JPH053886B2 - - Google Patents

Info

Publication number
JPH053886B2
JPH053886B2 JP60016092A JP1609285A JPH053886B2 JP H053886 B2 JPH053886 B2 JP H053886B2 JP 60016092 A JP60016092 A JP 60016092A JP 1609285 A JP1609285 A JP 1609285A JP H053886 B2 JPH053886 B2 JP H053886B2
Authority
JP
Japan
Prior art keywords
value
wave
received wave
peak
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60016092A
Other languages
Japanese (ja)
Other versions
JPS61175524A (en
Inventor
Hiroyuki Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60016092A priority Critical patent/JPS61175524A/en
Publication of JPS61175524A publication Critical patent/JPS61175524A/en
Publication of JPH053886B2 publication Critical patent/JPH053886B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する分野〕 この発明は超音波流量計における受信波バラン
ス方式に係り、特に流れに対して斜めに超音波を
入射し、上流側から下流側への超音波伝搬時間と
下流側から上流側への超音波伝搬時間の伝搬時間
差を測定することによつて流量を測定するように
した超音波伝搬時間差測定式超音波流量計におけ
る超音波伝搬時間測定部の受信波バランス方式に
関する。 〔従来技術と問題点〕 上流側から下流側への超音波伝搬時間と下流側
から上流側への超音波伝搬時間の時間差を測定す
ることによつて流量を測定する計器として超音波
流量計が知られている。第3図は超音波流量計の
測定原理を示したもので、管路1内を測定すべき
流体が流れ、その上流側に超音波振動子2が配置
され、下流側には超音波振動子3が配置され、相
互間に超音波4を送信し対向する超音波振動子で
受信するようになつている。これらの超音波振動
子2および3の電気機械結合係数は通常異なつて
いるから、受信波5の振幅に相違が生じる。それ
ぞれの受信波5の振幅は受波バランス回路6によ
つて同一とされ、受信波の第2波が閾値7と同一
となつたとき、トリガ回路8が受信信号9を送出
する。上流側から下流側への超音波伝搬時間と下
流側から上流側への超音波伝搬時間を上下流の送
受を切替えながら測定することにより流速を測定
する。上記トリガ回路8へ入力される受信波の振
幅を同一レベルにするために、従来は振幅のみを
変化させて受波バランスを行つていた。この受波
バランス回路を第4図を参照して説明すると、受
信波5がAGC回路10に供給されて利得制御さ
れAGC化2値受信波11を送出し、この受信波
11はコンパレータ12に供給され、ここで波高
値設定回路13からの設定波高値14と比較さ
れ、2値化信号15が出力される。この2値化信
号15はゲート回路16に加えられ、定まつた時
間だけゲート化2値化信号17を送出する。この
ゲート化2値化信号17は、積分回路18を通し
て積分され、AGC電圧19とされ、AGC電圧ア
ンプ10のゲインをフイードバツク制御し、トリ
ガ回路6でトリガする波の波高値を設定波高値に
合致させる。このようにして上流から下流に向か
う受信波と下流から上流に向かう受信波のバラン
スが調整されるわけである。 しかしながら、このように受信波の利得を変え
ることにより受波バランスを行う方式では片方の
波高部分しか合致できないため波の振幅の時間的
変化率が異なり、流体が流れていないにもかかわ
らず時間差があるかのように誤つて計測され、流
量値が零を示さないという問題があつた。 また、超音波振動子の温度特性の相違やくさび
の非対称性から上流から下流へまたは下流から上
流へ伝搬する送信波の波形は微妙に相違してい
る。例えば第5図に示したように、第1受波20
と第2受波21との振幅の比が上流から下流に向
かう場合と下流から上流へ向かう場合の受信波で
異なる場合がある。このような場合、第2受波2
1の第2項部24が上流→下流、下流→上流の受
信波で合致するようにAGC回路10の増幅率を
制御すると、第1受波20の第1谷部23が合致
しなくなる。その結果、第1谷部から第2頂部の
時間的傾斜が上流→下流、下流→上流受波で異な
り、送信から第2受波21が閾値7に達するまで
の時間が上流→下流の受信波ではT1、下流から
上流の受信波ではT2となり伝搬時間差△tが生
じる。これはみかけ上あたかも流体が流れること
によつて生じたかのように計測される。 ところで、超音波振動子の温度を変化させたと
きの受信波の第1谷部と第2頂部の値を調べると
下記の表のようになる。
[Field of the Invention] This invention relates to a receiving wave balance method in an ultrasonic flowmeter, and in particular, the invention relates to a receiving wave balance method in an ultrasonic flowmeter, in particular, in which ultrasonic waves are incident obliquely to the flow, and the ultrasonic propagation time from the upstream side to the downstream side and the ultrasonic wave propagation time from the downstream side to the upstream side are The present invention relates to a receiving wave balance method of an ultrasonic propagation time measuring section in an ultrasonic propagation time difference measurement type ultrasonic flowmeter that measures a flow rate by measuring a propagation time difference between ultrasonic propagation times to the sides. [Prior art and problems] An ultrasonic flowmeter is an instrument that measures flow rate by measuring the time difference between the ultrasonic propagation time from upstream to downstream and the ultrasonic propagation time from downstream to upstream. Are known. Fig. 3 shows the measurement principle of an ultrasonic flowmeter, in which the fluid to be measured flows in a pipe 1, an ultrasonic transducer 2 is arranged on the upstream side, and an ultrasonic transducer on the downstream side. 3 are arranged, and ultrasonic waves 4 are transmitted between them and received by the opposing ultrasonic transducers. Since the electromechanical coupling coefficients of these ultrasonic transducers 2 and 3 are usually different, a difference occurs in the amplitude of the received wave 5. The amplitudes of the respective received waves 5 are made the same by the reception balance circuit 6, and when the second wave of the reception waves becomes equal to the threshold value 7, the trigger circuit 8 sends out the reception signal 9. The flow velocity is measured by measuring the ultrasonic propagation time from the upstream side to the downstream side and the ultrasonic propagation time from the downstream side to the upstream side while switching upstream and downstream transmission and reception. In order to keep the amplitudes of the received waves input to the trigger circuit 8 at the same level, conventionally, received wave balance was performed by changing only the amplitudes. To explain this reception balance circuit with reference to FIG. 4, a reception wave 5 is supplied to an AGC circuit 10, the gain is controlled, and an AGC converted binary reception wave 11 is sent out, and this reception wave 11 is supplied to a comparator 12. Here, it is compared with the set peak value 14 from the peak value setting circuit 13, and a binary signal 15 is output. This binary signal 15 is applied to a gate circuit 16, which sends out a gated binary signal 17 for a predetermined period of time. This gated binary signal 17 is integrated through an integrating circuit 18 to become an AGC voltage 19, and the gain of the AGC voltage amplifier 10 is feedback-controlled, so that the peak value of the wave triggered by the trigger circuit 6 matches the set peak value. let In this way, the balance between the received waves going from upstream to downstream and the received waves going from downstream to upstream is adjusted. However, in this method of balancing the received waves by changing the gain of the received waves, only one wave height can be matched, so the temporal change rate of the wave amplitude is different, and the time difference occurs even though no fluid is flowing. There was a problem in which the flow rate value did not show zero because it was incorrectly measured as if it were present. Furthermore, the waveforms of the transmitted waves propagating from upstream to downstream or from downstream to upstream are slightly different due to differences in the temperature characteristics of the ultrasonic transducers and the asymmetry of the wedge. For example, as shown in FIG.
and the second received wave 21 may be different between the case where the received wave goes from upstream to downstream and the case where the received wave goes from downstream to upstream. In such a case, the second received wave 2
If the amplification factor of the AGC circuit 10 is controlled so that the second term portion 24 of the first received wave 20 matches from upstream to downstream and from downstream to upstream, the first trough portion 23 of the first received wave 20 will not match. As a result, the temporal slope from the first trough to the second peak differs between upstream → downstream and downstream → upstream reception, and the time from transmission until the second reception wave 21 reaches the threshold 7 is determined by the upstream → downstream reception wave. In this case, T 1 is generated, and T 2 is generated in the received wave from downstream to upstream, resulting in a propagation time difference Δt. This is measured as if it were caused by flowing fluid. By the way, when we examine the values of the first trough and second peak of the received wave when the temperature of the ultrasonic transducer is changed, we get the following table.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は、上記問題点を解消する
ために発明されたものであつて、上流側から下流
側への超音波伝搬時間と下流側から上流側への超
音波伝搬時間の伝搬時間差を精度良く測定するた
めに必要な超音波流量計の受信波バランス方式を
提供することにある。 〔発明の要点〕 上記目的を達成するため、本発明は上流側受信
波および下流側受信波の波形の各々の正方向負方
向の波高値を計測し、受信波形のうち最初に予め
定められた閾値となる波形の直前の波高値および
直後の波高値を比較し、上流側および下流側受信
波の最初に予め定められた閾値となる波形の振幅
の相違およびオフセツトの相違を算出し、この振
幅の相違に応じて上流側および下流側受信波を増
幅し、さらにオフセツトの相違に応じてレベルア
ツプまたはダウンを行い、最初に予め定められた
閾値となる波形の直前の上流側受信波の波高値と
下流側受信波の波高値とを合致させると共に、直
後の上流側受信波の波高値と下流側受信波の波高
値とを合致させることにより上流側受信波、下流
側受信波の最初に定められた閾値となる波形のレ
ベルの時間的変化率を合致させるようにしたこと
を特徴とするものである。 〔発明の実施例〕 以下本発明による超音波流量計における受信波
バランス方式の実施例を第1図および第2図を参
照して説明する。 第1図において、上流側超音波振動子2および
下流側超音波振動子3からの受信波5は受信波切
換器26に供給される。この受信波切換器26は
マイコン28からの切替信号29によつて選択さ
れ、その出力信号30はAGCアンプ10に入力
され、オペアンプ31を通して受波バランス済受
信波32として送出される。この受波バランス済
受信波32の一部は第1のコンパレータ33に導
かれ、マイコン28からD/Aコンバータ34を
通して得られた第1谷部に相当する谷部閾値35
とが比較され2値化信号36がマイコン28に加
えられる。 第2頂部も同様にして受波バランス済受信波3
2の一部が第2のコンパレータ37に導かれ、マ
イコン28からD/Aコンバータ38を通して得
られた第2頂部に相当する閾値39とが比較さ
れ、2値化信号40がマイコン28に加えられ
る。マイコン28は2値化信号36,40に応じ
て閾値35,39を変化させ、最終的に受波切替
器26で選択されている受信波の第1受波の第1
谷部のレベル、第2受波の第2頂部のレベルを検
出する。上流側受信波バランス済受信波32の第
1受信波の第1谷部レベルをA1、第2受信波の
第2頂部レベルをB1とし、下流側受信波バラン
ス済受信波32の第1谷部レベルをA2、第2受
信波の第2頂部レベルをB2とすると、受波バラ
ンスが完全に取れている場合にはA1=A2、B1=
B2となる。受波バランスが取れていない場合に
は(A2−B2)−(A1−B1)が振幅の差の相当し、
A1−A2(A1−B1)/A2−B2がオフセツトレベ
ルの差に相当する。したがつて、マイコン28は
AGCアンプ10の下流側のゲインが上流側のゲ
インに対して(A1−B1)/(A1−B2)倍にな
るようにD/Aコンバータ41を通してAGC電
圧42をAGCアンプ10に送出する。一方、マ
イコン28から信号はD/Aコンバータ43を通
してA1−A2(A1−B1)/A2−B2倍になるよう
にオフセツト電圧44をオペアンプ27に加算す
ることによつて受波バランスが取られる。このよ
うな動作をくり返して行うことにより上流側受波
バランス済受信波32と下流側受波バランス済受
信波32の第1谷部レベルA1=A2、第2頂部B1
=B2となる。これにより両受信波の第1谷部か
ら第2頂部までの時間的変化率が同一となつて伝
播時間差の誤差は無くなる。 第2図は上述した信号の流れをフローチヤート
で示したものである。 〔発明の効果〕 以上述べたように本発明によれば、第1受信波
の第1谷部レベル、第2受信波の第2頂部レベル
を検出して受波バランスを行うようにしたので、
各受信波の第1谷部から第2頂部までのレベルの
時間的変化率を同一にでき伝播時間差の誤検出を
皆無とすることができる。
SUMMARY OF THE INVENTION An object of the present invention was to solve the above-mentioned problems by reducing the propagation time difference between the ultrasonic propagation time from the upstream side to the downstream side and the ultrasonic propagation time from the downstream side to the upstream side. The object of the present invention is to provide a receiving wave balance method for an ultrasonic flowmeter that is necessary for accurate measurement. [Summary of the Invention] In order to achieve the above object, the present invention measures the wave height values in the positive and negative directions of the waveforms of the upstream side received wave and the downstream side received wave, and The wave height value immediately before and the wave height immediately after the waveform that becomes the threshold value are compared, and the difference in amplitude and offset of the waveform that becomes the predetermined threshold value is calculated at the beginning of the upstream and downstream received waves. The upstream and downstream received waves are amplified according to the difference in offset, and the level is increased or decreased according to the difference in offset. First, the peak value of the upstream received wave immediately before the waveform that becomes a predetermined threshold value is By matching the wave height value of the downstream side received wave and the wave height value of the immediately following upstream side received wave and the wave height value of the downstream side received wave, the wave height is determined at the beginning of the upstream side received wave and the downstream side received wave. The present invention is characterized in that the temporal rate of change in the level of the waveform serving as the determined threshold value is made to match. [Embodiments of the Invention] Hereinafter, embodiments of the receiving wave balance method in an ultrasonic flowmeter according to the present invention will be described with reference to FIGS. 1 and 2. In FIG. 1, received waves 5 from the upstream ultrasonic transducer 2 and the downstream ultrasonic transducer 3 are supplied to a received wave switching device 26. As shown in FIG. This received wave switching device 26 is selected by a switching signal 29 from a microcomputer 28, and its output signal 30 is input to the AGC amplifier 10, and sent out as a balanced received wave 32 through an operational amplifier 31. A part of the balanced reception wave 32 is guided to a first comparator 33, and a trough threshold value 35 corresponding to the first trough obtained from the microcomputer 28 through the D/A converter 34 is introduced.
are compared and a binary signal 36 is applied to the microcomputer 28. Similarly, the second top part is also balanced received wave 3.
2 is led to a second comparator 37, where it is compared with a threshold value 39 corresponding to the second peak obtained from the microcomputer 28 through the D/A converter 38, and a binarized signal 40 is applied to the microcomputer 28. . The microcomputer 28 changes the threshold values 35 and 39 according to the binary signals 36 and 40, and finally changes the threshold values 35 and 39 to the first received wave selected by the received wave selector 26.
The level of the trough and the level of the second peak of the second received wave are detected. The first trough level of the first received wave of the upstream side received wave balanced received wave 32 is set as A1, the second peak level of the second received wave is set as B1, and the first trough level of the downstream side received wave balanced received wave 32 is set as A1. Assuming that the level is A2 and the second peak level of the second received wave is B2, if the received waves are perfectly balanced, A1 = A2, B1 =
It becomes B2. When receiving waves are not balanced, (A2 − B2) − (A1 − B1) corresponds to the difference in amplitude,
A1-A2 (A1-B1)/A2-B2 corresponds to the difference in offset levels. Therefore, the microcomputer 28
The AGC voltage 42 is sent to the AGC amplifier 10 through the D/A converter 41 so that the gain on the downstream side of the AGC amplifier 10 is (A1-B1)/(A1-B2) times the gain on the upstream side. On the other hand, the signal from the microcomputer 28 is balanced by adding an offset voltage 44 to the operational amplifier 27 so that the signal is multiplied by A1-A2 (A1-B1)/A2-B2 through the D/A converter 43. By repeating such operations, the first trough level A1=A2 and the second peak B1 of the upstream balanced received wave 32 and the downstream balanced received wave 32.
=B2. As a result, the temporal rate of change from the first trough to the second peak of both received waves becomes the same, and the error in the propagation time difference is eliminated. FIG. 2 is a flowchart showing the above-mentioned signal flow. [Effects of the Invention] As described above, according to the present invention, receiving wave balance is performed by detecting the first trough level of the first received wave and the second peak level of the second received wave.
The rate of change in level over time from the first trough to the second peak of each received wave can be made the same, and false detection of propagation time differences can be completely eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波流量計における受
波バランス方式を示した回路図、第2図は同受波
バランス方式を示した動作フローチヤート、第3
図は超音波流量計の測定原理を示した説明図、第
4図は従来の受波バランス方式を示した回路図、
第5図は従来の方式による時間差の誤検出を説明
するための波形図である。 2,3……超音波振動子、10……AGCアン
プ、26……受信波切換器、27……オペアン
プ、33……第1のコンパレータ、34……D/
Aコンバータ、28……マイコン、38……D/
Aコンバータ。
Fig. 1 is a circuit diagram showing the receiving balance method in an ultrasonic flowmeter according to the present invention, Fig. 2 is an operation flowchart showing the receiving balance method, and Fig. 3
The figure is an explanatory diagram showing the measurement principle of an ultrasonic flowmeter, and Figure 4 is a circuit diagram showing the conventional receiving balance method.
FIG. 5 is a waveform diagram for explaining erroneous detection of time difference by the conventional method. 2, 3... Ultrasonic transducer, 10... AGC amplifier, 26... Reception wave switching device, 27... Operational amplifier, 33... First comparator, 34... D/
A converter, 28...microcomputer, 38...D/
A converter.

Claims (1)

【特許請求の範囲】 1 上流側受信波および下流側受信波の波形の
各々の正方向負方向の波高値を計測し、受信波形
のうち最初に予め定められた閾値となる波形の直
前の波高値および直後の波高値を比較し、上流側
および下流側受信波の最初に予め定められた閾値
となる波形の振幅の相違およびオフセツトの相違
を算出し、この振幅の相違に応じて上流側および
下流側受信波を増幅し、さらにオフセツトの相違
に応じてレベルアツプまたはダウンを行い、最初
に予め定められた閾値となる波形の直前の上流側
受信波の波高値と下流側受信波の波高値とを合致
させると共に、直後の上流側受信波の波高値と下
流側受信波の波高値とを合致させることにより上
流側受信波、下流側受信波の最初に定められた閾
値となる波形のレベルの時間的変化率を合致させ
るようにしたことを特徴とする超音波流量計にお
ける受信波バランス方式。 2 特許請求の範囲第1項に記載の受信波バラン
ス方式において、上流側および下流側受信波最初
に定められた閾値となる波形の直前の山および直
後の山の波高値を測定するようにしたことを特徴
とする受信波バランス方式。 3 特許請求の範囲第1項に記載の受信波バラン
ス方式において、予め定められる閾値を正の値と
し、受信波の最初に定められた閾値となる波形の
直前の山を負の値とし、直後の山を正の値とした
ことを特徴とする受信波バランス方式。 4 特許請求の範囲第1項に記載の受信波バラン
ス方式において、予め定められる閾値を負の値と
し、受信波の最初に定められた閾値となる波形の
直前の山を正の値とし、直後の山を負の値とした
ことを特徴とする受信波バランス方式。 5 特許請求の範囲第2項に記載の受信波バラン
ス方式において、予め定められる閾値を正の値と
し、受信波の最初に定められた閾値となる波形の
直前の山を負の値とし、直後の山を正の値とした
ことを特徴とする受信波バランス方式。 6 特許請求の範囲第2項に記載の受信波バラン
ス方式において、予め定められる閾値を負の値と
し、受信波の最初に定められた閾値となる波形の
直前の山を正の値とし、直後の山を負の値とした
ことを特徴とする受信波バランス方式。
[Claims] 1. Measure the wave height values in the positive and negative directions of the waveforms of the upstream side received wave and the downstream side received wave, and measure the wave height immediately before the waveform that becomes the first predetermined threshold among the received waveforms. The high value and the immediately following wave height value are compared, and the difference in waveform amplitude and offset that is the first predetermined threshold value of the upstream and downstream received waves is calculated, and the difference in waveform amplitude and offset is calculated based on the difference in amplitude. The downstream received wave is amplified, and the level is raised or lowered depending on the difference in offset, and the peak value of the upstream received wave and the peak value of the downstream received wave are first determined immediately before the waveform that becomes a predetermined threshold value. By matching the wave height value of the upstream side received wave and the wave height value of the downstream side received wave immediately after, the waveform level that becomes the initially determined threshold of the upstream side received wave and the downstream side received wave is determined. A receiving wave balance method in an ultrasonic flowmeter characterized by matching the temporal rate of change of . 2. In the received wave balance method as set forth in claim 1, the wave height values of the peak immediately before and the peak immediately after the waveform that becomes the threshold value initially determined for the upstream and downstream received waves are measured. A receiving wave balance method characterized by: 3. In the received wave balance method described in claim 1, the predetermined threshold value is a positive value, the peak immediately before the waveform that becomes the initially determined threshold value of the received wave is a negative value, and the peak immediately before the waveform that becomes the initially determined threshold value is a negative value. A receiving wave balance method characterized by setting the peak of the value as a positive value. 4. In the received wave balance method described in claim 1, the predetermined threshold value is a negative value, the peak immediately before the waveform that becomes the initially determined threshold value of the received wave is a positive value, and A receiving wave balance method characterized by setting the peak of the value to a negative value. 5. In the received wave balance method described in claim 2, the predetermined threshold value is a positive value, the peak immediately before the waveform that becomes the initially determined threshold value of the received wave is a negative value, and the peak immediately before the waveform that is the first determined threshold value of the received wave is a negative value. A receiving wave balance method characterized by setting the peak of the value as a positive value. 6. In the received wave balance method described in claim 2, the predetermined threshold value is a negative value, the peak immediately before the waveform that becomes the initially determined threshold value of the received wave is a positive value, and the peak immediately before the waveform that becomes the initially determined threshold value is a positive value. A receiving wave balance method characterized by setting the peak of the value to a negative value.
JP60016092A 1985-01-30 1985-01-30 Received wave balancing system for ultrasonic flowmeter Granted JPS61175524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60016092A JPS61175524A (en) 1985-01-30 1985-01-30 Received wave balancing system for ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60016092A JPS61175524A (en) 1985-01-30 1985-01-30 Received wave balancing system for ultrasonic flowmeter

Publications (2)

Publication Number Publication Date
JPS61175524A JPS61175524A (en) 1986-08-07
JPH053886B2 true JPH053886B2 (en) 1993-01-18

Family

ID=11906874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60016092A Granted JPS61175524A (en) 1985-01-30 1985-01-30 Received wave balancing system for ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JPS61175524A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738897B2 (en) * 2005-06-06 2011-08-03 株式会社鷺宮製作所 Ultrasonic flow meter

Also Published As

Publication number Publication date
JPS61175524A (en) 1986-08-07

Similar Documents

Publication Publication Date Title
US6647805B2 (en) Transit-time difference type ultrasonic flowmeter
US4028938A (en) Acoustical flow meter
US6209388B1 (en) Ultrasonic 2-phase flow apparatus and method
US7096135B2 (en) Method and system for calculating the transit time of an ultrasonic pulse
CN107478282B (en) Ultrasonic flow detection signal processing method and device and time difference method ultrasonic detection system
US5012449A (en) Sonic flow meter
US6012338A (en) Ultrasonic flow velocity measuring apparatus
WO2014006881A1 (en) Flow quantity measuring apparatus
JPH039405B2 (en)
JPH053886B2 (en)
JPH1048009A (en) Ultrasound temperature current meter
JPH11304559A (en) Flow rate measuring apparatus
JP2608961B2 (en) Sound wave propagation time measurement method
JP3624743B2 (en) Ultrasonic flow meter
WO2017168480A1 (en) Flow rate measurement device
JPH0447249B2 (en)
JP2002013958A (en) Ultrasonic flow meter
JP2000329597A5 (en)
JP3622613B2 (en) Ultrasonic flow meter
JPS6217677A (en) Ultrasonic measuring apparatus
JP4236479B2 (en) Ultrasonic transceiver
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JP4059733B2 (en) Ultrasonic meter device
JP2001183195A5 (en)
JPH03180794A (en) Method and instrument for ultrasonic distance measurement