JPH0539554A - Manufacture of shape memory alloy - Google Patents

Manufacture of shape memory alloy

Info

Publication number
JPH0539554A
JPH0539554A JP22104891A JP22104891A JPH0539554A JP H0539554 A JPH0539554 A JP H0539554A JP 22104891 A JP22104891 A JP 22104891A JP 22104891 A JP22104891 A JP 22104891A JP H0539554 A JPH0539554 A JP H0539554A
Authority
JP
Japan
Prior art keywords
shape
minutes
shape memory
memory
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22104891A
Other languages
Japanese (ja)
Inventor
Yoshiaki Shiyugo
嘉朗 守護
Takasumi Shimizu
孝純 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP22104891A priority Critical patent/JPH0539554A/en
Publication of JPH0539554A publication Critical patent/JPH0539554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Wire Processing (AREA)

Abstract

PURPOSE:To provide a shape memory allay small in settling at the time of repeatedly executing heating and cooling. CONSTITUTION:Alloy stock constituted of, by atom, 40 to 50% Ni, 5 to 12% Cu and the balance Ti is subjected to cold working at 10 to 30% draft and is thereafter subjected to shape memorizing treatment under the conditions, at 350 to 550 deg.C for to 120min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は形状記憶合金の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a shape memory alloy.

【0002】[0002]

【発明の背景】形状記憶合金は、低温状態(マルテンサ
イト相状態)で変形を加えてもこれを所定温度まで加温
すると予め記憶させてある形状に復元するもので、その
特異な性質を利用して様々な分野で用いられている。
BACKGROUND OF THE INVENTION Shape memory alloys, even when deformed at low temperature (martensite phase state), restore their shape to a previously stored shape when heated to a predetermined temperature. And is used in various fields.

【0003】その一つの利用形態として、これをコイル
状のばねに形成し、バイアスばね(通常のばね)と組み
合わせて二方向性の形状記憶素子と成し、繰返使用可能
なアクチュエ−タ等として用いるといったことが行われ
ている。
As one of its utilization forms, this is formed into a coil-shaped spring and is combined with a bias spring (normal spring) to form a bidirectional shape memory element, which can be repeatedly used. It is used as.

【0004】例えば形状記憶合金のコイルばねとバイア
スばねとをそれらが互いに押し合う向きに組合せセット
し、低温状態においてはバイアスばねのばね力で形状記
憶合金のばねを撓ませる一方、高温側においてはバイア
スばねを変形させつつ形状記憶合金のコイルばねを記憶
形状に復元させるのである。
For example, a coil spring of a shape memory alloy and a bias spring are combined and set in a direction in which they press each other, and the spring of the shape memory alloy is bent by the spring force of the bias spring in the low temperature state, while it is set in the high temperature side. The coil spring of shape memory alloy is restored to the memory shape while deforming the bias spring.

【0005】これは形状記憶合金が所定温度で形状回復
すると同時にその際に大きな回復力を伴うといった特性
を利用したものである。
This utilizes the characteristic that the shape memory alloy recovers its shape at a predetermined temperature and, at the same time, has a large recovery force.

【0006】ところで形状記憶合金は現在様々な組成の
ものが知られており、その一つにNiTi合金に第三元
素としてCuを添加した組成のものがある。
By the way, shape memory alloys having various compositions are known at present, and one of them is a composition obtained by adding Cu as a third element to a NiTi alloy.

【0007】NiTi合金は、Ni濃度の増加に伴い変
態温度が大幅に低下し、またFe,Co,Cr等の第三
元素の添加によっても変態温度は著しく低下するのが通
例であるが、等原子比のNiTi合金のNiをCuで置
換した場合十数%まで置換が可能であり、変態温度の低
下を示さず、却って上昇する傾向があることが知られて
いる。
In NiTi alloys, the transformation temperature greatly decreases as the Ni concentration increases, and it is customary that the transformation temperature also significantly decreases by the addition of a third element such as Fe, Co, Cr. It is known that when Ni in the NiTi alloy having an atomic ratio is replaced with Cu, it can be replaced up to ten percent, and the transformation temperature does not decrease, but rather tends to increase.

【0008】またCu置換により機械的性質も著しく変
化することが知られている。例えば10%置換したもの
ではマルテンサイト相の降伏応力が極端に小さくなり、
逆に母相状態ではNiTi合金に比し大きくなる。
Further, it is known that the mechanical properties are significantly changed by Cu substitution. For example, with 10% substitution, the yield stress of the martensite phase becomes extremely small,
On the contrary, in the matrix phase, it becomes larger than that of the NiTi alloy.

【0009】ところでNi−Ti−Cuから成る形状記
憶合金を用いて前述の如きコイルばねを構成し、各種目
的のアクチュエ−タ等として利用するとき、温度変化に
よる変形−形状回復を繰り返しているうちに形状回復力
が次第に低下し、いわゆるへたり現象を生ずるといった
問題がある。
By the way, when the coil spring as described above is formed by using the shape memory alloy composed of Ni-Ti-Cu and is used as an actuator for various purposes, the deformation-shape recovery due to temperature change is repeated. In addition, there is a problem that the shape recovery power gradually decreases and a so-called sag phenomenon occurs.

【0010】而してこのようなへたりが大きく現れる
と、アクチュエ−タ等としての機能が低下し、或いは設
定した通りに作動しなくなるといった問題を生ずる。
When such a sag appears largely, the function as an actuator or the like is deteriorated, or there is a problem that the actuator does not operate as set.

【0011】[0011]

【課題を解決するための手段】本発明はこのような課題
を解決するためになされたものであり、その要旨は、原
子比率でNi:40〜50%,Cu:5〜12%,残部
Tiから成る素材合金を加工率10〜30%で冷間加工
した後、350〜550℃,20〜120分の条件で記
憶処理を施すことにある。
The present invention has been made in order to solve the above problems, and the gist thereof is the atomic ratio of Ni: 40-50%, Cu: 5-12%, balance Ti. After cold working the material alloy consisting of 10 to 30% at a working rate, a memory treatment is performed under the conditions of 350 to 550 ° C. and 20 to 120 minutes.

【0012】以上のように本発明は冷間加工率及び記憶
処理条件を所定条件と成すことを特徴とするものであ
り、これにより使用状態で上記変形−形状回復(熱サイ
クル)が繰り返された場合において上記へたりを小さく
できる効果が得られる。
As described above, the present invention is characterized in that the cold working rate and the memory processing condition are set to predetermined conditions, whereby the above deformation-shape recovery (heat cycle) is repeated in the use state. In this case, the effect of reducing the settling can be obtained.

【0013】形状記憶合金を例えば上記のようなコイル
ばねとして構成した場合において、これに熱サイクルが
加えられたときコイルばねがへたりを生ずるのは、使用
中に転位その他の欠陥が組織中に現れることが原因と考
えられる。
When the shape memory alloy is formed as a coil spring as described above, for example, the coil spring is liable to be sagging when subjected to a thermal cycle, because dislocations and other defects are caused in the tissue during use. It is thought that the cause is appearance.

【0014】一方素材合金からこのようなコイルばねを
形成すべく冷間加工を施したときにも、同様に転位等の
欠陥が生じる。
On the other hand, when cold working is performed to form such a coil spring from the material alloy, defects such as dislocations similarly occur.

【0015】そこで本発明では使用中に現れるべき転位
等欠陥を予め現出させておくようにしたもので、このた
めの適正な加工率を求め、これを10〜30%の範囲に
確定したものである。
Therefore, in the present invention, defects such as dislocations that should appear during use are made to appear in advance, and an appropriate processing rate for this purpose is determined, and this is determined within the range of 10 to 30%. Is.

【0016】このような条件で素材合金に加工を施した
場合、現れるべき欠陥が予め現出せしめられるので、こ
れを例えばコイルばねに形成して使用し、熱サイクルを
繰返し加えたとき、初期状態からのへたりが相対的に少
なくなり、当初の形状回復力が良好に維持される。
When the material alloy is processed under such conditions, defects that should appear are revealed in advance. Therefore, when this is formed into a coil spring and used, for example, and repeatedly subjected to thermal cycles, the initial state The amount of settling is relatively small, and the initial shape recovery force is maintained well.

【0017】本発明は上記冷間加工率に加え、記憶処理
温度を350℃から550℃に規定するものである。
In the present invention, in addition to the above cold working rate, the memory processing temperature is regulated to 350 to 550 ° C.

【0018】Ni−Ti−Cu合金においては、従来記
憶処理を通常550℃〜750℃の高温で行っているの
が実情である。
In the Ni-Ti-Cu alloy, the conventional memory treatment is usually performed at a high temperature of 550 ° C to 750 ° C.

【0019】しかしながら本発明者の研究によると、か
かるNi−Ti−Cu合金において記憶処理の際の処理
温度は上記へたりに対して大きく影響を及ぼすことが判
明し、そこで適正な処理温度を求めたところ、従来行わ
れているよりも低温側、具体的には550℃以下の温度
で行うと良好であることが分かった。
However, according to the research conducted by the present inventor, it was found that the treatment temperature in the memory treatment of the Ni-Ti-Cu alloy had a great influence on the above-mentioned settling, and therefore an appropriate treatment temperature was found. However, it has been found that it is preferable to carry out at a temperature lower than that conventionally carried out, specifically at a temperature of 550 ° C. or lower.

【0020】但し350℃よりも低い温度で記憶処理を
行った場合、記憶処理が不十分となり、またスプリング
バックを起こし易くなる。それ故本発明では処理温度の
下限値を350℃としている。
However, when the memory processing is performed at a temperature lower than 350 ° C., the memory processing becomes insufficient and springback is likely to occur. Therefore, in the present invention, the lower limit of the processing temperature is 350 ° C.

【0021】一方処理時間については、これを20〜1
20分の範囲とすることが必要である。120分より長
くするとへたりの抑制効果が不十分となり、また逆に2
0分より短い時間であると十分な記憶処理を施せなくな
る。
On the other hand, regarding the processing time, this is 20 to 1
It is necessary to set the range to 20 minutes. If it is longer than 120 minutes, the effect of suppressing fatigue will be insufficient, and conversely 2
If the time is shorter than 0 minutes, sufficient storage processing cannot be performed.

【0022】[0022]

【実施例】次に本発明の特徴を更に明確にすべく、以下
にその実施例を詳述する。原子比率でNi:42.8
%,Ti:50.2%,Cu:7.0%の組成の合金を
溶解,鍛造,圧延した後加工率30%で冷間伸線加工
し、線径1.0mmφの線材とした。
EXAMPLES In order to further clarify the characteristics of the present invention, examples thereof will be described in detail below. Ni: 42.8 by atomic ratio
%, Ti: 50.2%, Cu: 7.0% alloy was melted, forged and rolled, and then cold drawn at a working rate of 30% to obtain a wire having a wire diameter of 1.0 mmφ.

【0023】次にこの線材から巻径9.0mm,巻数5
回,コイルピッチ4.0mm,高さ22mmのコイルばねを
作製し、次いで形状拘束状態で記憶処理を行った。記憶
処理は400℃×30分の条件で行った。
Next, from this wire, the winding diameter is 9.0 mm and the number of windings is 5
Once, a coil spring having a coil pitch of 4.0 mm and a height of 22 mm was manufactured, and then a memory process was performed in a shape-restricted state. The memory treatment was performed under the condition of 400 ° C. × 30 minutes.

【0024】次にこのコイルばねを定歪状態(ばね高さ
10mm)に保持した状態で20℃〜90℃の熱サイクル
を加え、形状回復力を測定した。なおここで熱サイクル
は20℃,90℃にそれぞれ1分間保持の条件で加え
た。
Next, while the coil spring was kept in a constant strain state (spring height 10 mm), a heat cycle of 20 ° C. to 90 ° C. was applied to measure the shape recovery force. The heat cycle was applied at 20 ° C. and 90 ° C. for 1 minute each.

【0025】また併せて処理温度を種々変えて同様の試
験を行い、形状回復力を測定した。それらの結果が図
1,図2,図3に示してある。
In addition, the same test was conducted by changing the treatment temperature variously and the shape recovery force was measured. The results are shown in FIGS. 1, 2 and 3.

【0026】なお図1は400℃×30分の条件で記憶
処理した場合において熱サイクルを加えない状態,熱サ
イクルを1000回,5000回加えた後の形状回復力
を、横軸に温度、縦軸に発生力(形状回復力)をとって
示したものである。
FIG. 1 shows the shape recovery force after the heat cycle was applied 1000 times and 5000 times when the memory treatment was carried out under the condition of 400 ° C. × 30 minutes and the heat recovery was applied 1000 times and 5000 times. It is shown by taking the generated force (shape recovery force) on the shaft.

【0027】また図2は記憶処理を700℃×30分の
条件で行った場合の図1に相当する図である。
FIG. 2 is a diagram corresponding to FIG. 1 when the storage process is performed under the condition of 700 ° C. × 30 minutes.

【0028】一方図3は熱サイクルと形状回復力との関
係に及ぼす熱処理温度の影響を表したものであって、横
軸に熱サイクルの回数を、縦軸に熱サイクルを加えた後
の発生力(形状回復力)を初期状態の発生力に対する比
率で示している。
On the other hand, FIG. 3 shows the effect of the heat treatment temperature on the relationship between the heat cycle and the shape recovery force. The number of heat cycles is plotted along the horizontal axis and the heat cycle is plotted along the vertical axis. The force (shape recovery force) is shown as a ratio to the generated force in the initial state.

【0029】以上の結果特に図3の結果から、記憶処理
温度として本発明の範囲である400℃,500℃を採
用したものはへたりが少ないのに比べて、処理温度とし
て600℃,700℃を採用したものはへたりが大き
く、且つなかなか安定しない傾向にあることが分かる。
From the above results, particularly from the results of FIG. 3, those employing the storage processing temperatures of 400 ° C. and 500 ° C., which are within the range of the present invention, have less settling, while the processing temperatures of 600 ° C. and 700 ° C. It can be seen that the ones that adopted are large in settling and tend to be unstable.

【0030】尚350℃より低い温度で記憶処理したも
のについては記憶処理が不十分となり、良好な結果が得
られなかった。
Regarding the products which were stored at a temperature lower than 350 ° C., the storage process was insufficient and good results were not obtained.

【0031】[実施例2]原子比率でNi:40.6
%,Cu:10.0%,残部Tiから成る組成の合金を
溶解,鍛造,圧延した後加工率5%,11.7%,20
%,28%で冷間伸線加工し、線径1.0mmφの線材と
した。
[Example 2] Ni: 40.6 in atomic ratio
%, Cu: 10.0%, the balance Ti is melted, forged and rolled, and then the working ratio is 5%, 11.7%, 20.
% And 28% were cold drawn to obtain a wire having a wire diameter of 1.0 mmφ.

【0032】次にこの線材から巻径9.0mm,巻数5
回,コイルピッチ4.0mm,高さ22mmのコイルばねを
作製し、次いで形状拘束状態で記憶処理を行った。記憶
処理は400℃×30分の条件で行った。
Next, from this wire, the winding diameter is 9.0 mm and the number of windings is 5
Once, a coil spring having a coil pitch of 4.0 mm and a height of 22 mm was manufactured, and then a memory process was performed in a shape-restricted state. The memory treatment was performed under the condition of 400 ° C. × 30 minutes.

【0033】次にこのコイルばねを定歪状態(ばね高さ
10mm)に保持した状態で20℃〜90℃の熱サイクル
を5000回まで加えた。なおここで熱サイクルは20
℃,90℃にそれぞれ1分間保持の条件で加えた。
Next, a thermal cycle of 20 ° C. to 90 ° C. was applied up to 5000 times while maintaining the coil spring in a constant strain state (spring height 10 mm). The heat cycle here is 20
C. and 90.degree. C. were added under the condition of holding for 1 minute each.

【0034】そして熱サイクルを加えない状態での形状
回復力を基準とし、熱サイクルを1000回,5000
回加えた後の相対回復力を求めたところ、図4の如くで
あった。尚図中横軸は冷間加工率を、縦軸は相対回復力
を示している。
Then, based on the shape recovery force without heat cycle, the heat cycle is repeated 1000 times, 5000 times.
When the relative recovery force after the addition was calculated, it was as shown in FIG. In the figure, the horizontal axis represents the cold working rate and the vertical axis represents the relative recovery force.

【0035】図4の結果から、10%未満の加工率で加
工を行った場合相対回復力が著しく低いことが分かる。
尚30%を越える加工率で加工を行った場合、割れが発
生し、製品とならなかった。
From the results shown in FIG. 4, it can be seen that the relative recovery force is remarkably low when processing is performed at a processing rate of less than 10%.
When the processing rate was over 30%, cracking occurred and the product was not produced.

【0036】以上より、加工率としては10〜30%が
適当であることが分かる。
From the above, it can be seen that a suitable processing rate is 10 to 30%.

【0037】[実施例3]原子比率でNi:39.4
%,Cu:11.0%,残部Tiから成る組成の合金を
溶解,鍛造,圧延した後加工率20%で冷間伸線加工
し、線径1.0mmφの線材とした。
[Example 3] Ni: 39.4 in atomic ratio
%, Cu: 11.0%, the balance Ti was melted, forged, rolled, and then cold drawn at a working rate of 20% to obtain a wire rod having a wire diameter of 1.0 mmφ.

【0038】次にこの線材から巻径9.0mm,巻数5
回,コイルピッチ4.0mm,高さ22mmのコイルばねを
作製し、次いで形状拘束状態で記憶処理を行った。記憶
処理は400℃×15分,30分,60分,90分,1
20分,142分及び500℃×15分,30分,60
分,90分,120分,142分の各条件で行った。
Next, from this wire, the winding diameter is 9.0 mm and the winding number is 5
Once, a coil spring having a coil pitch of 4.0 mm and a height of 22 mm was manufactured, and then a memory process was performed in a shape-restricted state. Memory processing is 400 ℃ x 15 minutes, 30 minutes, 60 minutes, 90 minutes, 1
20 minutes, 142 minutes and 500 ° C x 15 minutes, 30 minutes, 60
Min, 90 minutes, 120 minutes, 142 minutes.

【0039】次にこのコイルばねを定歪状態(ばね高さ
10mm)に保持した状態で20℃〜90℃の熱サイクル
を5000回まで加えた。ここで熱サイクルは20℃,
90℃にそれぞれ1分間保持の条件で加えた。
Next, a thermal cycle of 20 ° C. to 90 ° C. was applied up to 5000 times while maintaining the coil spring in a constant strain state (spring height 10 mm). Here, the thermal cycle is 20 ℃,
They were added at 90 ° C. for 1 minute each.

【0040】そして熱サイクルを加えた後の形状回復力
を測定し、熱サイクルを加えない状態の形状回復力を基
準として熱サイクルを5000回加えた後の相対回復力
を求めたところ、図5の通りであった。尚図5において
横軸は記憶処理時間を、縦軸は相対回復力を示してい
る。
Then, the shape recovery force after the heat cycle was measured, and the relative recovery force after the heat cycle was applied 5000 times was calculated based on the shape recovery force in the state where the heat cycle was not applied. It was the street. In FIG. 5, the horizontal axis represents the storage processing time and the vertical axis represents the relative recovery force.

【0041】図5の結果から400℃,500℃何れの
温度で記憶処理した場合においても、処理時間が20分
未満又は120分超であるとき、相対回復力が著しく低
いことが分かる。
From the results of FIG. 5, it can be seen that the relative recovery power is remarkably low when the processing time is less than 20 minutes or more than 120 minutes regardless of whether the temperature is 400 ° C. or 500 ° C.

【0042】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明は形状記憶合金にて板ばね
その他の形態の部材を作製するに際しても適用可能であ
る等、その主旨を逸脱しない範囲において当業者の知識
に基づき様々な変更を加えた態様で実施可能である。
The embodiment of the present invention has been described in detail above, but this is merely an example, and the present invention can be applied to the production of a leaf spring or other member made of a shape memory alloy. It can be implemented in a mode in which various changes are made based on the knowledge of those skilled in the art without departing from the scope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において得られた熱サイクル前
後の温度と発生力(形状回復力)との関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a temperature before and after a thermal cycle and a generated force (shape recovery force) obtained in an example of the present invention.

【図2】図1とは異なった条件で記憶処理した場合の図
1に相当する図である。
FIG. 2 is a diagram corresponding to FIG. 1 when a storage process is performed under a condition different from that of FIG.

【図3】熱サイクルを加えた場合の発生力(形状回復
力)の低下傾向を示す図である。
FIG. 3 is a diagram showing a decreasing tendency of a generated force (shape recovery force) when a heat cycle is applied.

【図4】本発明の実施例において得られた冷間加工率と
相対回復力との関係を表す図である。
FIG. 4 is a diagram showing the relationship between the cold workability and the relative recovery force obtained in the example of the present invention.

【図5】本発明の実施例において得られた記憶処理時間
と相対回復力との関係を表す図である。
FIG. 5 is a diagram showing the relationship between the storage processing time and the relative recovery force obtained in the example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子比率でNi:40〜50%,Cu:
5〜12%,残部Tiから成る素材合金を加工率10〜
30%で冷間加工した後、350〜550℃,20〜1
20分の条件で記憶処理を施すことを特徴とする形状記
憶合金の製造方法。
1. Atomic ratio of Ni: 40 to 50%, Cu:
Material alloy consisting of 5-12% and balance Ti 10-
After cold working at 30%, 350-550 ° C, 20-1
A method for producing a shape memory alloy, characterized by performing a memory treatment under a condition of 20 minutes.
JP22104891A 1991-08-06 1991-08-06 Manufacture of shape memory alloy Pending JPH0539554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22104891A JPH0539554A (en) 1991-08-06 1991-08-06 Manufacture of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22104891A JPH0539554A (en) 1991-08-06 1991-08-06 Manufacture of shape memory alloy

Publications (1)

Publication Number Publication Date
JPH0539554A true JPH0539554A (en) 1993-02-19

Family

ID=16760679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22104891A Pending JPH0539554A (en) 1991-08-06 1991-08-06 Manufacture of shape memory alloy

Country Status (1)

Country Link
JP (1) JPH0539554A (en)

Similar Documents

Publication Publication Date Title
JPS6237353A (en) Manufacture of shape memory alloy
JPS59150069A (en) Manufacture of shape memory alloy
JPH0539554A (en) Manufacture of shape memory alloy
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
JPS6361377B2 (en)
JPH0539553A (en) Manufacture of shape memory alloy
JPH07233432A (en) Shape memory alloy and its production
JPH01242763A (en) Manufacture of ti-ni shape memory alloy reduced in hysteresis
JPS60141852A (en) Manufacture of shape memory alloy
JPH0762506A (en) Production of superelastic spring
JPH0885855A (en) Production of titanium-nickel superelastic material
JPS6314834A (en) Tiniv shape memory alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS60169551A (en) Manufacture of shape memory alloy
JPH05295498A (en) Manufacture of ni-ti superelastic material
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPS61143567A (en) Manufacture of high temperature spring
JPS62199757A (en) Manufacture of shape memory alloy material
JPH09118967A (en) Manufacture of nickel-titanium shape memory alloy for coil spring
JPS59162262A (en) Production of spring having two-way shape memory effect
JPH02267248A (en) Method for shape memory treatment of ni-ti series shape memory alloy
JPS62284047A (en) Manufacture of shape memory alloy
JPH01156455A (en) Manufacture of shape memory alloy
JPH059686A (en) Production of shape memory niti alloy
JPH07188881A (en) Production of shape memory material