JPH0539282Y2 - - Google Patents

Info

Publication number
JPH0539282Y2
JPH0539282Y2 JP1985010086U JP1008685U JPH0539282Y2 JP H0539282 Y2 JPH0539282 Y2 JP H0539282Y2 JP 1985010086 U JP1985010086 U JP 1985010086U JP 1008685 U JP1008685 U JP 1008685U JP H0539282 Y2 JPH0539282 Y2 JP H0539282Y2
Authority
JP
Japan
Prior art keywords
water supply
water
flow rate
orifice valve
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985010086U
Other languages
Japanese (ja)
Other versions
JPS61128502U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985010086U priority Critical patent/JPH0539282Y2/ja
Publication of JPS61128502U publication Critical patent/JPS61128502U/ja
Application granted granted Critical
Publication of JPH0539282Y2 publication Critical patent/JPH0539282Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は垂直管水冷壁を有する変圧ボイラに係
り、特に亜臨界圧力から超々臨界圧力(350Kg/
cm2)で運転される変圧ボイラ装置に関するもので
ある。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a variable pressure boiler having a vertical tube water cooling wall, and is particularly applicable to a variable pressure boiler having a vertical pipe water-cooled wall.
cm2 ).

〔従来の技術〕[Conventional technology]

近年急増する電力需要に応えるために大容量の
火力発電所が建設されているが、これらのボイラ
は部分負荷においても高い発電効率を得るため
に、超々臨界圧力から亜臨界圧力へ変圧運転を行
なうことが要求されている。
In recent years, large-capacity thermal power plants have been constructed to meet the rapidly increasing demand for electricity, but these boilers operate at variable pressure from ultra-supercritical pressure to subcritical pressure in order to obtain high power generation efficiency even at partial loads. That is required.

これは最近の電力需要の特徴として、原子力発
電の伸びと共に、原子力発電の安定な運用に伴な
い原子力発電を常に全負荷での運転を行なつてベ
ースロード用として用い、火力発電は電力需要に
即応して中間負荷を担う火力発電プラントへ移行
しつつある。
This is a feature of recent electricity demand, as nuclear power generation has grown and nuclear power generation has become more stable. Nuclear power generation is always operated at full load and is used for base load, while thermal power generation is meeting the demand for electricity. In response, there is a shift to thermal power plants that handle intermediate loads.

この中間負荷を担う火力発電プラントにおいて
は、全負荷で運転されるものは少なく、負荷を80
%負荷、50%負荷、25%負荷へと負荷を上げ、下
げして運転したり、運転を停止するなど、いわゆ
る高頻度起動停止(Daily Start Stop)運転を
行なう。
Thermal power plants that handle this intermediate load are rarely operated at full load;
The so-called daily start/stop operation is performed, such as increasing and decreasing the load to % load, 50% load, and 25% load, or stopping operation.

この様に火力発電は部分負荷での運転が増えた
場合、負荷に応じて圧力を変化させて運転する、
いわゆる全負荷では超々臨界圧力域、部分負荷で
は亜臨界圧力域で運転する変圧ボイラにすること
により、部分負荷での発電効率を数%向上させる
ことができる。
In this way, when thermal power generation is operated at partial load, the pressure is changed according to the load.
By using a variable pressure boiler that operates in the so-called ultra-supercritical pressure region at full load and in the subcritical pressure region at partial load, the power generation efficiency at partial load can be improved by several percent.

第3図は従来の定圧ボイラにおける給水系統図
である。
FIG. 3 is a water supply system diagram in a conventional constant pressure boiler.

第3図において、1はボイラに給水を導く給水
母管で、この給水母管1にはボイラへの給水量を
調節する給水調節弁2、給水量を測定する給水流
量計3、オリフイス弁前圧力計4が配置されてい
る。
In Figure 3, 1 is a water supply main pipe that leads water supply to the boiler, and this water supply main pipe 1 includes a water supply control valve 2 that adjusts the water supply amount to the boiler, a water supply flow meter 3 that measures the water supply amount, and an orifice valve in front of the water supply main pipe 1. A pressure gauge 4 is arranged.

給水はさらに水冷壁分配管5a〜5nを経て手
動オリフイス弁6a〜6n、オリフイス弁後圧力
計7a〜7nを経て、水冷壁8a〜8nの入口へ
ツダ9a〜9nへ流れ水冷管10a〜10n、出
口へツダ11a〜11n、連絡管12a〜12n
へと流れる。なお13a〜13nは水冷壁メタル
温度計である。
The water supply further passes through water-cooled wall distribution pipes 5a-5n, manual orifice valves 6a-6n, pressure gauges 7a-7n after the orifice valves, and flows into water-cooled pipes 10a-10n to the inlets of water-cooled walls 8a-8n and pipes 9a-9n, To the outlet tubes 11a to 11n, connecting pipes 12a to 12n
flows to. Note that 13a to 13n are water-cooled wall metal thermometers.

ところが、従来は亜臨界圧力域、又は超臨界圧
力域での定圧ボイラであるために、水冷壁分配管
5a〜5nに設備した手動オリフイス弁6a〜6
nでも対応可能であつた。しかし亜臨界圧力域か
ら超々臨界圧力域まで変化する変化ボイラでは、
特に亜臨界圧力域での蒸気と飽和水の比容積の差
が大きく、わづかな蒸気の混入でも水冷壁8a〜
8n内で内部流体の流れを阻害して水冷壁8a〜
8nのメタル温度を上昇させる。このため水冷壁
分配管5a〜5nの手動オリフイス弁6a〜6n
で流量を調節するが、手段オリフイス弁6a〜6
nでは内部アンバランスの微調整に時間がかかる
と同時に刻々と変化する状態量変化に対して追従
することができない。併せて不安定流動は亜臨界
圧力域で占められており、この状態で手動オリフ
イス弁6a〜6nの開度を調節することになる
が、超々臨界圧力域で高負荷運転を行なつた場合
アンバランスも解消するが必要以上の圧力損失を
生ずる欠点がある。
However, since the conventional constant pressure boiler operates in a subcritical pressure region or a supercritical pressure region, manual orifice valves 6a to 6 installed in the water cooling wall distribution pipes 5a to 5n are required.
It was also possible to deal with n. However, in a variable boiler that changes from the subcritical pressure region to the ultra-supercritical pressure region,
Especially in the subcritical pressure region, the difference in the specific volume of steam and saturated water is large, and even if a small amount of steam is mixed in, the water cooling wall 8a~
The water cooling wall 8a~ inhibits the flow of internal fluid within 8n.
Increase the metal temperature of 8n. For this reason, manual orifice valves 6a to 6n for water cooling wall distribution pipes 5a to 5n.
The flow rate is adjusted by means of orifice valves 6a to 6.
With n, it takes time to finely adjust the internal imbalance, and at the same time, it is not possible to follow changes in state quantities that change moment by moment. At the same time, unstable flow occurs in the subcritical pressure region, and the opening degrees of the manual orifice valves 6a to 6n are adjusted in this state, but if high load operation is performed in the ultrasupercritical pressure region, the Although this solves the problem of balance, it has the disadvantage of causing more pressure loss than necessary.

また、従来の亜臨界圧力域又は超臨界圧力域の
定圧ボイラでは水冷壁管10a〜10nのメタル
温度の適正化のために手動オリフイス弁6a〜6
nでも充分対応が可能であつたが広域の変圧にお
ける垂直水冷壁ボイラにおいては手動オリフイス
弁6a〜6nの対応が不可能に近い。
In addition, in conventional constant pressure boilers in the subcritical pressure region or supercritical pressure region, manual orifice valves 6a to 6 are used to optimize the metal temperature of the water-cooled wall tubes 10a to 10n.
However, in a vertical water-cooled wall boiler with a wide range of pressure change, it is almost impossible to use manual orifice valves 6a to 6n.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

本考案はかかる従来の欠点を解消しようとする
もので、その目的とするところは、DSS運転を行
なつても刻々と変化する状態量変化に追従して給
水流量を調節することができ、しかも水冷壁メタ
ル温度を適正に保つことができるボイラ装置を得
ようとするものである。
The present invention attempts to eliminate such conventional drawbacks, and its purpose is to be able to adjust the water supply flow rate by following the changes in state quantities that change from moment to moment even during DSS operation. The objective is to obtain a boiler device that can maintain the water-cooled wall metal temperature appropriately.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は前述の目的を達成するために、垂直水
冷壁の水冷壁分配管に自動オリフイス弁を設け、
この自動オリフイス弁を開閉する給水流量指令か
らの給水流量分配信号に、オリフイス弁差圧検出
回路とオリフイス弁開度検出回路からの流量差に
よる給水量補正信号と、負荷検出回路と水冷壁メ
タル温度検出回路からの温度差による給水量補正
信号を加算して、自動オリフイス弁を開閉するよ
うにしたものである。
In order to achieve the above-mentioned purpose, the present invention installs an automatic orifice valve in the water cooling wall distribution pipe of the vertical water cooling wall,
In addition to the water supply flow rate distribution signal from the water supply flow rate command that opens and closes this automatic orifice valve, there is also a water supply amount correction signal based on the flow rate difference from the orifice valve differential pressure detection circuit and the orifice valve opening degree detection circuit, and the load detection circuit and water cooling wall metal temperature. The water supply amount correction signal based on the temperature difference from the detection circuit is added to open and close the automatic orifice valve.

〔実施例〕〔Example〕

以下、本考案の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本考案の実施例に係る給水系統図、第
2図は給水系統の代表的な制御系統図である。
FIG. 1 is a water supply system diagram according to an embodiment of the present invention, and FIG. 2 is a typical control system diagram of the water supply system.

第1図において符号1から符号4、符号6から
符号13は従来のものと同一のものを示す。
In FIG. 1, numerals 1 to 4 and numerals 6 to 13 indicate the same parts as the conventional ones.

14a〜14nは水冷壁水配管5a〜5nに設
けた自動オリフイス弁、15は給水流量指令から
の給水流量分配信号、16はオリフイス弁差圧検
出回路、17はオリフイス弁開度検出回路、18
はオリフイス弁差圧検出回路16とオリフイス弁
開度検出回路17からの流量差による給水流量補
正信号、19は負荷検出回路、20は水冷壁メタ
ル温度検出回路、21は負荷検出回路19と水冷
壁メタル温度検出回路20からの温度差による給
水流量補正信号、22はオリフイス弁開度設定回
路である。
14a to 14n are automatic orifice valves provided in the water cooling wall water pipes 5a to 5n, 15 is a water supply flow rate distribution signal from a water supply flow rate command, 16 is an orifice valve differential pressure detection circuit, 17 is an orifice valve opening detection circuit, 18
19 is a load detection circuit, 20 is a water-cooled wall metal temperature detection circuit, and 21 is a load detection circuit 19 and a water-cooled wall. A water supply flow rate correction signal based on the temperature difference is sent from the metal temperature detection circuit 20, and 22 is an orifice valve opening setting circuit.

この様な構成において、給水母管1からの給水
の流れは第3図のものと同一である。
In such a configuration, the flow of water from the main water supply pipe 1 is the same as that shown in FIG.

本考案の特徴はボイラ水冷壁8a〜8nのサー
キツトの各自動オリフイス弁14a〜14nが個
有する流量係数(オリフイス弁の開度特性で決
る)CV値もサーキツト全体の抵抗値であるため
全サーキツト内を流れる給水流量とリンクさせて
自動制御させる。全給水流量から各サーキツトへ
配分する場合、水冷壁メタル温度を適正に確保さ
せる為各自動オリフイス弁14a〜14nの開度
は全サーキツトをバランスさせながら設定させ
る。即ち全給水量を各水冷壁8a〜8nのサーキ
ツトの必要度合い(各水冷壁出口温度が目標温度
以内に入るよう)によつて給水量を分配する。言
い換えると全体として給水流量が減少すれば、あ
る特定のサーキツトへのみ流れ易くなる訳である
が、この場合その減少した給水流量に見合つて全
サーキツトの自動オリフイス弁14a〜14nの
開度を全て微開に移行させて、その状態での各サ
ーキツトのバランスを取るようにした。
The feature of the present invention is that the flow coefficient (determined by the opening characteristic of the orifice valve) CV value of each automatic orifice valve 14a to 14n in the circuit of the boiler water cooling wall 8a to 8n is also the resistance value of the entire circuit. automatically controlled by linking it with the water supply flow rate. When distributing the total water supply flow rate to each circuit, the opening degree of each automatic orifice valve 14a to 14n is set while balancing all the circuits in order to ensure an appropriate temperature of the water cooling wall metal. That is, the total water supply amount is distributed according to the degree of circuit necessity of each of the water cooling walls 8a to 8n (so that the outlet temperature of each water cooling wall is within the target temperature). In other words, if the water supply flow rate decreases as a whole, it becomes easier to flow only to a specific circuit, but in this case, the opening degrees of the automatic orifice valves 14a to 14n of all circuits are adjusted slightly to compensate for the decreased water supply flow rate. I moved it to the open position and balanced each circuit in that state.

つまり、自動オリフイス弁14a〜14nを給
水流量分配信号15に流量差による給水流量補正
信号18と温度差による給水流量補正信号21を
加算して自動オリフイス弁14a〜14nをオリ
フイス弁設定回路22によつて開閉するようにし
たのである。
That is, the automatic orifice valves 14a to 14n are set by the orifice valve setting circuit 22 by adding the water supply flow rate correction signal 18 based on the flow rate difference and the water supply flow rate correction signal 21 based on the temperature difference to the water supply flow rate distribution signal 15. It was designed so that it could be opened and closed.

これによつて、変圧ボイラの垂直水冷壁8a〜
8nのメタル温度も適正に目標値以内に納めるこ
とができる。
As a result, the vertical water cooling wall 8a of the transformer boiler
The metal temperature of 8n can also be properly kept within the target value.

以下、第2図を用いて制御系統の代表例を説明
する。
Hereinafter, a representative example of the control system will be explained using FIG. 2.

給水指令23からの給水流量信号24は、各水
壁のサーキツトを流れる合計の給水流量信号であ
り、この給水流量信号24は、乗算器25を通し
て各サーキツト毎の給水流量分配信号15に変換
する。変換後の給水量分配信号15は、関数発生
器26を通して自動オリフイス弁開度信号27と
して出力し、加算器28を介して自動オリフイス
弁14a〜14nへ送信される。他方負荷検出回
路19からの発電機出力指令信号29を関数発生
器30を通して各水壁のサーキツト毎の温度目標
信号31を作成し水冷壁メタル温度検出回路20
から検出されたメタル温度実測信号32との差を
偏差比例積分器33を通して温度差による給水流
量補正信号21として、加算器28へ送信する。
The water supply flow rate signal 24 from the water supply command 23 is a total water supply flow rate signal flowing through the circuits of each water wall, and this water supply flow rate signal 24 is converted through a multiplier 25 into a water supply flow rate distribution signal 15 for each circuit. The converted water supply amount distribution signal 15 is output as an automatic orifice valve opening signal 27 through a function generator 26, and is transmitted via an adder 28 to the automatic orifice valves 14a to 14n. On the other hand, the generator output command signal 29 from the load detection circuit 19 is passed through a function generator 30 to create a temperature target signal 31 for each water wall circuit, and the water cooling wall metal temperature detection circuit 20 generates a temperature target signal 31 for each water wall circuit.
The difference between the measured metal temperature signal 32 and the measured metal temperature signal 32 is transmitted to the adder 28 through the deviation proportional integrator 33 as the water supply flow rate correction signal 21 based on the temperature difference.

オリフイス弁差圧検出回路16により検出され
た自動オリフイス弁前後差圧実測信号34を開平
演算器35を通した後自動オリフイス弁前後差圧
開平信号36と、オリフイス弁開度検出回路17
からの自動オリフイス弁開度信号37は乗算器3
8により演算しサーキツト当りの給水通過量を演
算する。この自動オリフイス弁通過給水量演算信
号39と、乗算器25からの給水流量分配信号1
5の差を演算器40より求めこの流量差分信号4
1を、乗算器42を通して流量差による給水量補
正信号18とし、加算器28へ送信する。
The automatic orifice valve front and rear differential pressure actual measured signal 34 detected by the orifice valve differential pressure detection circuit 16 passes through the square root calculation unit 35, and then the automatic orifice valve front and rear differential pressure square root signal 36 and the orifice valve opening degree detection circuit 17
The automatic orifice valve opening signal 37 from the multiplier 3
8 to calculate the amount of water passing through each circuit. This automatic orifice valve passing water supply amount calculation signal 39 and the water supply flow rate distribution signal 1 from the multiplier 25
5 is obtained from the calculator 40, and this flow rate difference signal 4
1 is passed through the multiplier 42 as the water supply amount correction signal 18 based on the flow rate difference, and is transmitted to the adder 28.

この様に自動オリフイス弁開度信号27には温
度差による給水流量補正信号21と、流量差によ
る給水量補正信号18を加算して制御信号43と
するために、自動オリフイス弁14a〜14nに
より給水量が自動補正され、DSS運転を行なつて
も常に最適な給水が分配されるので、水冷壁のメ
タル温度は均一になる。
In this way, in order to add the water supply flow rate correction signal 21 based on the temperature difference and the water supply amount correction signal 18 based on the flow rate difference to the automatic orifice valve opening signal 27 to obtain the control signal 43, water is supplied by the automatic orifice valves 14a to 14n. The amount is automatically corrected, and the optimal water supply is always distributed even during DSS operation, so the metal temperature of the water cooling wall becomes uniform.

〔考案の効果〕[Effect of the invention]

本考案は垂直水冷壁の水冷壁分配管に自動オリ
フイス弁を設け、この自動オリフイス弁を開閉す
る給水流量指令からの給水流量分配信号に、オリ
フイス弁差圧検出回路とオリフイス弁開度検出回
路からの流量差による給水量補正信号と、負荷検
出回路と水冷壁メタル温度検出回路からの温度差
による給水量補正信号を加算して、自動オリフイ
ス弁を開閉するようにしたので、刻々と状態量が
変化する変圧ボイラであつても追従して給水流量
を調節することができ、水冷壁メタル温度を常に
適正に保つことができる。
This invention installs an automatic orifice valve in the water cooling wall distribution piping of a vertical water cooling wall, and receives the water supply flow rate distribution signal from the water supply flow rate command that opens and closes this automatic orifice valve from an orifice valve differential pressure detection circuit and an orifice valve opening degree detection circuit. The water supply amount correction signal based on the flow rate difference between Even if the variable pressure boiler changes, the water supply flow rate can be adjusted accordingly, and the temperature of the water-cooled wall metal can always be maintained at an appropriate level.

本考案のように変圧運転ボイラでは、特に部分
負荷(低負荷)になつた場合、水冷管内を通過す
る流量ならびにボイラ差圧が減少し、そのため管
内の水の流動状態が不安定となる。そして個々の
水冷管内面での気泡の付着状態のバラツキなどを
含む火炉内での熱吸収特性のフンバランスによ
り、特定位置の水冷管のメタル温度が異常に上昇
し、管の強度を越える現象が発生する。
In a variable pressure operating boiler as in the present invention, especially when the load is partial (low load), the flow rate passing through the water-cooled pipes and the boiler differential pressure decrease, and as a result, the flow state of water in the pipes becomes unstable. Furthermore, due to the balance of heat absorption characteristics within the furnace, including variations in the state of adhesion of air bubbles on the inner surface of each water-cooled tube, the metal temperature of the water-cooled tube at a specific location may rise abnormally, causing a phenomenon that exceeds the strength of the tube. Occur.

また、熱吸収特性のアンバランスにより隣接す
る水冷管との間で温度差が生じ、そのために応力
などによる損傷を受けることがある。
Furthermore, due to an imbalance in heat absorption characteristics, a temperature difference occurs between adjacent water-cooled pipes, which may result in damage due to stress or the like.

そこで本考案では、このような火炉内での熱吸
収の分布差による局部的な温度上昇、ならびに管
内の水の流動アンバランスに基づく温度上昇を、
個々の水冷管に対して、本来の給水流量分配信号
に、負荷検出回路と水冷壁メタル温度検出器から
の温度差による給水量補正信号を加算して、自動
オリフイス弁を制御することにより抑制するもの
である。
Therefore, the present invention aims to reduce the local temperature rise due to the difference in the distribution of heat absorption within the furnace, as well as the temperature rise due to the unbalanced flow of water in the pipes.
Suppression is achieved by adding a water supply amount correction signal based on the temperature difference from the load detection circuit and water cooling wall metal temperature sensor to the original water supply flow rate distribution signal for each water cooling pipe, and controlling the automatic orifice valve. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例に係る変圧ボイラの給
水系統図、第2図は第1図の給水系統における代
表的な制御系統図、第3図は従来の定圧ボイラの
給水系統図である。 8a〜8n……垂直水冷壁、14a〜14n…
…自動オリフイス弁、15……給水流量分配信
号、16……オリフイス弁差圧検出回路、17…
…オリフイス弁開度検出回路、18……給水量補
正信号、19……負荷検出回路、20……水冷壁
メタル温度検出回路、21……給水量補正信号。
Fig. 1 is a water supply system diagram of a variable pressure boiler according to an embodiment of the present invention, Fig. 2 is a typical control system diagram of the water supply system of Fig. 1, and Fig. 3 is a water supply system diagram of a conventional constant pressure boiler. . 8a to 8n...Vertical water cooling wall, 14a to 14n...
...Automatic orifice valve, 15... Water supply flow rate distribution signal, 16... Orifice valve differential pressure detection circuit, 17...
... Orifice valve opening detection circuit, 18 ... Water supply amount correction signal, 19 ... Load detection circuit, 20 ... Water cooling wall metal temperature detection circuit, 21 ... Water supply amount correction signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 垂直管水冷壁を有する変圧ボイラを亜臨界圧力
域から超々臨界圧力域で運転するものにおいて、
前記垂直水冷壁の水冷壁分配管に自動オリフイス
弁を設け、この自動オリフイス弁を開閉する給水
流量指令からの給水流量分配信号に、オリフイス
弁差圧検出回路とオリフイス弁開度検出回路から
の流量差による給水量補正信号と、負荷検出回路
と水冷壁メタル温度検出器からの温度差による給
水量補正信号を加算して、自動オリフイス弁を開
閉するようにしたことを特徴とする変圧ボイラ装
置。
In a variable pressure boiler with a vertical pipe water-cooled wall that operates in a subcritical pressure region to an ultra-supercritical pressure region,
An automatic orifice valve is provided in the water cooling wall distribution pipe of the vertical water cooling wall, and the flow rate from the orifice valve differential pressure detection circuit and the orifice valve opening degree detection circuit is applied to the water supply flow rate distribution signal from the water supply flow rate command that opens and closes the automatic orifice valve. A transformer boiler device characterized in that an automatic orifice valve is opened and closed by adding a water supply amount correction signal based on the difference and a water supply amount correction signal based on the temperature difference from a load detection circuit and a water-cooled wall metal temperature detector.
JP1985010086U 1985-01-29 1985-01-29 Expired - Lifetime JPH0539282Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985010086U JPH0539282Y2 (en) 1985-01-29 1985-01-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985010086U JPH0539282Y2 (en) 1985-01-29 1985-01-29

Publications (2)

Publication Number Publication Date
JPS61128502U JPS61128502U (en) 1986-08-12
JPH0539282Y2 true JPH0539282Y2 (en) 1993-10-05

Family

ID=30490946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985010086U Expired - Lifetime JPH0539282Y2 (en) 1985-01-29 1985-01-29

Country Status (1)

Country Link
JP (1) JPH0539282Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551203A (en) * 1978-10-09 1980-04-14 Mitsubishi Heavy Ind Ltd Pressure change operation boiler
JPS56117001A (en) * 1980-02-16 1981-09-14 Hitachi Ltd Operation of steam generating device
JPS57117705A (en) * 1980-12-23 1982-07-22 Sulzer Ag Fossile-fuel-fired force fluidized steam generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551203A (en) * 1978-10-09 1980-04-14 Mitsubishi Heavy Ind Ltd Pressure change operation boiler
JPS56117001A (en) * 1980-02-16 1981-09-14 Hitachi Ltd Operation of steam generating device
JPS57117705A (en) * 1980-12-23 1982-07-22 Sulzer Ag Fossile-fuel-fired force fluidized steam generator

Also Published As

Publication number Publication date
JPS61128502U (en) 1986-08-12

Similar Documents

Publication Publication Date Title
CN103343961B (en) Dynamic compensation method of attemperation water impact leading steam temperature measuring point in boiler steam temperature control system
CN110925854B (en) Flow regulation method and system for improving hydraulic imbalance of secondary heat supply network
GB2093958A (en) Feedwater control system
CN106016229B (en) The main-stream control method and apparatus of supercritical circulating fluidized bed boiler unit
CN104696944B (en) Dynamic optimization and parameter estimation integrated method based on load prediction
JPS6214047B2 (en)
JPH0539282Y2 (en)
TW201625882A (en) Control method for operating a heat recovery steam generator
JPS63286614A (en) Combustion control of boller
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
KR20210079648A (en) Constant hot water return system for district heating in building
JP2758245B2 (en) Drain water level control device for feed water heater
JP2653798B2 (en) Boiler and turbine plant control equipment
JP2583966B2 (en) Transformer operation boiler
JPS6229763Y2 (en)
JPH11270805A (en) Feed water heater water level control device
JPH0335922Y2 (en)
JPH04148101A (en) Controlling method for steam drum water level at time of switching of feed water control valve
JPS6132403Y2 (en)
CN115751277A (en) Control method and device for combined steam supply of water tube boiler and through-flow boiler
JPH0412330Y2 (en)
JPS5865913A (en) Water level controller of feed water heater in power plant
JP2703050B2 (en) Water wall temperature controller
JPH10148305A (en) Boiler control device
JPS6235002B2 (en)