JPH0538565A - Ceramic calcined body for internal chill - Google Patents

Ceramic calcined body for internal chill

Info

Publication number
JPH0538565A
JPH0538565A JP3192879A JP19287991A JPH0538565A JP H0538565 A JPH0538565 A JP H0538565A JP 3192879 A JP3192879 A JP 3192879A JP 19287991 A JP19287991 A JP 19287991A JP H0538565 A JPH0538565 A JP H0538565A
Authority
JP
Japan
Prior art keywords
quartz glass
ceramic
fired body
calcined body
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3192879A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyazaki
浩 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3192879A priority Critical patent/JPH0538565A/en
Publication of JPH0538565A publication Critical patent/JPH0538565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Exhaust Silencers (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the cracking and crazing to be generated on the inside surface of the hollow ceramic calcined body. CONSTITUTION:Pulverized quartz glass is pressurized and stuck to the inside surface of a molding 1 consisting of hollow aluminum titanate and is calcined in an electric furnace 3 kept at 1550 deg.C, by which the ceramic calcined body 4 formed with the quartz glass layer 2 on the inside surface is produced. Consequently, the generation of peeling between the ceramic calcined body and the quartz glass is obviated and the cracking and crazing generated in the ceramics are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関のシリンダラ
イナ、排気ポート、排気マニホルド等に主に断熱部材と
して利用されるセラミック焼成体に関し、詳しくは金属
で鋳ぐるまれて用いられる鋳ぐるみ用セラミック焼成体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic fired body mainly used as a heat insulating member in a cylinder liner of an internal combustion engine, an exhaust port, an exhaust manifold, etc. It relates to a ceramic fired body.

【0002】[0002]

【従来の技術】近年、性能向上の観点から、自動車部品
のセラミックス化が研究されている。特にセラミックス
の優れた耐熱性から、エンジン部品への応用研究が活発
に行われている。例えば排気ポートや排気マニホルドな
どに応用する場合、中空体とする必要があるが、セラミ
ックスは加熱または冷却時の熱衝撃、あるいは取扱い時
の衝撃などにより破損し易いので、セラミック中空体を
アルミニウム合金等の金属で鋳ぐるむ方法が有効な手段
であると考えられており、特開平1−317677号公
報には、チタン酸アルミニウムを主結晶とするセラミッ
クスを内層、鋳ぐるみ用の金属を外層として互いに密着
状態となしたセラミック複合体が開示されている。チタ
ン酸アルミニウムを主結晶とするかかるセラミックスは
熱伝導率が低いため、このセラミックスを鋳ぐるんだ構
造体は断熱性に優れており、また低強度材料でありヤン
グ率が小さく、鋳ぐるみ用の金属により鋳ぐるみを行っ
た場合、鋳ぐるみ金属の収縮を容易に吸収できる。従っ
て、冷却過程で鋳ぐるみ金属の収縮に追随することがで
きるため、セラミックスの破壊や、セラミックスの鋳ぐ
るみ金属からの脱落が発生しない。
2. Description of the Related Art In recent years, research into ceramics for automobile parts has been conducted from the viewpoint of improving performance. In particular, due to the excellent heat resistance of ceramics, application research on engine parts is being actively conducted. For example, when it is applied to an exhaust port or an exhaust manifold, it is necessary to form a hollow body, but ceramics are easily damaged by thermal shock during heating or cooling, or shock during handling. It is considered that the method of casting with metal is an effective means, and in Japanese Patent Laid-Open No. 1-317677, ceramics having aluminum titanate as a main crystal is used as an inner layer and metal for casting is used as an outer layer. Disclosed is a ceramic composite that is in close contact. Since such ceramics containing aluminum titanate as the main crystal have low thermal conductivity, the structure in which the ceramics are cast is excellent in heat insulating property. Also, since it is a low strength material and has a small Young's modulus, When cast metal is cast, shrinkage of the cast metal can be easily absorbed. Therefore, the shrinkage of the cast metal can be followed in the cooling process, so that the ceramic is not broken and the ceramic is not dropped from the cast metal.

【0003】[0003]

【発明が解決しようとする課題】しかし、断熱による出
力の向上などを目的として、内燃機関のシリンダヘッド
用排気ポートや排気マニホルドなどに使用する場合、燃
料中の不完全燃焼成分や金属の酸化小片が飛来し、内面
に衝突する。このような場合では、低強度材料であるこ
とはマイナス要因となり、粒子が衝突した際に成形体の
内壁の一部が削り取られたり亀裂が生じる原因となる。
そこで本発明の鋳ぐるみ用セラミック焼成体は、中空状
のセラミック焼成体の内部を流動する排ガスがセラミッ
クスと接触する部分を、セラミックスより高硬度、高強
度材料で保護することによりセラミック焼成体に生じる
割れや亀裂を防止することを目的とする。
However, when it is used for an exhaust port for a cylinder head of an internal combustion engine, an exhaust manifold, etc. for the purpose of improving output by heat insulation, etc., incomplete combustion components in fuel and metal oxide particles Flies and collides with the inside. In such a case, the low-strength material is a negative factor, and when the particles collide, a part of the inner wall of the molded body is scraped off or cracks occur.
Therefore, the cast-firing ceramic fired body of the present invention is produced in the ceramic fired body by protecting the portion where exhaust gas flowing inside the hollow ceramic fired body comes into contact with the ceramic with a material having higher hardness and higher strength than the ceramic. The purpose is to prevent cracks and cracks.

【0004】[0004]

【課題を解決するための手段】本発明の鋳ぐるみ用セラ
ミック焼成体は、線膨張係数が−0.5×10-6/K〜
0.5×10-6/Kの材料からなる中空状のセラミック
焼成体の内面に石英ガラス層が設けられていることを特
徴とする。線膨張係数が上記範囲内のセラミック材料と
しては、チタン酸アルミニウムやリン酸二亜鉛カリウ
ム、リチウムアルミノケイ酸塩等を用いることができ
る。セラミック焼成体の内面に石英ガラス層を形成する
方法としては、粉砕した石英ガラスを加圧して直接成形
体内面に付着させ、その後焼成して石英ガラスを溶解さ
せて形成する方法や、有機媒体や接着剤等により付着さ
せる方法、例えばポリエステル系接着剤に粉砕した石英
ガラスを加え、混合させた後に硬化剤を添加し、セラミ
ック成形体内面に塗布し、硬化させ、その後焼成するこ
とによって接着剤を消失させるという方法等が考えられ
る。
The ceramic sinter for cast bodies according to the present invention has a linear expansion coefficient of -0.5 × 10 -6 / K.
A feature is that a quartz glass layer is provided on the inner surface of a hollow ceramic fired body made of a material of 0.5 × 10 −6 / K. As the ceramic material having a linear expansion coefficient within the above range, aluminum titanate, potassium dizinc phosphate, lithium aluminosilicate, or the like can be used. As a method of forming a quartz glass layer on the inner surface of the ceramic fired body, pressure is applied to the crushed quartz glass to directly adhere to the inner surface of the formed body, followed by firing to melt the quartz glass to form an organic medium or A method of attaching with an adhesive or the like, for example, crushed quartz glass is added to a polyester-based adhesive, a curing agent is added after mixing, and the mixture is applied to the inner surface of the ceramic molded body, cured, and then baked to form an adhesive. A method of disappearing it can be considered.

【0005】[0005]

【作用】石英ガラスの硬度、強度は鋳ぐるまれるセラミ
ックスの硬度、強度よりも優れているため排ガスが流動
する部分に石英ガラスの層を設けることにより、燃料中
の不完全燃焼成分や金属の酸化小片が飛来して衝突して
も、耐粒子衝突被害性に優れた石英ガラスの層でセラミ
ックスを保護することができる。また、石英ガラスと、
上述したチタン酸アルミニウム、リン酸二亜鉛カリウ
ム、リチウムアルミノケイ酸塩等の間には線膨張係数に
ほとんど差がないため使用環境条件が低温から高温に至
るまで石英ガラスとセラミック焼成体との界面に熱応力
が生じ難く、また生じたとしてもその値は非常に小さ
い。そのため、セラミック焼成体と石英ガラスとの界面
で剥離が生じることがなくセラミック焼成体の内面を保
護することができる。
[Function] Since the hardness and strength of quartz glass are superior to the hardness and strength of cast ceramics, by providing a layer of quartz glass in a portion where exhaust gas flows, incomplete combustion components in the fuel and metal Even if small particles of oxide fly and collide, the ceramics can be protected with a layer of quartz glass having excellent resistance to particle collision. Also, with quartz glass,
Since there is almost no difference in the linear expansion coefficient among the above-mentioned aluminum titanate, potassium dizinc phosphate, lithium aluminosilicate, etc., the interface between the quartz glass and the ceramic fired body can be used at various temperatures from low to high. Thermal stress hardly occurs, and even if it does occur, its value is very small. Therefore, the inner surface of the ceramic fired body can be protected without peeling at the interface between the ceramic fired body and the quartz glass.

【0006】[0006]

【実施例】以下、添付図面に基づいて本発明の実施例に
ついて詳細に説明する。まず、本実施例で作製するセラ
ミックライナを成形するためのスリップを作製する。焼
結助剤として酸化第二鉄6重量%と酸化ケイ素2重量%
を添加したチタン酸アルミニウム粉末に、解膠剤として
ポリカルボン酸アンモニウムを用い、粉体濃度の80%
となるように蒸留水を加えてボールミルで混合し、スリ
ップを作製した。なお、表1にチタン酸アルミニウムと
石英ガラスの硬度、強度、融点及び線膨張係数を示す。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. First, a slip for forming the ceramic liner produced in this example is produced. 6% by weight of ferric oxide and 2% by weight of silicon oxide as sintering aids
80% of the powder concentration is obtained by using ammonium polycarboxylate as a deflocculant in aluminum titanate powder containing
Distilled water was added so as to be mixed and mixed with a ball mill to prepare a slip. Table 1 shows the hardness, strength, melting point and linear expansion coefficient of aluminum titanate and quartz glass.

【0007】[0007]

【表1】 [Table 1]

【0008】出来上がったスリップを所定の石膏型へ流
し込み、着肉させた後、余分なスリップを排泥して外径
40mm、内径32mm、厚さ4mmの円筒形状に成形
した。次に、この成形体1を乾燥後石膏型から取り出
し、平均粒径0.05mmに粉砕した石英ガラスを成形
体1の内面に約1kgf/cm2 の圧力で加圧し、厚さ
が0.2mmとなるように付着させる。上記工程によっ
て得られた成形体1を図2に示すように電気炉3内にて
1550℃の温度で4時間保持して焼成した。石英ガラ
スの融点は約1600℃であるためこの時点で石英ガラ
スは融点近傍、或いは融点を越える温度に達し、石英ガ
ラスが溶けて成形体1の内面に石英ガラス層2が形成さ
れる。出来上がった焼成体4の断面を図1に示す。次
に、上記工程で得られた焼成体を鋳型内に配置し、アル
ミニウム合金溶湯を注湯して鋳ぐるみを行った。得られ
た鋳ぐるみ体の断面を図3に示す。このようにして焼成
体4の外周表面にアルミニウム合金からなる肉厚6mm
の金属層5が形成される。 (比較例1)上記実施例と同様の方法で成形史た後、そ
のままの状態で焼成して内面に石英ガラス層が形成され
ないセラミックライナを作製し、アルミニウム合金で鋳
ぐるみを行った。 (比較例2)上記実施例と同様の方法で成形した後、内
面にアルミナ層が形成されたセラミックライナを作成
し、アルミニウム合金で鋳ぐるみを行った。アルミナの
硬度、強度、融点及び線膨張係数を表2に示す。
The finished slip was poured into a predetermined gypsum mold, and after being inlaid, the excess slip was drained to form a cylindrical shape having an outer diameter of 40 mm, an inner diameter of 32 mm and a thickness of 4 mm. Next, this molded body 1 is taken out of the gypsum mold after drying, and quartz glass crushed to an average particle size of 0.05 mm is pressed against the inner surface of the molded body 1 at a pressure of about 1 kgf / cm 2 to a thickness of 0.2 mm. To be attached. As shown in FIG. 2, the molded body 1 obtained by the above process was held in the electric furnace 3 at a temperature of 1550 ° C. for 4 hours for firing. Since the melting point of the quartz glass is about 1600 ° C., the quartz glass reaches a temperature near or exceeding the melting point at this point, and the quartz glass melts to form the quartz glass layer 2 on the inner surface of the molded body 1. A cross section of the finished fired body 4 is shown in FIG. Next, the fired body obtained in the above step was placed in a mold, and a molten aluminum alloy was poured to cast it. FIG. 3 shows a cross section of the obtained cast body. In this way, the outer peripheral surface of the fired body 4 is made of an aluminum alloy and has a thickness of 6 mm.
The metal layer 5 is formed. (Comparative Example 1) After forming history by the same method as in the above-mentioned example, the ceramic liner in which the quartz glass layer is not formed on the inner surface was produced by firing in that state, and casted with aluminum alloy. (Comparative Example 2) A ceramic liner having an alumina layer formed on the inner surface was formed after molding by the same method as in the above-mentioned example, and casted with aluminum alloy. Table 2 shows the hardness, strength, melting point and linear expansion coefficient of alumina.

【0009】[0009]

【表2】 [Table 2]

【0010】(評価)こうして得られた鋳ぐるみ体につ
いて高温耐久性試験を行った。すなわち1000℃の高
温ガスを連続して100時間、50m/sの流速で焼成
体4内に流したところ、内面に石英ガラス層が形成され
ていない焼成体は割れが発生したのに対し、実施例で形
成した焼成体4には割れなどの不具合は生じなかった。
また、アルミナ焼成体を1mm角程度に粉砕した粒子を
上記高温ガス中に導入し、粒子衝突試験を行ったが、同
様に実施例の焼成体4の内表面には欠けなどの問題は生
じなかった。また、比較例2においては、焼成体と石英
ガラスとの間に剥離が生じたのに対して、実施例の焼成
体においては剥離の発生は見られなかった。これは、チ
タン酸アルミニウムと石英ガラスの線膨張係数に、表1
に示すようにほとんど差がないため、使用環境条件が低
温から高温に至るまで焼成体5と石英ガラス層2との界
面において熱応力が生じ難く、生じたとしてもその値は
非常に小さいことによるものと考えられる。また、チタ
ン酸アルミニウムは微細な気孔を多数有するため、焼成
時に石英ガラスが焼成体4内の気孔に浸透し、両者の結
合が更に強固になる。更に、石英ガラスの融点は160
0℃でチタン酸アルミニウムの焼成温度近傍なので、石
英ガラス層の形成とセラミックスの焼成を同時に行うこ
とができるとともに、石英ガラスが一旦融解したあと、
セラミック部品の内面に層をなすので面粗度が向上し、
内部を流動する排ガスの排気抵抗を減少することができ
る。また、鋳ぐるみ時にアルミニウム合金からなる金属
層5が冷却、固化する際、焼成体4には外周から圧縮応
力が加わる。しかし、チタン酸アルミニウムは低強度材
料であるため、焼成体4の外表面側が変形することによ
りこの応力を吸収することができ、焼成体4の割れを防
止することができる。
(Evaluation) A high-temperature durability test was conducted on the cast doll body thus obtained. That is, when a high temperature gas of 1000 ° C. was continuously flowed into the fired body 4 at a flow rate of 50 m / s for 100 hours, cracks occurred in the fired body in which the quartz glass layer was not formed on the inner surface. The fired body 4 formed in the example did not have defects such as cracks.
Particles obtained by pulverizing the alumina calcined body into about 1 mm square were introduced into the above-mentioned high temperature gas and a particle collision test was conducted. Similarly, no problems such as chipping occurred on the inner surface of the calcined body 4 of the example. It was In Comparative Example 2, peeling occurred between the fired body and quartz glass, whereas no peeling was observed in the fired body of the example. This is shown in Table 1 for the linear expansion coefficient of aluminum titanate and quartz glass.
Since there is almost no difference as shown in Fig. 5, it is difficult for thermal stress to occur at the interface between the fired body 5 and the quartz glass layer 2 from the low temperature to the high temperature of the operating environment. Thought to be a thing. Further, since aluminum titanate has a large number of fine pores, the quartz glass permeates into the pores in the fired body 4 during firing, and the bond between the two is further strengthened. Furthermore, the melting point of quartz glass is 160
Since the temperature is about 0 ° C. near the firing temperature of aluminum titanate, the formation of the quartz glass layer and the firing of the ceramic can be performed at the same time, and after the quartz glass is once melted,
Since the inner surface of the ceramic part is layered, the surface roughness is improved,
The exhaust resistance of exhaust gas flowing inside can be reduced. Further, when the metal layer 5 made of an aluminum alloy is cooled and solidified during casting, compressive stress is applied to the fired body 4 from the outer periphery. However, since aluminum titanate is a low-strength material, the stress can be absorbed by the deformation of the outer surface side of the fired body 4, and the fired body 4 can be prevented from cracking.

【0011】[0011]

【発明の効果】本発明の鋳ぐるみ用セラミック焼成体に
よれば、セラミック焼成体の内面に、線膨張係数にほと
んど差がない石英ガラスの層を設けることにより、両者
間に剥離が発生することなく、中空状のセラミック焼成
体の内部を流動する排ガス等の粒子がセラミックスに衝
突して発生する割れや亀裂を防止することができる。
EFFECTS OF THE INVENTION According to the ceramic fired body for cast iron of the present invention, by providing a layer of quartz glass having almost no difference in linear expansion coefficient on the inner surface of the ceramic fired body, peeling occurs between the two. Moreover, it is possible to prevent cracks or cracks generated when particles such as exhaust gas flowing inside the hollow ceramic fired body collide with the ceramics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の焼成体の断面図である。FIG. 1 is a cross-sectional view of a fired body of this example.

【図2】本実施例の焼成装置の説明図である。FIG. 2 is an explanatory diagram of a firing apparatus of this example.

【図3】本実施例の鋳ぐるみ体の断面図である。FIG. 3 is a cross-sectional view of a cast-in toy body according to the present embodiment.

【符号の説明】[Explanation of symbols]

1 ・・・ 成形体 2 ・・・ 石英ガラス層 3 ・・・ 電気炉 4 ・・・ 焼成体 5 ・・・ 金属層 1 ... Molded body 2 ... Quartz glass layer 3 ... Electric furnace 4 ... Firing body 5 ... Metal layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02F 1/42 N 8503−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area F02F 1/42 N 8503-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 線膨張係数が−0.5×10-6/K〜
0.5×10-6/Kの材料からなる中空状の鋳ぐるみ用
セラミック焼成体の内面に石英ガラス層が設けられてい
ることを特徴とする鋳ぐるみ用セラミック焼成体。
1. A linear expansion coefficient of −0.5 × 10 −6 / K to
1. A ceramic fired body for cast bodies, characterized in that a quartz glass layer is provided on the inner surface of a hollow ceramic fired body for cast bodies made of a material of 0.5 × 10 −6 / K.
JP3192879A 1991-08-01 1991-08-01 Ceramic calcined body for internal chill Pending JPH0538565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3192879A JPH0538565A (en) 1991-08-01 1991-08-01 Ceramic calcined body for internal chill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3192879A JPH0538565A (en) 1991-08-01 1991-08-01 Ceramic calcined body for internal chill

Publications (1)

Publication Number Publication Date
JPH0538565A true JPH0538565A (en) 1993-02-19

Family

ID=16298500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3192879A Pending JPH0538565A (en) 1991-08-01 1991-08-01 Ceramic calcined body for internal chill

Country Status (1)

Country Link
JP (1) JPH0538565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846489A (en) * 1994-04-09 1998-12-08 Boehringer Mannheim Gmbh System for opening closures of vessels and for the contamination-free operation of reaction sequences
WO2018070374A1 (en) * 2016-10-12 2018-04-19 日本碍子株式会社 Middle member
WO2022057518A1 (en) * 2020-09-15 2022-03-24 深圳前海发维新材料科技有限公司 Use of glass composite material with high softening point, low thermal expansion coefficient, high wear resistance and low thermal conductivity in engine gas turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846489A (en) * 1994-04-09 1998-12-08 Boehringer Mannheim Gmbh System for opening closures of vessels and for the contamination-free operation of reaction sequences
WO2018070374A1 (en) * 2016-10-12 2018-04-19 日本碍子株式会社 Middle member
CN109843831A (en) * 2016-10-12 2019-06-04 日本碍子株式会社 Intermediate member
JPWO2018070374A1 (en) * 2016-10-12 2019-09-05 日本碍子株式会社 Intermediate member
US10933560B2 (en) 2016-10-12 2021-03-02 Ngk Insulators, Ltd. Intermediate member
WO2022057518A1 (en) * 2020-09-15 2022-03-24 深圳前海发维新材料科技有限公司 Use of glass composite material with high softening point, low thermal expansion coefficient, high wear resistance and low thermal conductivity in engine gas turbine

Similar Documents

Publication Publication Date Title
JP3096814B1 (en) Method for producing aluminum titanate sintered body
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
US5066626A (en) Ceramic materials for use in insert-casting and processes for producing the same
JPH0538565A (en) Ceramic calcined body for internal chill
JP2003056354A (en) Exhaust system turbine housing for automobile
EP0240190A2 (en) Process for manufacturing ceramic sintered bodies and mold to be used therefor
JP3178628B2 (en) Insulating coating film
JP2698186B2 (en) Manufacturing method of casting nozzle member
JPS595548B2 (en) Powder refractory spray molded body
JPH0436062B2 (en)
EP0191008A1 (en) Shell or tubular object and method to manufacture the same
JPS61205103A (en) Manufacture of ceramic hollow shape body
JPH04187561A (en) Firing of aluminum titanate formed material
JPS60166156A (en) Production of ceramic-metal composite material
JPS6079944A (en) Manufacture of ceramics-metal composite body
JPS60118366A (en) Production of joined body between oxide ceramics and copper or alloy thereof
JPS61189864A (en) Production of ceramic-metal composite body
JPS6111908B2 (en)
JPS60216967A (en) Composite ceramic-iron-base alloy body
JPS6254543A (en) Production of casting mold
JPS6021173A (en) Production of ceramic-inserted casting
JPH0317576B2 (en)
JPH1029036A (en) Manufacture of core piece for forming hole as cast
CN117550904A (en) Rare earth oxide modified fly ash low-heat-conductivity grouting material and preparation method and application thereof
JP2003245771A (en) Thermal shock resistant sliding nozzle plate