JPH0541205A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH0541205A
JPH0541205A JP3197860A JP19786091A JPH0541205A JP H0541205 A JPH0541205 A JP H0541205A JP 3197860 A JP3197860 A JP 3197860A JP 19786091 A JP19786091 A JP 19786091A JP H0541205 A JPH0541205 A JP H0541205A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
alloy
nickel
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197860A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Katsuharu Ikeda
克治 池田
Kazuhiro Takeno
和太 武野
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP3197860A priority Critical patent/JPH0541205A/en
Publication of JPH0541205A publication Critical patent/JPH0541205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To secure safety sufficiently even if a battery is improperly used by forming at least a part of a current path connecting a nickel positive electrode and a battery positive electrode terminal by a fusible alloy having a melting point of 100-200 deg.C. CONSTITUTION:At least a part of a current path connecting a nickel positive electrode and a battery positive electrode terminal 1 is formed by a fusible alloy 2 having a melting point of 100-200 deg.C in an alkaline secondary battery containing a group of plates having a nickel positive electrode. First a paste type nickel positive electrode is made, and to its end portion one end of a tab is welded so as to form a terminal for welding 1, whose both end portions are made of Ni or Ni plated Fe. The center portion of the tab is formed by a fusible metal 2 having a melting point of 120 deg.C. The alloy 2 is covered by a heat contraction tube made of fluororesin, so that the alloy 2 is isolated from electrolyte and so as to prevent the fused alloy 2 from causing an internal short circuit. Thereby it is possible to secure safety sufficiently even if the battery itself is used improperly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ二次電池に関す
る。
FIELD OF THE INVENTION The present invention relates to an alkaline secondary battery.

【0002】[0002]

【従来の技術】近年、電子部品の高集積化や実装技術の
進歩により電子機器のポータブル化,コードレス化が進
んでいる。それに伴って、前記電子機器を駆動するため
のアルカリ二次電池に対する高容量化の要求が高まって
きている。
2. Description of the Related Art In recent years, electronic devices are becoming more portable and cordless due to higher integration of electronic components and advances in packaging technology. Along with this, there is an increasing demand for higher capacity of alkaline secondary batteries for driving the electronic devices.

【0003】こうした高容量化の要求に応えるため、ニ
ッケルカドミウム二次電池では、電池構造を改良した
り、容量規制電極であるニッケル電極の利用率を向上さ
せたり、或いは焼結式電極からペースト式電極にするこ
となどによって、電池容量が40%程度向上されてい
る。更に、負極に水素吸蔵合金を使用したニッケル水素
二次電池では、ニッケルカドミウム二次電池の2倍程度
にまで電池容量を高めたものが開発されている。
In order to meet the demand for higher capacity, the nickel-cadmium secondary battery is improved in battery structure, the utilization rate of the nickel electrode as the capacity regulating electrode is improved, or the sintered type electrode is changed to the paste type electrode. By using electrodes, the battery capacity is improved by about 40%. Furthermore, as a nickel-hydrogen secondary battery using a hydrogen storage alloy for the negative electrode, one having a battery capacity increased to about twice that of the nickel-cadmium secondary battery has been developed.

【0004】しかしながら、前記アルカリ二次電池で
は、不適切な使用がなされた場合において事故が発生す
る危険性がある。例えば、満充電状態のAAサイズのニ
ッケルカドミウム二次電池を短絡させた場合、短絡初期
に30〜50A程度の極めて大きな電流が流れて電池温
度が急激に上昇し、その結果、該電池に設けられている
安全弁から電解液が吹き出したり、電池缶の一部が赤熱
する等の危険性がある。また、急速充電装置の故障等に
よってアルカリ二次電池が大電流で連続的に過充電され
た場合においても、前述したような危険性がある。こう
したアルカリ二次電池が不適切に使用された場合の危険
性は、該アルカリ二次電池の高容量化に伴って増大す
る。
However, the alkaline secondary battery has a risk of causing an accident when it is used improperly. For example, when an AA size nickel cadmium secondary battery in a fully charged state is short-circuited, an extremely large current of about 30 to 50 A flows at the beginning of the short circuit and the battery temperature rises sharply. There is a risk that the electrolyte will blow out from the safety valve that is installed, and that part of the battery can will glow red. Further, even when the alkaline secondary battery is continuously overcharged with a large current due to a failure of the quick charging device or the like, there is a risk as described above. The risk of inappropriate use of such an alkaline secondary battery increases as the capacity of the alkaline secondary battery increases.

【0005】なお、複数本のアルカリ二次電池をケース
内部に収納した組電池では、不適切な使用がなされた際
の事故を回避するために、ケース内部に温度ヒューズや
バイメタル式の過温度プロテクター等の安全装置を組込
むことが行なわれている。しかしながら、電池単体で使
用する場合には全く安全対策を施すことができなかっ
た。
In the battery pack containing a plurality of alkaline secondary batteries inside the case, a thermal fuse or a bimetal type overtemperature protector is provided inside the case in order to avoid an accident when the battery is improperly used. Safety devices such as the above are incorporated. However, no safety measures could be taken when using the battery alone.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、不適切な使用がな
された場合においても安全性が十分に確保されたアルカ
リ二次電池を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the problems of the prior art, and provides an alkaline secondary battery having sufficient safety even when it is used improperly. It is the one we are trying to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、ニッケル正極
を有する電極群を収納したアルカリ二次電池において、
前記ニッケル正極と電池正極端子とを接続する導電性部
材の少なくとも一部を融点が100〜200℃の易融合
金により形成したことを特徴とするアルカリ二次電池で
ある。
The present invention relates to an alkaline secondary battery containing an electrode group having a nickel positive electrode,
The alkaline secondary battery is characterized in that at least a part of a conductive member that connects the nickel positive electrode and a battery positive electrode terminal is formed of fusible alloy having a melting point of 100 to 200 ° C.

【0008】前記ニッケル正極と共に電極群を構成する
負極としては、例えば水素吸蔵合金負極、カドミウム負
極などが挙げられる。例えば、非焼結式ニッケル正極と
水素吸蔵合金負極との間にセパレータを介在した電極群
の場合、以下に説明する構成となる。
Examples of the negative electrode which constitutes the electrode group together with the nickel positive electrode include a hydrogen storage alloy negative electrode and a cadmium negative electrode. For example, in the case of an electrode group in which a separator is interposed between a non-sintered nickel positive electrode and a hydrogen storage alloy negative electrode, the configuration will be described below.

【0009】前記非焼結式ニッケル正極としては、活物
質としての水酸化ニッケルに結着剤及び必要に応じて酸
化コバルトなどを配合した組成の合剤を集電体である導
電性芯体に形成したものが挙げられる。
As the non-sintered nickel positive electrode, a mixture of nickel hydroxide as an active material and a binder and, if necessary, cobalt oxide is added to a conductive core body as a current collector. What was formed is mentioned.

【0010】前記正極の合剤中に配合される結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウムなどのポリアクリル酸塩及びカルボキシメチルセ
ルロース(CMC)等を挙げることができる。かかる結
着剤の配合割合は、水酸化ニッケル100重量部に対し
て0.1〜2重量部の範囲とすることが望ましい。
Examples of the binder to be mixed in the positive electrode mixture include polyacrylic acid salts such as sodium polyacrylate and potassium polyacrylate, and carboxymethyl cellulose (CMC). The compounding ratio of such a binder is preferably in the range of 0.1 to 2 parts by weight with respect to 100 parts by weight of nickel hydroxide.

【0011】前記正極の導電性芯体としては、例えばパ
ンチドメタル、エキスパンドメタル、金網等の二次元構
造のもの、発泡メタル、金属繊維の焼結基板、フェルト
状金属多孔体などの三次元構造のもの等を挙げることが
できる。
The conductive core of the positive electrode has, for example, a two-dimensional structure such as punched metal, expanded metal, or wire mesh, three-dimensional structure such as foam metal, a sintered substrate of metal fibers, or a felt-like metal porous body. And the like.

【0012】前記非焼結式ニッケル正極は、例えば前記
水酸化ニッケル、結着剤、及び酸化コバルトなどを水の
存在下で混練してペーストを調製し、このペーストを前
記導電性芯体に塗布、乾燥した後、ローラプレスを行な
うことにより製造される。前記水素吸蔵合金負極として
は、水素吸蔵合金粉末及び導電材粉末と結着剤を配合し
た組成の合剤を集電体である導電性芯体に形成したもの
が挙げられる。
The non-sintered nickel positive electrode is prepared by, for example, kneading the nickel hydroxide, the binder, and cobalt oxide in the presence of water to prepare a paste, and applying the paste to the conductive core. It is manufactured by performing roller pressing after drying. Examples of the hydrogen storage alloy negative electrode include a mixture of a hydrogen storage alloy powder, a conductive material powder, and a binder, which is formed on a conductive core body which is a current collector.

【0013】前記負極の合剤中に配合される水素吸蔵合
金としては、格別制限されるものではなく、電解液中で
電気化学的に発生させた水素を吸蔵でき、かつ放電時に
その吸蔵水素を容易に放出できるものであればよい。例
えば、一般式XY5-a a (但し、XはLaを含む希土
類元素、YはNi、ZはCo、Mn、Al、Fe、T
i、Cu、Zn、Zr、Cr、V、Bから選ばれる少な
くとも1種の元素、aは0≦a<2.0を示す)にて表
されるものが用いられる。具体的にはLaNi5、Mm
Ni5 、LmNi5 (Lm;ランタン富化したミッシュ
メタル)、及びこれらのNiの一部をCo、Mn、A
l、Fe、Ti、Cu、Zn、Zr、Cr、V、Bのよ
うな元素で置換した多元素系のものを挙げることができ
る。
The hydrogen storage alloy blended in the mixture of the negative electrode is not particularly limited, and can store hydrogen electrochemically generated in the electrolytic solution and can absorb the stored hydrogen during discharge. Any substance that can be easily released may be used. For example, the general formula XY 5-a Z a (where X is a rare earth element containing La, Y is Ni, Z is Co, Mn, Al, Fe, T
At least one element selected from i, Cu, Zn, Zr, Cr, V and B, and a represented by 0 ≦ a <2.0) is used. Specifically, LaNi 5 , Mm
Ni 5 , LmNi 5 (Lm; lanthanum-enriched misch metal), and a part of these Nis as Co, Mn, A
Examples thereof include multi-element type elements substituted with elements such as 1, Fe, Ti, Cu, Zn, Zr, Cr, V, and B.

【0014】前記負極の合剤中に配合される導電材粉末
としては、例えばカーボンブラック、黒鉛、アセチレン
ブラック等を挙げることができる。かかる導電材粉末の
配合割合は、水素吸蔵合金粉末100重量部に対して
0.1〜4重量部の範囲とすることが望ましい。より好
ましい導電性粉末の配合割合は、水素吸蔵合金粉末10
0重量部に対して0.1〜2重量部の範囲である。
Examples of the conductive material powder blended in the mixture for the negative electrode include carbon black, graphite and acetylene black. The mixing ratio of the conductive material powder is preferably in the range of 0.1 to 4 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. A more preferable mixing ratio of the conductive powder is 10% hydrogen storage alloy powder.
It is in the range of 0.1 to 2 parts by weight with respect to 0 parts by weight.

【0015】前記負極の合剤中に配合される結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウムなどのポリアクリル酸塩、ポリテトラフルオロエ
チレン(PTFE)などのフッ素系樹脂、及びカルボキ
シメチルセルロース(CMC)等を挙げることができ
る。かかる結着剤の配合割合は、水素吸蔵合金粉末10
0重量部に対して0.1〜5重量部の範囲とすることが
望ましい。
Examples of the binder to be blended in the negative electrode mixture include polyacrylic acid salts such as sodium polyacrylate and potassium polyacrylate, fluororesins such as polytetrafluoroethylene (PTFE), and Carboxymethyl cellulose (CMC) etc. can be mentioned. The blending ratio of the binder is 10% hydrogen storage alloy powder.
It is desirable that the amount be in the range of 0.1 to 5 parts by weight relative to 0 parts by weight.

【0016】前記負極の導電性芯体としては、例えばパ
ンチドメタル、エキスパンドメタル、金網等の二次元構
造のもの、発泡メタル、金属繊維の焼結基板、フェルト
状金属多孔体などの三次元構造のもの等を挙げることが
できる。
The conductive core of the negative electrode has, for example, a two-dimensional structure such as punched metal, expanded metal, or wire mesh, three-dimensional structure such as foam metal, a sintered substrate of metal fibers, or a felt-like metal porous body. And the like.

【0017】前記水素吸蔵合金負極は、例えば前記水素
吸蔵合金粉末、導電材粉末、及び結着剤などを水の存在
下で混練してペーストを調製し、このペーストを前記導
電性芯体に塗布、乾燥した後、ローラプレスを行なうこ
とにより製造される。
The hydrogen storage alloy negative electrode is prepared by, for example, kneading the hydrogen storage alloy powder, the conductive material powder, and the binder in the presence of water to prepare a paste, and applying the paste to the conductive core. It is manufactured by performing roller pressing after drying.

【0018】前記非焼結式ニッケル正極と水素吸蔵合金
負極との間に介在されるセパレータとしては、ナイロ
ン、ポリプロピレン等の合成樹脂製不織布などを挙げる
ことができる。
Examples of the separator interposed between the non-sintered nickel positive electrode and the hydrogen storage alloy negative electrode include synthetic resin nonwoven fabrics such as nylon and polypropylene.

【0019】前記電流路の少なくとも一部を形成する融
点100〜200℃の易融合金としては、例えばマロッ
ト系合金、ニュートン系合金等のビスマス基合金などを
挙げることができる。かかる合金の融点を限定した理由
は、その融点を100℃未満にすると電池が適切に使用
されて電解液の沸騰などのない十分に安全な状態であっ
ても前記電流路の溶断によって使用不能となる。一方、
その融点が200℃を越えると電池が不適切に使用され
て危険な状態となっても前記電流路が溶断されないため
電池の安全性を十分に確保できない。
Examples of the fusible alloy having a melting point of 100 to 200 ° C. that forms at least a part of the current path include bismuth-based alloys such as Marott alloys and Newton alloys. The reason for limiting the melting point of such an alloy is that if the melting point is set to less than 100 ° C., even if the battery is used properly and is in a sufficiently safe state without boiling of the electrolytic solution, it cannot be used due to melting of the current path. Become. on the other hand,
If the melting point exceeds 200 ° C., even if the battery is used improperly and is in a dangerous state, the current path is not melted and the safety of the battery cannot be sufficiently ensured.

【0020】[0020]

【作用】本発明によれば、前記ニッケル正極と電池正極
端子とを接続する電流路の少なくとも一部を融点100
〜200℃の易融合金により形成することによって、不
適切な使用がなされた場合においても安全性が十分に確
保されたアルカリ二次電池を得ることができる。
According to the present invention, at least a part of the current path connecting the nickel positive electrode and the battery positive electrode terminal has a melting point of 100.
By forming the fusible alloy at ˜200 ° C., it is possible to obtain an alkaline secondary battery in which safety is sufficiently ensured even when improper use is made.

【0021】即ち、前記ニッケル正極と電池正極端子と
を接続する電流路には、充電,放電の区別なく全通電電
流が流れる。このため、短絡等の不適切な使用がなされ
て前記電流路に過大電流が流れた時に前記融点の易融合
金が溶融して該電流路が切断される。従って、短絡等の
不適切な使用がなされた場合において、電池内部に過大
電流が流れた時の電池温度の急激な上昇に起因した電解
液の吹き出し等の事故を未然に防止でき、アルカリ二次
電池の安全性を十分に確保できる。
That is, the entire energizing current flows in the current path connecting the nickel positive electrode and the battery positive electrode terminal without distinction between charging and discharging. Therefore, when an improper use such as a short circuit is made and an excessive current flows in the current path, the fusible alloy having the melting point is melted and the current path is disconnected. Therefore, in the case of improper use such as a short circuit, accidents such as electrolyte squirting due to a sudden rise in battery temperature when an excessive current flows inside the battery can be prevented, and the secondary alkaline Sufficient battery safety can be ensured.

【0022】また、アルカリ二次電池の寿命末期には、
電池内部に流れる電流値が小さくても電池温度が急激に
上昇するが、電池温度が前記溶融合金の融点付近に上昇
した時に該合金が溶融して前記電流路が切断される。従
って、寿命末期の状態で使用する場合においてもアルカ
リ二次電池の安全性を十分に確保できる。
At the end of the life of the alkaline secondary battery,
Although the battery temperature rises rapidly even when the current value flowing inside the battery is small, when the battery temperature rises near the melting point of the molten alloy, the alloy melts and the current path is cut. Therefore, the safety of the alkaline secondary battery can be sufficiently ensured even when it is used at the end of its life.

【0023】[0023]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1
Embodiments of the present invention will now be described in detail with reference to the drawings. Example 1

【0024】まず、水酸化ニッケル90重量部、添加剤
としての酸化コバルト10重量部、及び結着剤としての
CMC0.3重量部とポリアクリル酸ソーダ0.3重量
部を混合した後、撹拌しながらペースト状になるまで水
を添加して正極活物質ペーストを調製した。つづいて、
この正極活物質ペーストをフェルト状金属多孔体に充
填,乾燥,プレスしてペースト式ニッケル正極を作製し
た。ひきつづき、得られたニッケル正極の端部に図1に
示すようなタブの一端をスポット溶接器により溶接し
た。即ち、前記タブの両端部はNi又はNiメッキを施
したFeからなる溶接用端子1となっており、同タブの
中央部は、市販の爪付き温度ヒューズ等にも使用される
融点120℃の易融合金(Bi:Pb:Sn=46.
1:19.7:34.2)2により形成されている。前
記易融合金2には、該合金2を電解液から隔離するた
め、かつ溶融した該合金2によって内部短絡を起すのを
防止するため、図示しないフッ素樹脂製の熱収縮チュー
ブが被覆されている。
First, 90 parts by weight of nickel hydroxide, 10 parts by weight of cobalt oxide as an additive, 0.3 parts by weight of CMC as a binder and 0.3 parts by weight of sodium polyacrylate were mixed and stirred. While adding water until a paste form was obtained, a positive electrode active material paste was prepared. Continuing,
This positive electrode active material paste was filled in a felt-like metal porous body, dried, and pressed to produce a paste-type nickel positive electrode. Subsequently, one end of a tab as shown in FIG. 1 was welded to the end of the obtained nickel positive electrode by a spot welder. That is, both ends of the tab are the welding terminals 1 made of Ni or Fe plated with Ni, and the central portion of the tab has a melting point of 120 ° C. which is also used for a commercially available claw thermal fuse or the like. Easy Fusion (Bi: Pb: Sn = 46.
1: 19.7: 34.2) 2. The fusible alloy 2 is coated with a heat-shrinkable tube made of fluororesin (not shown) in order to isolate the alloy 2 from the electrolytic solution and to prevent the molten alloy 2 from causing an internal short circuit. ..

【0025】一方、ランタン富化ミッシュメタル(L
m)、ニッケル、コバルト、マンガン、アルミニウムを
組成がLmNi4.0 Co0.4 Mn0.3 Al0.3 となるよ
うに秤量して混合した後、高周波誘導炉で溶解,冷却し
て水素吸蔵合金インゴットを作製した。つづいて、この
インゴットを電気炉で熱処理した後、粉砕して水素吸蔵
合金粉末を得た。得られた水素吸蔵合金粉末にカーボン
ブラック1重量%、CMC0.5重量%、及びポリアク
リル酸ソーダ0.5重量%を混合した後、撹拌しながら
ペースト状になるまで水を添加して負極活物質ペースト
を調製した。ひきづつき、この負極活物質ペーストをパ
ンチドメタルに塗着,乾燥,プレスして水素吸蔵合金負
極を作製した。
On the other hand, lanthanum enriched misch metal (L
m), nickel, cobalt, manganese, and aluminum were weighed and mixed so that the composition was LmNi 4.0 Co 0.4 Mn 0.3 Al 0.3, and then melted and cooled in a high-frequency induction furnace to prepare a hydrogen storage alloy ingot. Subsequently, this ingot was heat-treated in an electric furnace and then pulverized to obtain a hydrogen storage alloy powder. After mixing 1% by weight of carbon black, 0.5% by weight of CMC, and 0.5% by weight of sodium polyacrylate with the obtained hydrogen storage alloy powder, water was added with stirring until a paste was formed, and the negative electrode activity was A material paste was prepared. The negative electrode active material paste was applied to a punched metal, dried, and pressed to prepare a hydrogen storage alloy negative electrode.

【0026】次いで、前記ニッケル正極と前記水素吸蔵
合金負極とを溶解温度が約220〜250℃のナイロン
セパレータを介して捲回し、これらを電池缶内に収納し
た。つづいて、前記電池缶内にアルカリ電解液を注液し
て封口した後、初充電を行なって図2に示すようなAA
サイズのニッケル水素二次電池を製造した。
Next, the nickel positive electrode and the hydrogen storage alloy negative electrode were wound around a nylon separator having a melting temperature of about 220 to 250 ° C., and these were housed in a battery can. Next, after pouring an alkaline electrolyte into the battery can and sealing it, an initial charge is performed to perform AA as shown in FIG.
A size nickel-hydrogen secondary battery was manufactured.

【0027】即ち、ニッケル正極3は、水素吸蔵合金負
極4との間にセパレータ5を介在して渦巻状に捲回さ
れ、有底円筒状の電池缶6内に収納されている。アルカ
リ電解液は、前記電池缶6内に収容されている。中央に
穴を有する円形の金属板7は、前記電池缶6の上部開口
部に配置されている。リング状の絶縁性ガスケット8
は、前記金属板7の周縁と前記電池缶6の上部開口部と
の間に配置され、前記上部開口部を内側に縮径するカシ
メ加工により前記電池缶6と前記金属板7とを気密に固
定している。タブ9は、一端が前記正極3の上端部に溶
接され、他端が前記金属板7の下面に溶接されている。
帽子形状をなす電池正極端子10は、前記金属板7上に
該金属板7の穴を覆うように配置されている。ゴム製の
安全弁11は、前記金属板7と前記正極端子10とによ
り囲まれた空間内に該金属板7の穴を塞ぐように配置さ
れている。中央に大きく開口した穴を有する円形の封口
板12は、この穴に前記正極端子10の突起部を通すよ
うに配置され、かつ前記正極端子10の鍔部を前記金属
板7と共に挟持することにより該正極端子10を固定し
ている。上下開口部を内方に折曲させた外装チューブ1
3は、前記電池缶6の外周面を被覆し、かつ前記封口板
12の周縁部を前記電池缶6の内方に折曲された開口端
部と共に挟持することにより該封口板12を固定してい
る。前記ニッケル正極3と前記正極端子10とを接続す
る電流路は、前記金属板7及びタブ9により構成されて
いる。 実施例2及び比較例1〜3 下記表1に示す融点の材料により中央部が形成されてい
るタブを用いた以外、実施例1と同様なニッケル水素二
次電池を製造した。
That is, the nickel positive electrode 3 is spirally wound with the separator 5 interposed between the nickel positive electrode 3 and the hydrogen storage alloy negative electrode 4, and is housed in the bottomed cylindrical battery can 6. The alkaline electrolyte is contained in the battery can 6. A circular metal plate 7 having a hole in the center is arranged in the upper opening of the battery can 6. Ring-shaped insulating gasket 8
Is disposed between the peripheral edge of the metal plate 7 and the upper opening of the battery can 6, and the battery can 6 and the metal plate 7 are hermetically sealed by caulking to reduce the diameter of the upper opening inward. It is fixed. The tab 9 has one end welded to the upper end of the positive electrode 3 and the other end welded to the lower surface of the metal plate 7.
The hat-shaped battery positive electrode terminal 10 is arranged on the metal plate 7 so as to cover the hole of the metal plate 7. The rubber safety valve 11 is arranged so as to close the hole of the metal plate 7 in the space surrounded by the metal plate 7 and the positive electrode terminal 10. The circular sealing plate 12 having a hole with a large opening in the center is arranged so as to pass the projection of the positive electrode terminal 10 through this hole, and the flange of the positive electrode terminal 10 is clamped together with the metal plate 7. The positive electrode terminal 10 is fixed. Exterior tube 1 with upper and lower openings bent inward
3 fixes the sealing plate 12 by covering the outer peripheral surface of the battery can 6 and sandwiching the peripheral edge of the sealing plate 12 with the inwardly bent opening end of the battery can 6. ing. A current path connecting the nickel positive electrode 3 and the positive electrode terminal 10 is constituted by the metal plate 7 and the tab 9. Example 2 and Comparative Examples 1 to 3 A nickel-hydrogen secondary battery similar to that of Example 1 was manufactured except that a tab having a central portion made of a material having a melting point shown in Table 1 below was used.

【0028】得られた実施例1,2及び比較例1〜3の
電池について、各電池の側面に熱電対を張付けて電池温
度を測定しながら、適切に使用された場合を想定して充
放電装置を用いて1CmAで200%充電し、1Aで
0.8Vまで放電する充放電を10サイクル繰返す試験
を行なった。この試験において電池特性が安定した10
サイクル目の充電終了後の各電池の放電容量、及び同1
0サイクル目の充電時の各電池側面の最高到達温度を調
べた。更に、この試験後の各電池を分解してタブの溶断
の有無を調べた。これらの結果を下記表1に併記する。
なお、比較例3の電池では、1CmAでの200%充電
中にタブが溶断したため放電容量を測定できなかった。
また、実施例1の電池を1CmAで200%充電した時
における充電電気量に対する電池温度の変化を図3に示
す。
Regarding the batteries of Examples 1 and 2 and Comparative Examples 1 to 3 thus obtained, charging and discharging were performed assuming that the batteries were properly used while measuring the battery temperature by attaching a thermocouple to the side surface of each battery. Using the apparatus, a test was performed in which charging / discharging was performed in which the battery was charged to 200% at 1 CmA and discharged to 0.8 V at 1 A for 10 cycles. Battery characteristics were stable in this test 10
The discharge capacity of each battery after the end of charging in the second cycle, and
The maximum temperature reached on the side surface of each battery during the 0th cycle charging was examined. Further, each battery after this test was disassembled to examine whether or not the tab was melted. The results are also shown in Table 1 below.
In addition, in the battery of Comparative Example 3, the discharge capacity could not be measured because the tab melted down during 200% charging at 1 CmA.
Further, FIG. 3 shows changes in the battery temperature with respect to the amount of charged electricity when the battery of Example 1 was charged to 200% at 1 CmA.

【0029】更に、実施例1,2及び比較例1〜3の電
池について、電池温度を測定しながら急速充電装置が故
障した場合を想定して充電不能となるまで5Aで連続充
電する試験を行なった。この試験において各電池の最高
到達温度を調べた。更に、この試験後の各電池を分解し
てタブの溶断の有無を調べた。これらの結果を下記表1
に併記する。
Further, the batteries of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to a test of continuously charging at 5 A until the batteries could not be charged, assuming that the rapid charging device failed while measuring the battery temperature. It was In this test, the maximum temperature reached for each battery was examined. Further, each battery after this test was disassembled to examine whether or not the tab was melted. These results are shown in Table 1 below.
Also described in.

【0030】実施例1,2及び比較例1〜3の電池につ
いて、電池側面の温度を測定しながら1/3CmAで1
50%充電した後、短絡させる試験を行なった。この試
験において各電池側面の最高到達温度を調べた。更に、
この試験後の各電池を分解してタブの溶断の有無を調べ
た。これらの結果を下記表1に併記する。
For the batteries of Examples 1 and 2 and Comparative Examples 1 to 3, while measuring the temperature on the side surface of the battery, 1 at 1/3 CmA was applied.
After charging 50%, a short circuit test was performed. In this test, the maximum temperature reached on the side surface of each battery was examined. Furthermore,
After the test, each battery was disassembled to check whether the tab was blown. The results are also shown in Table 1 below.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように実施例1,2の電
池は、5Aでの連続充電や短絡などの不適切な使用がな
された場合において、タブが溶断されて電池温度が20
0℃以下に抑えられており、安全性が十分に確保されて
いることがわかる。これは、前記タブの中央部を形成す
る易融合金の融点が100〜200℃であるため、不適
切な使用による電池温度の上昇によって該易融合金が溶
融したことによるものである。
As is apparent from Table 1, the batteries of Examples 1 and 2 were blown out by the tabs and the battery temperature was 20 when the batteries were improperly used such as continuous charging at 5 A or short circuit.
It can be seen that the temperature is suppressed to 0 ° C or lower, and the safety is sufficiently secured. This is because the melting point of the fusible alloy forming the central portion of the tab is 100 to 200 ° C., so that the fusible alloy is melted due to an increase in battery temperature due to improper use.

【0033】これに対し、比較例1の電池は、5Aでの
連続充電や短絡などの不適切な使用がなされた場合にお
いてもタブが溶断されないため、電池温度が200℃を
大きく越えて危険な状態を招いている。事実、試験後の
電池を分解することによりナイロンセパレータが溶融し
て内部短絡を起していることがわかった。
On the other hand, in the battery of Comparative Example 1, the tab is not blown out even if the battery is improperly used such as continuous charging at 5 A or short circuit, and the battery temperature greatly exceeds 200 ° C., which is dangerous. Inviting the state. In fact, it was found that by disassembling the battery after the test, the nylon separator melted and caused an internal short circuit.

【0034】比較例2の電池は、5Aでの連続充電や短
絡などの不適切な使用がなされた場合において、タブが
溶断されているものの、比較例1の電池と同様に電池温
度が200℃を大きく越えて危険な状態を招いている。
これは、前記タブの中央部を形成する易融合金の融点が
200℃を越えているため、該タブが溶断する前にナイ
ロンセパレータが溶融して内部短絡を起し、その結果、
電池内部に極めて大きな電流が流れて電池温度が急激に
上昇したことによるものである。比較例3の電池は、1
CmAで200%充電するという適切な使用がなされた
場合においても、タブが溶断されて使用不能となること
がわかる。
The battery of Comparative Example 2 had a battery temperature of 200 ° C. like the battery of Comparative Example 1, although the tab was blown out after improper use such as continuous charging at 5 A or short circuit. It greatly exceeds and leads to a dangerous condition.
This is because the melting point of the fusible alloy forming the central portion of the tab exceeds 200 ° C., so that the nylon separator melts before the tab melts and causes an internal short circuit.
This is because an extremely large current flows inside the battery and the battery temperature rises sharply. The battery of Comparative Example 3 is 1
It can be seen that even when the proper use of charging 200% with CmA is made, the tab is fused and becomes unusable.

【0035】また、図3から明らかなように実施例1の
電池は、1CmAでの200%充電時において、充電電
気量が100%を越える領域,つまり過充電領域に入る
と電池温度が大きく上昇するが、その後、電池温度が9
0℃付近まで上昇すると充電による発熱量と外気への放
熱量とが平衡に達するため電池温度の上昇が停止する。
従って、適切な使用がなされている場合においては安全
性を十分に維持できることがわかる。なお、上記実施例
では、AAサイズの電池について説明したが、より大き
なサイズのAサイズ等の電池でも同様な効果が得られ
た。上記実施例では、ニッケル水素二次電池について説
明したが、ニッケルカドミウム二次電池でも同様な効果
が同様に得られた。
Further, as is apparent from FIG. 3, in the battery of Example 1, at 200% charge at 1 CmA, the battery temperature greatly rises when the amount of charged electricity exceeds 100%, that is, in the overcharge region. But then the battery temperature is 9
When the temperature rises to around 0 ° C, the amount of heat generated by charging and the amount of heat radiated to the outside air reach equilibrium, and the rise in battery temperature stops.
Therefore, it can be seen that the safety can be sufficiently maintained when used properly. In addition, although the AA size battery has been described in the above-described embodiment, a similar effect can be obtained with a larger size A size battery or the like. Although the nickel-hydrogen secondary battery has been described in the above embodiment, the same effect can be obtained also in the nickel-cadmium secondary battery.

【0036】[0036]

【発明の効果】以上詳述した如く、本発明によれば電池
単体で不適切な使用がなされた場合においても安全性が
十分に確保されたアルカリ二次電池を提供することがで
き、特に高容量化されたアルカリ二次電池において顕著
な効果を奏する。
As described in detail above, according to the present invention, it is possible to provide an alkaline secondary battery which is sufficiently secured in safety even when the battery is used improperly. A remarkable effect is achieved in the capacity-equipped alkaline secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のニッケル水素二次電池に用いたタブ
を示す説明図
FIG. 1 is an explanatory view showing a tab used in a nickel-hydrogen secondary battery of Example 1.

【図2】実施例1のニッケル水素二次電池を示す一部切
欠き斜視図
FIG. 2 is a partially cutaway perspective view showing a nickel-hydrogen secondary battery of Example 1.

【図3】実施例1のニッケル水素二次電池を1CmAで
200%充電した時における充電電気量に対する電池温
度の変化を示す特性図
FIG. 3 is a characteristic diagram showing changes in battery temperature with respect to the amount of charged electricity when the nickel-hydrogen secondary battery of Example 1 was charged to 200% at 1 CmA.

【符号の説明】[Explanation of symbols]

2…易融合金、3…ニッケル正極、4…水素吸蔵合金負
極、5…セパレータ、6…電池缶、7…金属板、9…タ
ブ、10…電池正極端子。
2 ... Easy fusion metal, 3 ... Nickel positive electrode, 4 ... Hydrogen storage alloy negative electrode, 5 ... Separator, 6 ... Battery can, 7 ... Metal plate, 9 ... Tab, 10 ... Battery positive electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武野 和太 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 (72)発明者 佐藤 優治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Kaita Takeno 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Within Toshiba Battery Co., Ltd. (72) Yuuji Sato 1 Komukai-Toshiba-cho, Kawasaki-shi, Kanagawa Address Company Toshiba Corporation Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル正極を有する電極群を収納した
アルカリ二次電池において、前記ニッケル正極と電池正
極端子とを接続する電流路の少なくとも一部を融点が1
00〜200℃の易融合金により形成したことを特徴と
するアルカリ二次電池。
1. In an alkaline secondary battery containing an electrode group having a nickel positive electrode, at least a part of a current path connecting the nickel positive electrode and a battery positive electrode has a melting point of 1.
An alkaline secondary battery, which is formed of easy fusion metal at a temperature of 0 to 200 ° C.
JP3197860A 1991-08-07 1991-08-07 Alkaline secondary battery Pending JPH0541205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197860A JPH0541205A (en) 1991-08-07 1991-08-07 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197860A JPH0541205A (en) 1991-08-07 1991-08-07 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH0541205A true JPH0541205A (en) 1993-02-19

Family

ID=16381537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197860A Pending JPH0541205A (en) 1991-08-07 1991-08-07 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH0541205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021519A1 (en) * 2012-08-02 2014-02-06 주식회사 엘지화학 Secondary-battery connecting part, and battery module and battery pack including same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021519A1 (en) * 2012-08-02 2014-02-06 주식회사 엘지화학 Secondary-battery connecting part, and battery module and battery pack including same
US8890648B2 (en) 2012-08-02 2014-11-18 Lg Chem, Ltd. Connecting element for secondary battery, and battery module and battery pack including the same

Similar Documents

Publication Publication Date Title
JP3480190B2 (en) Non-aqueous electrolyte secondary battery
KR100412625B1 (en) Nickel-hydrogen storage battery
JP2989313B2 (en) Battery device having protection element
JP2006277990A (en) Nonaqueous electrolyte secondary battery
JP2006260786A (en) Nonaqueous electrolyte secondary battery
JPH0541205A (en) Alkaline secondary battery
JP2001325957A (en) Alkaline secondary cell
US6197448B1 (en) Hydrogen storage alloy
JP3524744B2 (en) Sealed alkaline storage battery
JP3433580B2 (en) Lithium secondary battery
JP3094041B2 (en) Nickel hydrogen secondary battery module
JP2005032573A (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using it
JPH07272764A (en) Nonaqueous electrolytic secondary battery
JP3326274B2 (en) Sealed alkaline storage battery
JPS60258870A (en) Organic electrolyte lithium secondary battery
JP2002164085A (en) Nonaqueous electrolyte battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP2003197158A (en) Battery excellent in heat radiation capability and battery pack using it
JP3343413B2 (en) Alkaline secondary battery
JP2002280057A (en) Alkaline secondary battery
JPH1173994A (en) Lithium secondary battery
JPH1050293A (en) Electrochemical device
JPH05144432A (en) Electrode with hydrogen storage alloy
JPH0329884Y2 (en)
JPH10199565A (en) Manufacture of alkaline secondary battery and alkaline secondary battery manufactured thereby