power generation element, it is possible to prevent moisture from entering the solar power generation element. Such moisture permeation prevention films include amorphous silicon films, indium oxide films, etc., and organic thin films such as polyvinylidene fluoride films. Among them, indium oxide films have excellent transparency and adhesion to adjacent layers. Preferable from this point of view.

また必要に応じて、この複層板の表面に耐擦傷性、耐摩
耗性を改善する目的で光硬化あるいは熱硬化型の樹脂層
からなる透明な耐擦傷膜を設けることが好ましい。かか
る耐擦傷膜には公知のものがそのまま適用できる。更に
耐光性を改善する目的で紫外線吸収剤をこれらの層に含
ませても良く、その下に積層しても良い。
Further, if necessary, it is preferable to provide a transparent scratch-resistant film made of a photocurable or thermosetting resin layer on the surface of the multilayer board for the purpose of improving scratch resistance and abrasion resistance. Any known scratch-resistant film can be used as is. Furthermore, for the purpose of improving light resistance, an ultraviolet absorber may be included in these layers, or may be laminated thereunder.

次に本発明に用いる太陽光発電要素は、特に限定されず
、公知の太陽電池がそのまま適用でき、例えば単結晶、
多結晶系のシリコン半導体層はもとより非晶質シリコン
半導体層を起電力層に用いるシリコン系太陽電池、■−
■族、m−v族系の半導体層を起電力層に用いるいわゆ
る化合物系太陽電池が挙げられる。なかでも電気絶縁性
の同一基板上に形成された複数の太陽電池のセルを直並
列接続したいわゆる集積構造にした集積型太陽電池は好
適に利用できる。かかる集積型太陽電池には非晶質シリ
コン太陽電池やII−VI族化合物半導体系太陽電池が
代表的であるが、なかでも可撓性のある電気絶縁基板上
に形成した非晶質シリコン系の集積型太陽電池は、薄膜
構造体であること、軽量であることなどの特徴を生かす
ことができる点及び後述の実施例に示すようにロールに
よる連続積層化ができる点等で好ましい。かがる非晶質
シリコン半導体層を起電力層として用いる集積型穴II
池は次の方法により実現できる。
Next, the solar power generating element used in the present invention is not particularly limited, and known solar cells can be applied as they are, such as single crystal,
Silicon-based solar cells that use not only polycrystalline silicon semiconductor layers but also amorphous silicon semiconductor layers as electromotive force layers, ■-
Examples include so-called compound-based solar cells that use a semiconductor layer of group (1) or m-v group as an electromotive force layer. Among these, an integrated solar cell having a so-called integrated structure in which a plurality of solar cells formed on the same electrically insulating substrate are connected in series and parallel can be suitably used. Typical examples of such integrated solar cells are amorphous silicon solar cells and II-VI group compound semiconductor solar cells, but especially amorphous silicon solar cells formed on a flexible electrically insulating substrate. An integrated solar cell is preferable because it can take advantage of characteristics such as being a thin film structure and being lightweight, and it can be continuously stacked using rolls as shown in Examples below. Integrated Hole II using a curved amorphous silicon semiconductor layer as an electromotive force layer
The pond can be realized by the following method.

例えば電気絶縁性基板としては、高分子フィルム、セラ
ミック板、ガラス板あるいは絶縁性層を表面に設けた金
属フォイルが使用出来、特に連続膜形成及び分割加工が
適用できる長尺可撓性基板が有利である。又、その上に
設ける金属電極層にはTi 、Ag、W、Pt、Ni 
、Go、クロム。
For example, as an electrically insulating substrate, a polymer film, a ceramic plate, a glass plate, or a metal foil with an insulating layer on the surface can be used, and a long flexible substrate that can be used for continuous film formation and segmentation is particularly advantageous. It is. In addition, the metal electrode layer provided thereon includes Ti, Ag, W, Pt, and Ni.
, Go, chrome.

ニクロムなどの単体金属9合金金属が使用出来る。Single metal 9 alloy metals such as nichrome can be used.

又起電力層の非晶質シリコン半導体層の構成としてもp
inの俵、pin /pin 、 pin /pin 
/pin等の多層タンデム構造はもちろんのこと、非晶
質シリコンゲルマニウム、非晶質シリコンカーバイドな
どのナローバンドギャップあるいはワイドバンドギャッ
プの非晶質シリコン半導体層を適時用いる事も出来る。
Also, p
bale of in, pin /pin, pin /pin
Not only a multilayer tandem structure such as /pin, but also a narrow bandgap or wide bandgap amorphous silicon semiconductor layer such as amorphous silicon germanium or amorphous silicon carbide can be used as appropriate.

さらに透明電極層としては酸化スズ、スズ酸カドミウム
等公知の透明導電層が適用できる。以上の所定の面積の
連続した非晶質シリコン太陽電池の発電層をレーザ罫書
法やナイフカッティング法などで適当な面積を有するセ
ルに分割した後、セル間を電気的に接続して集積型太陽
電池を得る。分割されたセル間を電気接続する方法とし
ては、接続する一方のセルの上部電極と使方のセルの下
部電極とを電気的に接続できるものであれば、特に限定
されず、リード線で接続する方法、PVD法等による金
属薄膜からなる接続層を形成する方法、スクリーン印刷
法により導電性樹脂層よりなる接続層を形成する方法等
公知の方法が適用できる。中でも生産性面、設備面から
スクリーン印刷法による電気接続が好ましく適用される
Further, as the transparent electrode layer, a known transparent conductive layer such as tin oxide or cadmium stannate can be used. After dividing the power generation layer of the continuous amorphous silicon solar cell with a predetermined area into cells with an appropriate area using a laser scoring method, knife cutting method, etc., the cells are electrically connected to form an integrated solar cell. Get the battery. The method for electrically connecting divided cells is not particularly limited, as long as the upper electrode of one cell to be connected and the lower electrode of the cell being used can be electrically connected, and connection with lead wires is possible. Known methods such as a method of forming a connection layer made of a thin metal film by a PVD method, a method of forming a connection layer of a conductive resin layer by a screen printing method, etc. can be applied. Among these, electrical connection by screen printing is preferably applied from the viewpoint of productivity and equipment.

この様な方法により、可撓性高分子フィルム基板上に光
発電層か非晶質シリコン半導索である集積型太陽電池が
得られる。
Such a method provides an integrated solar cell, which is a photovoltaic layer or an amorphous silicon semiconductor wire on a flexible polymeric film substrate.

次に、上述の太陽光発電要素を封止する封止材としては
、水分の侵入を防止できるものであれば良く、腐蝕防止
した金属シートや、アルミニウム金属箔をポリエステル
フィルムやポリフッ化ビニリデンフィルムなどで張り合
わせたいわゆる防湿性フィルムが用いられる。なかでも
アルミニウム金属箔をポリエステルフィルムなどで張り
合わせた防湿フィルムは軽量性の点で本発明の目的に合
うため好ましい材料の一つである。
Next, the sealing material for sealing the solar power generation element mentioned above may be any material that can prevent moisture from entering, such as a corrosion-resistant metal sheet, aluminum metal foil, polyester film, polyvinylidene fluoride film, etc. A so-called moisture-proof film is used. Among these, a moisture-proof film made by laminating aluminum metal foil with a polyester film or the like is one of the preferable materials because it is light in weight and satisfies the purpose of the present invention.

また、上述の支持体、太陽光発電要素、更には封止材を
接着すると共に封止し、クッション層ともなる充填材(
“ボッタント′°とも云う)としては耐光性があり、か
つ各構成部材との密着力の優れたポリビニルブチラール
樹脂やエチレンビニルアセテート樹脂等が用いられる。
In addition, a filler that adheres and seals the above-mentioned support, the solar power generation element, and the sealing material, and also serves as a cushion layer (
Polyvinyl butyral resin, ethylene vinyl acetate resin, etc., which are light-resistant and have excellent adhesion to each component, are used as the "bottant".

本発明の太陽電池モジュールは透明複層構造体。The solar cell module of the present invention is a transparent multilayer structure.

太陽光発電要素必要な場合は封止材を太陽光入射側から
順に上記充填材を樹材として張り合わせ、必要に応じて
更に周囲を枠体で封止することにより構成される。
If necessary, the photovoltaic power generation element is constructed by laminating the above-mentioned filler as a resin material in order from the sunlight incident side with a sealing material, and further sealing the periphery with a frame if necessary.

ところで、太陽光発電要素は有効に光電流を回収するた
めに、第1図に示す如く収集電極としてバスバー(イ)
やフィンガー(ロ)が、Ag系の樹脂によるスクリーン
印刷もしくはAg、A!:1などの蒸着、スパッタリン
グ、もしくは金属箔の接着などの方法により形成される
。本発明の特徴はこの収集電極のバスバーと中空構造の
透明複層板の中間部材とが重なり合って積層されている
ことにある。上述した電気的に直列、並列接続した集積
型構造の場合は、その接続部分に収集電極のバスバーが
形成されていると光電変換部が増加することになり好ま
しい。
By the way, in order to effectively collect the photocurrent, the photovoltaic element uses a bus bar (A) as a collection electrode as shown in Figure 1.
and fingers (b) are screen printed with Ag-based resin or Ag, A! :1, etc., by vapor deposition, sputtering, or adhesion of metal foil. The feature of the present invention is that the bus bar of the collector electrode and the intermediate member of the transparent multi-layer plate having a hollow structure are laminated in an overlapping manner. In the case of the above-mentioned integrated structure in which electrical connections are made in series and parallel, it is preferable that a bus bar of a collecting electrode be formed at the connection portion, since this increases the number of photoelectric conversion units.

そしてこの本発明の太陽電池モジュールは、例えば厚さ
4端のポリカーボネート類のマルチリブ構造の複層構造
体、厚さ0.1ffffiのポリエステルフィルム基板
を用いた集積型非晶質シリコン太陽電池、ポリフッ化ビ
ニリデン/An金属箔/ポリフッ化ビニリデンからなる
封止材(厚さ0.3m)で構成した場合、全体厚さは高
々4.5m、重さは約1、OKg/尻で、耐衝撃強さは
鋼球5(10gの落下高さ5mに耐える。一方、該複層
構造体の代りに厚さ3.2顛の強化ガラスを用いた同一
構成の太陽電池の場合は全体厚さは3.7Mと、本発明
構成体より若干薄いが重さは約9.0に9/lriと大
巾に増え、耐衝撃強さは鋼球225gの落下高さ 1.
5mと大巾に下がる。この事実からも明らかな様に本発
明の太陽電池モジュールは、殿械的な強度を損うことな
く軽量化をはかることができ、しかも積層体構造の簡略
化が可能なことがわかった。
The solar cell module of the present invention includes, for example, a polycarbonate multi-rib multilayer structure with a thickness of 4 ends, an integrated amorphous silicon solar cell using a polyester film substrate with a thickness of 0.1 ffffi, and a polyfluoride polyester film substrate. When constructed from a sealing material (thickness 0.3 m) consisting of vinylidene/An metal foil/polyvinylidene fluoride, the total thickness is at most 4.5 m, the weight is approximately 1,000 kg/end, and the impact resistance is high. can withstand a drop height of 5 m from a steel ball 5 (10 g).On the other hand, in the case of a solar cell with the same configuration using tempered glass with a thickness of 3.2 mm instead of the multilayer structure, the overall thickness is 3.2 mm. 7M, which is slightly thinner than the structure of the present invention, but the weight has increased to about 9.0, which is 9/lri, and the impact resistance is higher than the drop height of a steel ball of 225g.
It goes down to a width of 5m. As is clear from this fact, it has been found that the solar cell module of the present invention can be made lighter without impairing its mechanical strength, and can also have a simpler laminate structure.

以下、本発明を実施例に基いて説明する。The present invention will be explained below based on examples.

〈実施例〉 光発電要素 第2図に実施例の光発電要素の側断面図を示す。<Example> photovoltaic elements FIG. 2 shows a side sectional view of the photovoltaic element of the example.

本例は高分子フィルムの基板21上に設けられた複数の
発電ユニットを直列接続し、その接続部分に収集電極の
バスバーが形成されている例で、その平面図は第1図と
セル数を除いて略同様である。
In this example, a plurality of power generation units provided on a polymer film substrate 21 are connected in series, and a collector electrode bus bar is formed at the connection part. Almost the same except for

図示の基板21の高分子フィルムとしては非晶質シリコ
ン堆積に必要な耐熱性を有する高分子フィルムならどれ
でも良いが、好ましくはポリエチレンテレフタレート(
PET)フィルム、ポリイミドフィルムなどが用いられ
る。図の例はPETフィルムを用いである。
The polymer film of the illustrated substrate 21 may be any polymer film that has the heat resistance necessary for amorphous silicon deposition, but preferably polyethylene terephthalate (
PET) film, polyimide film, etc. are used. The example shown uses PET film.

金属電極層22として0.5μm程度のAl1層と30
人程度のステンレス(SLJS)層を基板21上に順次
スパッタリング法を用いて堆積したAN/SUS積層体
を用いた。
As the metal electrode layer 22, an Al1 layer of about 0.5 μm and 30
An AN/SUS laminate in which human-sized stainless steel (SLJS) layers were sequentially deposited on a substrate 21 using a sputtering method was used.

光起電力層の非晶質シリコン半導体層23は周知のpi
n形構成を採用し、特開昭59−34668号公報に開
示のものと同様なシランガス等のグロー放電分解法を用
いて金属電極層22のステンレス層上に堆積した。
The amorphous silicon semiconductor layer 23 of the photovoltaic layer is a well-known Pi
An n-type structure was adopted and deposited on the stainless steel layer of the metal electrode layer 22 using a glow discharge decomposition method using silane gas or the like similar to that disclosed in JP-A-59-34668.

次にレーザスクライブ法による分割等の際の電極間短絡
防止のために非晶質シリコン半導体層23と透明電極層
24との界面に設ける電気絶縁性の絶縁樹脂層25とし
て、非晶質シリコン半導体層23上にエポキシ樹脂をス
クリーン印刷法を用いてレーザーでセル20aに分割加
工する溝部位にあらかじめ設けた。
Next, an amorphous silicon semiconductor is used as an electrically insulating insulating resin layer 25 provided at the interface between the amorphous silicon semiconductor layer 23 and the transparent electrode layer 24 to prevent short circuits between electrodes during division by laser scribing, etc. Epoxy resin was previously provided on the layer 23 at the groove portions to be divided into cells 20a using a laser using a screen printing method.

次に透明電極層24としてITO(酸化インジウム・酸
化スズ)層を電子ビーム蒸着あるいはスパッタリング法
によって6(10人程程度堆積し、PET // A文
/ S U S //非晶質シリコンpin//パター
ン化したエポキシ樹脂層/TTO構造の大面積の非晶質
薄膜太陽電池を得た。
Next, as a transparent electrode layer 24, an ITO (indium oxide/tin oxide) layer is deposited by electron beam evaporation or sputtering to form a PET film. A large-area amorphous thin film solar cell having a patterned epoxy resin layer/TTO structure was obtained.

次いで、このP E T // Aす/ S U S 
//非晶質シリコンpiniyパターン化したエポキシ
樹脂層〃■T○構造の非晶質太陽電池の10czX10
c+++角セルをYAGレーザーで、エポキシ樹脂層か
らなる前述の絶縁樹脂層25上を走査して金属電極層2
2まで及び透明電極層24のみを夫々溶融・蒸発させる
と共に必要に応じて除去して分割溝26を形成し、これ
に前記と同様の絶縁樹脂を充填し、3個の略3 c#r
×10cffi角のセル20aに分割した。なお、これ
ら分割された3個のセル20aを直列接続するために、
第1図のようにバスバ一部とフィンガ一部とを有するク
シ形の導電性インクからなる収集電極27を該セル20
a上にスクリーン印刷法を用いて設けた。
Then, this P E T // A S / S U S
//Amorphous silicon piny patterned epoxy resin layer〃■T○ structure amorphous solar cell 10czX10
The metal electrode layer 2 is formed by scanning the c+++ square cell with a YAG laser over the above-mentioned insulating resin layer 25 made of an epoxy resin layer.
2 and the transparent electrode layer 24, respectively, and remove them as necessary to form a dividing groove 26, which is then filled with the same insulating resin as above to form three approximately 3c#r.
It was divided into cells 20a of x10 cffi square. In addition, in order to connect these three divided cells 20a in series,
As shown in FIG.
a by using a screen printing method.

その復バスバ一部位の接続個所28にレーザ光を照射し
て隣り合ったセル20aの収集電極27すなわち透明電
極24と一方の金属電極層22とを溶融接続して電気的
接続をとり、光発電要素20としてセル20aを3直列
した集積型非晶質太陽電池を作った。
A laser beam is irradiated to the connection point 28 of one part of the return bus bar to melt and connect the collecting electrode 27, that is, the transparent electrode 24 of the adjacent cell 20a, and one metal electrode layer 22 to establish an electrical connection, thereby generating photovoltaic power generation. As the element 20, an integrated amorphous solar cell with three cells 20a connected in series was fabricated.

複層構造体 窓及び支持体となる復層板10は、ポリカーボネート樹
脂で押し出し成型により製造された帝人化成■製パンラ
イトユニ(商品名)を110mX  110酎にチップ
ソーにより切断して用いた。第3図。
The double-layer board 10 serving as the multilayer structure window and support was used by cutting Panlite Uni (trade name) manufactured by Teijin Chemicals Ltd., manufactured by extrusion molding from polycarbonate resin, into a 110 m x 110 mm piece using a tip saw. Figure 3.

第4図に図示の通り用いたパンライトユニは、厚さ1履
の2枚のシート12.13を30ia+間隔で設けた厚
さ1mmで高さ7aiのリブからなる中間部材11で結
合し、30W!RX7m+の角柱状のセル至14を有す
るマルチリブ構造で全体の厚さは9#I1mその重さは
約2Ky/rdであった。そして、その一方の面に約3
(10入庫の酸化インジウムからなる耐湿vA15を設
けた。
As shown in FIG. 4, the panlite uni used consists of two sheets 12 and 13 each having a thickness of 1 shoe connected by an intermediate member 11 consisting of ribs 1 mm thick and 7 ai in height spaced apart by 30 ia. 30W! It had a multi-rib structure with RX7m+ prismatic cells to 14, the total thickness was 9#I1m, and the weight was about 2Ky/rd. And on one side about 3
(Moisture-resistant vA15 made of indium oxide of 10% was installed.

モジュールの製造 上記複層板10と前述の集積型非晶質シリコン太陽電池
からなる光発電要素20とを張り合せるに際して充填層
31として厚さ0.4Mのエチレンビニルアセテート樹
脂を両者の間に挿入する。一方光発電要素20の反対側
の面に同様に第2の充填層32として厚さ0.4Mのエ
チレンビニルアセテート樹脂を介して封止材40を重ね
合せた。なお封止材40としては厚さ0.015#のア
ルミニウム金属フォイル。
Manufacture of module When laminating the multilayer plate 10 and the photovoltaic element 20 made of the integrated amorphous silicon solar cell described above, an ethylene vinyl acetate resin having a thickness of 0.4 M is inserted between them as a filling layer 31. do. On the other hand, on the opposite side of the photovoltaic element 20, a sealing material 40 was similarly laminated as a second filling layer 32 via an ethylene vinyl acetate resin having a thickness of 0.4M. Note that the sealing material 40 is an aluminum metal foil with a thickness of 0.015#.

エチレンビニルアセテート樹脂、厚さ0.075mのポ
リエステルフィルムの3層構成の防湿性フィルムを用い
た。次いで、この重ね合せ体を90℃と180℃の熱ロ
ール間に複層板10が90℃の熱ロール側になるように
送り込み、全体を熱圧着し本発明の太陽電池本体モジュ
ールを得た。
A three-layer moisture-proof film consisting of ethylene vinyl acetate resin and a 0.075 m thick polyester film was used. Next, this stacked body was fed between 90° C. and 180° C. hot rolls with the multilayer plate 10 facing the 90° C. hot roll side, and the whole was thermocompression bonded to obtain a solar cell main module of the present invention.

次いで、この本体モジュールをブチルゴムをシール剤3
3に用いてアルミニウム類の枠50により封止して第3
図、第4図に示す以下の太陽電池モジュールを形成した
Next, seal this main module with butyl rubber using sealant 3.
3 and sealed with an aluminum frame 50.
The following solar cell module shown in FIG. 4 was formed.

第3図は平面図であり、第4図はそのA−B断面図であ
る。
FIG. 3 is a plan view, and FIG. 4 is a sectional view taken along the line A-B.

なお、これらのモジュールを作製する際、第5図に示す
如く光発電要素20の収集電極のバスバー(イ)が複層
板10の中間部材11に重なる様にして、光発電要素2
0と複層板10を貼り合わせて実施例のモジュールを得
た。又比較例としてそれらが互いに直角に交わるように
貼り合わせたモジュールを作成した。そしてAM I 
(1(10mw /cti)ソーラーシミュレーター光
下で両モジュールのセル性能を測定した。セル性能の測
定結果を表−1に示す。
When manufacturing these modules, as shown in FIG.
0 and the multilayer board 10 were bonded together to obtain a module of an example. As a comparative example, a module was created in which these components were pasted together so that they intersected each other at right angles. And A.M.I.
The cell performance of both modules was measured under (10 mw/cti) solar simulator light. The cell performance measurement results are shown in Table 1.

表−1 表−1の結果かられかるように本発明のモジュールでは
、光電変換に寄与しないバスバ一部(イ)。
Table 1 As can be seen from the results in Table 1, in the module of the present invention, part of the bus bar (A) does not contribute to photoelectric conversion.

直列接続部28が、支持体の複層板1oの中間部材のリ
ブ11の位署に重なっているためモジュール化に伴なう
実質的な光電変換領域の面積の減少が必要最少限となる
。その結果、比較例に比し短絡電流が増加し、変換効率
が改善される。
Since the series connection portion 28 overlaps the position of the rib 11 of the intermediate member of the multilayer plate 1o of the support body, the actual reduction in the area of the photoelectric conversion region due to modularization is kept to the necessary minimum. As a result, short circuit current increases and conversion efficiency improves compared to the comparative example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる太陽光発電要素のバスバー、
フィンガーを示す平面図、第2図は、実施例の光発電要
素の側断面図、第3図は実施例の太陽電池モジュールの
平面図、第4図は第3図へ−Bでの断面図、第5図は実
施例の積層構成の説明図である。 10:複層板  2o:光発電要素 31.32:充填層  4o二封止材 33:シール剤   5o:枠
FIG. 1 shows a bus bar of a photovoltaic element according to the present invention,
A plan view showing the fingers, FIG. 2 is a side sectional view of the photovoltaic element of the example, FIG. 3 is a plan view of the solar cell module of the example, and FIG. 4 is a sectional view taken at FIG. 3-B. , FIG. 5 is an explanatory diagram of the laminated structure of the embodiment. 10: Multilayer board 2o: Photovoltaic element 31. 32: Filled layer 4o 2 sealing material 33: Sealing agent 5o: Frame

Claims (11)

【特許請求の範囲】[Claims] (1)太陽光発電要素の採光側に、非金属材料からなる
複数の透明板が所定間隔で配置した中間部材により結合
された中空構造の透明複層板からなる支持体が積層され
た太陽電池モジュールにおいて、該太陽光発電要素の収
集電極のバスバーと該支持体の中間部材とが重なり合う
ように積層されていることを特徴とする太陽電池モジュ
ール。
(1) A solar cell in which a support consisting of a transparent multilayer plate with a hollow structure connected by an intermediate member in which a plurality of transparent plates made of non-metallic materials are arranged at predetermined intervals is laminated on the daylighting side of the photovoltaic element. 1. A solar cell module characterized in that, in the module, a bus bar of a collection electrode of the solar power generation element and an intermediate member of the support are stacked so as to overlap.
(2)該太陽光発電要素が、可撓性の同一電気絶縁基板
上に設けられた複数の発電ユニットを直列及び/又は並
列接続した集積型構成であり、かつその直列及び/又は
並列接続された場所に収集電極のバスバーが形成されて
いる特許請求範囲第1項記載の太陽電池モジュール。
(2) The solar power generation element has an integrated configuration in which a plurality of power generation units provided on the same flexible electrically insulating substrate are connected in series and/or in parallel, and the solar power generation elements are connected in series and/or in parallel. 2. The solar cell module according to claim 1, wherein a bus bar of the collector electrode is formed at a location where the collector electrode is formed.
(3)前記透明複層板の中空部は全て外部に連通してお
り、この中空部が大気に連通するように封止されている
特許請求の範囲第1項及び第2項記載の太陽電池モジュ
ール。
(3) The solar cell according to claims 1 and 2, wherein all the hollow parts of the transparent multilayer plate communicate with the outside, and the hollow parts are sealed so as to communicate with the atmosphere. module.
(4)前記透明複層板はその中間部材が一定間隔で配さ
れたリブであり、中空部が平行な柱状セルに区画されて
いる特許請求の範囲第3項記載の太陽電池モジュール。
(4) The solar cell module according to claim 3, wherein the intermediate member of the transparent multilayer plate is ribs arranged at regular intervals, and the hollow portion is divided into parallel columnar cells.
(5)前記柱状セルが傾斜するように配置されている特
許請求の範囲第4項記載の太陽電池モジュール。
(5) The solar cell module according to claim 4, wherein the columnar cells are arranged to be inclined.
(6)前記透明複層板は合成樹脂製である特許請求の範
囲第1項〜第5項記載のいずれかの太陽電池モジュール
(6) The solar cell module according to any one of claims 1 to 5, wherein the transparent multilayer plate is made of synthetic resin.
(7)前記透明複層板はポリカーボネート樹脂製である
特許請求の範囲第6項記載の太陽電池モジュール。
(7) The solar cell module according to claim 6, wherein the transparent multilayer plate is made of polycarbonate resin.
(8)前記透明複層板は、その太陽光発電要素に面する
側の面に透明な耐湿膜が形成された透明複層板である特
許請求の範囲第6項若しくは第7項記載の太陽電池モジ
ュール。
(8) The solar cell according to claim 6 or 7, wherein the transparent multi-layer plate is a transparent multi-layer plate on which a transparent moisture-resistant film is formed on the side facing the photovoltaic element. battery module.
(9)前記透明複層板は、その大気に面する面に透明な
耐擦傷膜が形成された透明複層板である特許請求の請求
の範囲第1項〜第8項記載のいずれかの太陽電池モジュ
ール。
(9) The transparent multi-layer board is a transparent multi-layer board on which a transparent scratch-resistant film is formed on the surface facing the atmosphere. solar cell module.
(10)前記太陽光発電要素の背面側を封止材で封止し
た特許請求の範囲第1項〜第8項記載のいずれかの太陽
電池モジュール。
(10) The solar cell module according to any one of claims 1 to 8, wherein the back side of the solar power generation element is sealed with a sealing material.
(11)前記可撓性基板が高分子フィルムであり、かつ
発電ユニットが非晶質半導体である特許請求の範囲第1
0項記載の太陽電池モジュール。
(11) Claim 1, wherein the flexible substrate is a polymer film, and the power generation unit is an amorphous semiconductor.
The solar cell module according to item 0.
JP61247348A 1986-10-20 1986-10-20 Solar cell module Granted JPS63102277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247348A JPS63102277A (en) 1986-10-20 1986-10-20 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247348A JPS63102277A (en) 1986-10-20 1986-10-20 Solar cell module

Publications (2)

Publication Number Publication Date
JPS63102277A true JPS63102277A (en) 1988-05-07
JPH0543307B2 JPH0543307B2 (en) 1993-07-01

Family

ID=17162074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247348A Granted JPS63102277A (en) 1986-10-20 1986-10-20 Solar cell module

Country Status (1)

Country Link
JP (1) JPS63102277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661518A (en) * 1992-06-08 1994-03-04 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2018157176A (en) * 2016-09-21 2018-10-04 株式会社東芝 Solar cell module and solar power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661518A (en) * 1992-06-08 1994-03-04 Kanegafuchi Chem Ind Co Ltd Solar battery module
JP2018157176A (en) * 2016-09-21 2018-10-04 株式会社東芝 Solar cell module and solar power generation system

Also Published As

Publication number Publication date
JPH0543307B2 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
JPH065782B2 (en) Solar cell module
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
KR100225054B1 (en) Solar cell module and manufacturing method thereof
KR20070098723A (en) Photovoltaic module
US20220140168A1 (en) Back-contact solar cell conductive composite board and preparation method therefor, back-contact solar cell interconnection structure, and double-sided back-contact solar cell module
CN102916067A (en) Building material type double-sided glass photovoltaic component and manufacturing method thereof
JP2012199284A (en) Solar battery module, and method of manufacturing the same
CN202205777U (en) Building-material-type double-faced glass photovoltaic component
WO2013066815A1 (en) Solar cell module and process for making the same
US20130109125A1 (en) Integrated back-sheet for back contact photovoltaic module
WO2013066813A1 (en) Integrated back-sheet for back contact photovoltaic module
JP2008300449A (en) Solar cell module and method of manufacturing the same
WO2010010821A1 (en) Solar battery module and method for manufacturing the same
JP2008053510A (en) Rear surface protecting sheet for solar cell
JPH07142756A (en) Solar battery module and its manufacture
CN211125670U (en) Tower-type laminated tile solar photovoltaic module capable of being integrated on roof of automobile
US20130104960A1 (en) Integrated back-sheet for back contact photovoltaic module
KR20160053390A (en) Electrodes integrated solar cell protection sheet and thereof manufacturing method, and solar cell modules manufactured using that
WO2023036288A1 (en) Flexible photovoltaic cell assembly and manufacturing method therefor
JPH0294574A (en) Flexible solar cell sheet
JPS63102277A (en) Solar cell module
JP2728416B2 (en) Solar cell sheet
JP2006295145A (en) Manufacturing method of solar cell module
JP2005252117A (en) Recycle enabled solar battery module
JP2000252510A (en) Solar cell module, manufacture and installation method thereof, and photovoltaic power generation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees