JPS6021173A - Production of ceramic-inserted casting - Google Patents

Production of ceramic-inserted casting

Info

Publication number
JPS6021173A
JPS6021173A JP12779083A JP12779083A JPS6021173A JP S6021173 A JPS6021173 A JP S6021173A JP 12779083 A JP12779083 A JP 12779083A JP 12779083 A JP12779083 A JP 12779083A JP S6021173 A JPS6021173 A JP S6021173A
Authority
JP
Japan
Prior art keywords
solvent
ceramic
ceramics
binder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12779083A
Other languages
Japanese (ja)
Inventor
Hideo Tsunoda
英雄 角田
Masakatsu Fukuda
福田 正勝
Shuji Ono
修二 小野
Hiroichi Yamamoto
博一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12779083A priority Critical patent/JPS6021173A/en
Publication of JPS6021173A publication Critical patent/JPS6021173A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obviate cracking in ceramics owing to insert casting by coating a compsn. consisting of refractory powder, binder, solvent and thermoplastic resin insoluble in the solvent on the surface of the ceramics/and evaporating the resin by heating to form a porous cushion material layer. CONSTITUTION:A compsn. consisting of refractory powder, binder, solvent and thermoplastic resin insoluble in the solvent is coated on the surface of a ceramics in contact with a molten metal and is heated to the temp. higher than the thermal decomposition temp. of the resin to evaporated the resin, thereby forming a porous cushion material layer which is then inserted by the molten metal. Water glass, colloidal silica, etc. are used for the binder and a solvent suitable for the binder used is used for the solvent. The binder and the solvent are used at about 10-15wt% in total. >=1 Kind among PP, PE, etc. are used at about 5- 40wt% for the thermopolastic resin/and the grain size thereof is made to about <=200mu. The thickness of the porous cusion material layer is made to about <=1/15 the wall thickness of the metal for insert casting.

Description

【発明の詳細な説明】 本発明は、セラミックス崎ぐるみ鋳物の製造方法に関し
、鋳ぐるみ時の熱衝撃あるいは鋳ぐるみ後の収縮による
セラミックスの亀裂を防止するために、鋳ぐるみ用セラ
ミックスに緩衝材を形成して、セラミックス鋳ぐるみ鋳
物を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ceramic castings, in which a cushioning material is added to the ceramics for casting in order to prevent cracks in the ceramics due to thermal shock during casting or shrinkage after casting. The present invention relates to a method of forming and manufacturing ceramic castings.

内燃機関の燃焼室、排気系等の高温となる場所には、断
熱特性を向上させ、熱効率を良くする目的で、セラミッ
クス成形体を金属溶湯によって鋳ぐるんだ製品が使用さ
れる。このような鋳ぐるみ用成形体は、鋳造時或いは使
用時に次のような性質を要求される。
Products made of ceramic molded bodies cast in molten metal are used in high-temperature areas such as the combustion chamber and exhaust system of internal combustion engines in order to improve heat insulation properties and thermal efficiency. Such molded bodies for castings are required to have the following properties during casting or use.

イ)一定の可撓性を有し、金属溶湯鋳込時の熱衝撃に耐
えて、鋳物或いはセラミックスに割れを生じないこと。
b) Must have a certain degree of flexibility, withstand thermal shock during molten metal casting, and do not cause cracks in castings or ceramics.

口)使用時に、振動や冷熱サイクル等の衝撃に対して優
れ、耐久性が良好なこと。
(Example) During use, it should be able to withstand shocks such as vibrations and cooling/heating cycles, and should have good durability.

これらの要求を満たすためには、高強度で、しかもヤン
グ率の小さな可撓性セラミックス成形体が有望であり、
出願人等は、特願昭58−3571号において、耐火物
粉末に、珪酸ソータ、珪ジルコン酸ソータ及ヒアルEン
fillソータのうち少くとも1種と、高炉スラグ、カ
ルシリスラグ及びマグネスラグのうち少なくとも1種と
を配合してなる組成物を所望の形状にした後加熱焼成し
てなることを特徴とする可撓性セラミックスを提案し、
好結果を得ている。
In order to meet these demands, flexible ceramic molded bodies with high strength and a small Young's modulus are promising.
In Japanese Patent Application No. 58-3571, the applicant et al. added at least one of silicate sorter, silicozirconate sorter, and Hyal Enfill sorter to the refractory powder, and at least one of blast furnace slag, calcilis slag, and magnetic slag. We propose flexible ceramics characterized by forming a composition formed by blending a seed into a desired shape and then heating and firing it,
We are getting good results.

しかし、鋳物及びセラミックスの肉厚が比較的大きな製
品に対して有効なこの方法も、鋳物或いはセラミックス
の肉厚が小さな製品に対しては、餉ぐる不時の熱衝撃や
運転時の振動を十分緩衝できないことが思念される。
However, this method is effective for castings and ceramics with relatively large wall thicknesses, but it is not suitable for castings or ceramics with small wall thicknesses because it is not sufficient to prevent unexpected thermal shocks and vibrations during operation. I am reminded that I cannot buffer it.

本発明は、上記の懸念を解決する目的でなされたもので
あシ、溶湯と接触するセラミックスの表面に、緩衝材層
を設けることにより、鋳ぐるみ時の熱衝撃や運転時の振
動を緩衝できるセラミックス鋳ぐるみ鋳物の製造方法を
提供するものである。
The present invention was made to solve the above concerns, and by providing a buffer layer on the surface of the ceramic that comes into contact with the molten metal, it is possible to buffer thermal shock during casting and vibration during operation. The present invention provides a method for producing a ceramic casting.

すなわち本発明は、鋳型内の所定の位置に配置したセラ
ミックスを溶湯によって鋳ぐるむセラミックス鋳ぐるみ
鋳物の製造方法において、溶湯と接触する該セラミック
スの表面に、耐火物粉末、粘結剤、溶剤、及び該溶剤に
不溶のポリプロピレン、ポリエチレン、ポリスチレン、
ポリメタクリレート、ポリエチレンテレフタレート等の
粒状の熱可塑性樹脂を1種以上配合した組成物を所望の
厚さに塗布した後、該樹脂の熱分解温度以上に加熱し、
該樹脂を揮発させることによシ、多孔質の緩衝材層全介
在させることを特徴とするセラミックス鋳ぐるみ鋳物の
製造方法に関するものである。
That is, the present invention provides a method for manufacturing ceramic castings in which ceramics placed at a predetermined position in a mold are cast with molten metal, in which refractory powder, a binder, a solvent, and polypropylene, polyethylene, polystyrene, which is insoluble in the solvent,
After applying a composition containing one or more granular thermoplastic resins such as polymethacrylate and polyethylene terephthalate to a desired thickness, heating to a temperature higher than the thermal decomposition temperature of the resin,
The present invention relates to a method for manufacturing a ceramic cast material, characterized in that the entire porous buffer material layer is formed by volatilizing the resin.

本発明方法は、鋳ぐるみ用セラミックス等、可撓性を心
安とする6柚セラミックスの表向処理材等に適用できる
The method of the present invention can be applied to surface-treated materials such as ceramics for castings and other ceramics that require flexibility.

本発明方法に係る鋳ぐるみ用セラミックスを鋳ぐるんだ
パイプの断面図m11図に、第1図のA部を拡大して第
2図に示す。
FIG. 2 is an enlarged view of section A in FIG. 1, which is a cross-sectional view of a pipe in which ceramics for castings according to the method of the present invention is cast.

第1,2図において、1はセラミックス、2は本発明方
法による緩衝材層、3は鋳ぐるみ金属である。
In FIGS. 1 and 2, 1 is ceramic, 2 is a buffer material layer formed by the method of the present invention, and 3 is a cast metal.

緩衝材)@2は、コーテイング材として、溶湯と接触す
るセラミックス1の表面に塗布し7た後、加熱して多孔
質化する。
The buffer material)@2 is applied as a coating material to the surface of the ceramic 1 that comes into contact with the molten metal, and then heated to make it porous.

コーテイング材は、Zr、 5i04. ZrO2,A
120B 。
The coating material is Zr, 5i04. ZrO2,A
120B.

MgO等の耐火物粉末を主成分とする。使用する耐火物
粉末は、対象となるセラミックス1と同質のものが望ま
しい。同質のものであれば、加熱中の膨張率の違いによ
るコーティング層の剥離が起きにくいからである。
The main component is refractory powder such as MgO. The refractory powder used is preferably of the same quality as the ceramic 1 to be used. This is because if the materials are of the same quality, the coating layer is less likely to peel off due to differences in expansion coefficient during heating.

使用する粘結剤は、水ガラス、コロイダルシリカ、エチ
ルシリケート等、高温性質の優しタものが望ましい。こ
れらの粘結剤を使用した緩衝材層2ば、υjぐるみ時に
溶湯と接触しても剥離することかない。また、セラミッ
クス鋳ぐるみ鋳物製品として使用する際にも優れた耐久
性が得られる。
The binder used is preferably a binder with high temperature properties such as water glass, colloidal silica, or ethyl silicate. The buffer material layer 2 using these binders will not peel off even if it comes into contact with molten metal during υj wrapping. Furthermore, excellent durability can be obtained when used as a ceramic cast product.

水ガラス或いはコロイダルシリカを粘結剤とする場合に
は水、エチルシリケートを粘結剤とする場合にはエタノ
ール或いはイソプロピルアルコール等の溶剤を加え、上
記の耐火物粉末とtこ 共へラリ−化する。
Add water if water glass or colloidal silica is used as the binder, or add a solvent such as ethanol or isopropyl alcohol if ethyl silicate is used as the binder, and form a slurry with the above refractory powder. do.

このスラリーに、該溶剤に不溶のポリフロピレン、ポリ
エチレン、ポリスチレン、ポリメタクリレート、ポリエ
チレンテレフタレート等の粒状の熱可塑性樹脂を1柚以
上配合する。これらの熱可塑性樹脂は、加熱することに
よって解重合しやすい特性があり、これらを配合したコ
ーテイング材全セラミックス1の表面に塗布後、加熱し
て得られる緩衝材層2は、該樹脂il1分が空洞化した
多孔質となる。址た該熱可塑性樹脂は解重合しやすいた
め、残置等が残りにくく、注湯時にキライ(揮発酸分に
よるカス発生のために、鋳物内にブロホールが発生した
り、鋳物表面があばた状になるとと)が発生しにくい。
To this slurry, one or more granular thermoplastic resins such as polypropylene, polyethylene, polystyrene, polymethacrylate, polyethylene terephthalate, etc., which are insoluble in the solvent, are blended. These thermoplastic resins have the property of being easily depolymerized by heating, and the cushioning material layer 2 obtained by applying these thermoplastic resins to the surface of the coating material all-ceramic 1 and then heating the resin il 1 min. It becomes hollow and porous. Since the thermoplastic resin is easily depolymerized, it is difficult to leave residues, and it is difficult to leave residues. ) are less likely to occur.

熱可塑性樹脂の粒径は、特に限定しないが、200 、
m以下が望ましい。上記樹脂の粒径によって加熱後に得
られる窒洞部の大きさか決唸るため、できるだけ粒径の
細かい方がコーティング層の塗布厚みを調整しやすく、
得られた緩衝材層2の錯洞も一定になりやすい。これら
粒状の熱可塑性樹脂は、ペレット化する前の中間生成品
が望ましく、中間生成品の粒径はいずれも20011m
以下の微粒である。
The particle size of the thermoplastic resin is not particularly limited, but may be 200 mm,
m or less is desirable. The particle size of the resin determines the size of the nitrogen cavity obtained after heating, so the finer the particle size, the easier it is to adjust the coating thickness of the coating layer.
The complexities of the obtained buffer material layer 2 also tend to be constant. These granular thermoplastic resins are preferably intermediate products before being pelletized, and the particle size of the intermediate products is 20011 mm.
The following fine particles.

上記の熱可塑性樹脂の添加量は、5〜40重量%が望ま
しい。5M量チ以下では、加熱後得られる緩衝材中の空
孔の数が少ないため、本発明の目的である鋳ぐるみ時の
熱衝撃や鋳ぐるみ後の収縮を緩和できない。また、40
重量%以上では、独立した窒化が得られず、剥離しやす
い。
The amount of the thermoplastic resin added is preferably 5 to 40% by weight. If the amount is less than 5M, the number of pores in the cushioning material obtained after heating is small, so that it is not possible to alleviate thermal shock during casting and shrinkage after casting, which is the objective of the present invention. Also, 40
If it exceeds % by weight, independent nitridation cannot be obtained and peeling is likely to occur.

筐た、粘結剤及び溶剤の添加量は、合計で15〜50重
M%が望ましい。15重ft%以下では、スラリー化し
ないため塗布できず、50重M%以上では、流動性が低
下しすぎて、耐火物と樹脂とが分離して均一な空孔を持
つ緩衝材層が得られない。この内、粘結剤の添加量は、
全配合の5重量%以上が望ましい。5重量%以下では、
加熱後のコーティング層の接着が不十分であり、剥離し
やすい。粘結剤添加量の上限は、前記の理由で50重敏
係が望ましい。
The total amount of the casing, binder and solvent added is preferably 15 to 50% by weight. If it is less than 15% by weight, it cannot be coated because it does not become a slurry, and if it is more than 50% by weight, the fluidity is too low and the refractory and resin separate, resulting in a buffer material layer with uniform pores. I can't do it. Of these, the amount of binder added is
It is desirable that the amount is 5% by weight or more of the total formulation. At 5% by weight or less,
The adhesion of the coating layer after heating is insufficient and it is easy to peel off. The upper limit of the amount of binder added is preferably 50% by weight for the above-mentioned reasons.

耐火物は、上記配合の残量として添加するものであり、
10〜80重量%の範囲で添加する。
The refractory is added as the remaining amount of the above formulation,
It is added in a range of 10 to 80% by weight.

以上の様な配合のコーティング剤を、セラミックス1の
表面に所望の厚みで塗布する。コーディング層は厚いほ
ど鋳込み時の熱衝撃や収縮に対して有効であるが、その
厚さを、鋳ぐるみ金属肉厚の1715程度以上にすれば
、鋳込み時の鋳物あるいは、セラミックスに生じる亀裂
を防止できる。また、緩衝材層は、空孔が多いため強度
的に弱い傾向がある。従って、激しい振動が加わるエン
ジンの排気管等、厳しい条件の基で使用されるものでは
、長時間の運転で、緩衝材層が壊れる傾向にろる。その
ため、厳しい条件で使用されるものに対しては、緩衝材
層の厚さを、鋳ぐるみ金属肉厚の115程度以下にする
ことが望ましい。但し、強度的な条件が厳しくない場合
は、この限りではない。
A coating agent having the above-mentioned composition is applied to the surface of the ceramic 1 to a desired thickness. The thicker the coating layer, the more effective it is against thermal shock and shrinkage during casting, but if the thickness is at least about 1715 mm thick, which is the thickness of the casting metal, it will prevent cracks from occurring in the casting or ceramics during casting. can. In addition, the cushioning material layer tends to be weak in strength because it has many pores. Therefore, in products that are used under severe conditions, such as engine exhaust pipes that are subjected to severe vibrations, the cushioning material layer tends to break down over long periods of operation. Therefore, for products that are used under severe conditions, it is desirable that the thickness of the buffer material layer be approximately 115 times the thickness of the cast metal or less. However, this does not apply if the strength conditions are not severe.

なお、コーティング剤中の熱可塑性樹脂は、400℃以
上に保持することにより解重合する。
Note that the thermoplastic resin in the coating agent is depolymerized by maintaining the temperature at 400°C or higher.

また本発明で緩衝材層2を多孔質とする理由は次の通り
である。
Moreover, the reason why the buffer material layer 2 is made porous in the present invention is as follows.

セラミックスは、耐熱性や断熱性が優れる半面、可撓性
が殆んどない。従って、金属で鋳ぐるむと、注計時の熱
衝撃や、その後の金属の収縮によって、鋳物あるいは、
セラミックスに割れを生じやすい欠点がある。この内、
注湯時の熱衝撃は、セラミックス等によシ、はぼ解決で
きる(特願昭58−3571号参照)が、収縮時の亀裂
を完全に防止することは困難である。
Although ceramics have excellent heat resistance and heat insulation properties, they have almost no flexibility. Therefore, when casting with metal, thermal shock during pouring and subsequent contraction of the metal may cause the casting or
Ceramics have the disadvantage of being prone to cracking. Of these,
Thermal shock during pouring can be partially solved by using ceramics, etc. (see Japanese Patent Application No. 58-3571), but it is difficult to completely prevent cracks during shrinkage.

この収縮時の亀裂の防止をセラミックス表面に多孔質の
緩衝材層を設りることによシ解決するのである。緩衝材
層の空孔は、樹脂が分解してできたものであり、細かい
球状の独立空孔である。緩衝材層は、セラミックスと比
較して多孔質であるため低荷重で破壊する。また、独立
した空孔であるため、荷重がかかった面から順に空孔が
壊れて行き、内部に荷重が伝わりにくい。
The prevention of cracks during shrinkage is solved by providing a porous buffer layer on the ceramic surface. The pores in the buffer material layer are formed by decomposition of the resin, and are fine spherical independent pores. Since the buffer material layer is more porous than ceramics, it will break under a low load. In addition, since the pores are independent, the pores break down in order from the surface on which the load is applied, making it difficult for the load to be transmitted to the inside.

この様な作用により、注湯後の鋳ぐるみ金属の収縮に応
じて、緩衝材層は表面から破壊していき、収縮の加わら
ない緩衝材層及び内部のセラミックスが破壊しにくい効
果がある。
Due to this action, the cushioning material layer is destroyed from the surface as the cast metal shrinks after pouring, and the cushioning material layer and the internal ceramics, which are not subject to shrinkage, are less likely to be destroyed.

次に、本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例 第6図は、単頭エンジンのセラミックス鋳ぐるみ排気管
を示す部分断面図である。セラミックス11は内径がφ
65咽、肉厚4咽、鋳ぐるみ金属15は外径がφ75鰭
、長さ200mmである。
Embodiment FIG. 6 is a partial sectional view showing a ceramic cast exhaust pipe of a single-head engine. Ceramic 11 has an inner diameter of φ
The cast metal 15 has a diameter of φ75 and a length of 200 mm.

セラミックス11の配合は、次のとお9である。The composition of ceramics 11 is as follows.

ジルコン粉末 8ろwt% カルシリスラグ bwt% 水ガラス 12wt優 上記配合物を金型に充填し所望の形状とした。Zircon powder 8 wt% Calcilis slag bwt% Water glass 12wt Yu The above mixture was filled into a mold to obtain a desired shape.

尚、この配合のセラミックス11は、900〜1、20
0℃の温度範囲で焼成することが望ましい。900℃以
下では、水ガラス中のソーダ分が残るため吸水性があシ
、排気管としての耐久性がなく、1.200℃以上で焼
成すると、高強度のものが得られるが、焼成前後の寸法
変化が大きく所望の形状にすることができない。900
〜1.200℃の温度範囲で焼成したセラミックス11
の性質は、焼成前後の寸法変化が0.5 %以下、圧縮
強きが5.5〜4ゆ/朋2、歪み1.7条前後である。
In addition, ceramics 11 with this composition has a 900 to 1,20
It is desirable to perform the firing in a temperature range of 0°C. If the temperature is below 900℃, the soda content in the water glass will remain, resulting in poor water absorption and lack of durability as an exhaust pipe.If fired at temperatures above 1.200℃, a high-strength product can be obtained, but the Dimensional changes are large and it is not possible to form the desired shape. 900
Ceramics fired in the temperature range of ~1.200°C 11
The properties are that the dimensional change before and after firing is 0.5% or less, the compressive strength is 5.5 to 4 Yu/tomo2, and the strain is around 1.7 threads.

緩衝材層12を形成されるために用いるコーテイング材
の配合は、次のとおシである。
The composition of the coating material used to form the buffer material layer 12 is as follows.

ジルコン粉末 56.5 wt% カルシリスラグ 5.5 wt係 氷水ガラス 9.5 wt% 水 1 6.5 wt% ポリプロピレン粉末 14wt% なお、このコーテイング材中のジルコン粉末、カルシリ
スラグ、水ガラスは、上記セラミックス11と同一であ
り、これに溶剤である水とポリプロピレン粉末とを加え
たものである。
Zircon powder 56.5 wt% Calcilis slag 5.5 wt Ice water glass 9.5 wt% Water 1 6.5 wt% Polypropylene powder 14 wt% The zircon powder, calcilis slag, and water glass in this coating material are the same as the ceramics 11 mentioned above. This is the same as above, with the addition of water as a solvent and polypropylene powder.

コーテイング材は、未焼成のセラミックス11の外周に
0.7 mm程度の厚さで塗布した。コーテイング材を
塗布したセラミックスは、1000℃で約5時間焼成し
た。焼成後、コーテイング材中の樹脂や水分が揮発して
得られた緩衝材層12の厚さは約0.4日程度であった
The coating material was applied to the outer periphery of the unfired ceramic 11 to a thickness of about 0.7 mm. The ceramic coated with the coating material was fired at 1000° C. for about 5 hours. After firing, the thickness of the buffer material layer 12 obtained by volatilizing the resin and water in the coating material was about 0.4 days.

緩衝材層12を施こしたセラミックス11と、比較のた
めに緩衝材層12のないセラミックス11とをそれぞれ
鋳型内の所定の位置に配置し、鋳物材質として5.5%
C,3%S1、0.6 %Mnの組成の鋳鉄を、1.2
80〜1.300℃で注湯した。
A ceramic 11 with a buffer material layer 12 and a ceramic 11 without a buffer material layer 12 for comparison were placed at predetermined positions in the mold, and the casting material was 5.5%.
Cast iron with a composition of C, 3% S1, 0.6% Mn, 1.2
The hot water was poured at a temperature of 80 to 1.300°C.

その結果、緩衝材層12のないセラミックス11は、大
半が注湯後の鋳物の収縮によってセラミックス11に亀
裂や剥離を生じたのに対し、緩衝材層12を施こしたも
のは、亀裂や剥離のない健全なセラミックス11の鋳ぐ
るみ排気管が得られた。また、運転中においでも、緩衝
材7112のないセラミックス11は、エンジンの振動
によって割れを生じて脱落したのに対し、緩衝材N12
を施こしたものは、良好な耐久性を示した。
As a result, most of the ceramics 11 without the buffer material layer 12 had cracks and peeling due to shrinkage of the casting after pouring, whereas the ceramics 11 with the buffer material layer 12 had cracks and peeling. A sound exhaust pipe made of Ceramic 11 without any cracks was obtained. Also, during operation, the ceramics 11 without the buffer material 7112 cracked and fell off due to engine vibration, whereas the buffer material N11
Those treated with this showed good durability.

以上のように本発明方法によれは、セラミックス11に
亀裂を発生することなく鋳ぐるむことかでき、且つ運転
中においても振動を緩和する効果があp、セラミックス
11に亀裂を生じない効果を奏することができる。
As described above, according to the method of the present invention, it is possible to cast ceramics 11 without causing cracks, and it is effective in alleviating vibrations even during operation. can play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に係るセラミックス鋳ぐるみvJ物
の一例を示す図、第2図は第1図のA都拡大図、第6図
は本発す」の実施例で製造した単頭エンジンのセラミッ
クス澗ぐるみ排気管f示す図である。 後代理人 内 1) 明 復代理人 萩 原 亮 −
Fig. 1 is a diagram showing an example of a ceramic cast VJ product according to the method of the present invention, Fig. 2 is an enlarged view of A in Fig. 1, and Fig. 6 is a diagram showing an example of a single-head engine manufactured by the method of the present invention. It is a diagram showing an exhaust pipe f made of ceramics. Sub-agent 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 鋳型内の所定の位置に配置したセラミックス全溶湯によ
って鋳ぐるむセラミックス鋳ぐるみ鋳物の製造方法にお
いて、溶湯と接触する該セラミックスの表面に、耐火物
粉末、粘結剤、溶剤、及び該溶剤に不溶の粒状の熱可産
性樹脂を1種以上配合した組成物を、所望の厚さに塗布
した後、該樹脂の熱分解温度以上に加熱し、該樹脂を揮
発させることにより、多孔質の緩衝材層を介在させるこ
とを特徴とするセラミックス鋳ぐるみ鋳物の製造方法。
In a method for manufacturing ceramic castings in which the entire molten ceramic metal is cast in a predetermined position in a mold, the surface of the ceramic that comes into contact with the molten metal is coated with refractory powder, a binder, a solvent, and a material insoluble in the solvent. A composition containing one or more granular thermoplastic resins is applied to a desired thickness, and then heated to a temperature higher than the thermal decomposition temperature of the resin to volatilize the resin, thereby forming a porous buffer. A method for manufacturing a ceramic cast material, characterized by interposing a material layer.
JP12779083A 1983-07-15 1983-07-15 Production of ceramic-inserted casting Pending JPS6021173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12779083A JPS6021173A (en) 1983-07-15 1983-07-15 Production of ceramic-inserted casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12779083A JPS6021173A (en) 1983-07-15 1983-07-15 Production of ceramic-inserted casting

Publications (1)

Publication Number Publication Date
JPS6021173A true JPS6021173A (en) 1985-02-02

Family

ID=14968739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12779083A Pending JPS6021173A (en) 1983-07-15 1983-07-15 Production of ceramic-inserted casting

Country Status (1)

Country Link
JP (1) JPS6021173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281759A (en) * 1987-05-15 1988-11-18 Toshiba Corp Cast-in method
EP0315566A2 (en) * 1987-11-03 1989-05-10 Lanxide Technology Company, Lp. Compliant layer
US4890663A (en) * 1987-05-21 1990-01-02 Interatom Gmbh Method for producing a ceramic-coated metallic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281759A (en) * 1987-05-15 1988-11-18 Toshiba Corp Cast-in method
US4890663A (en) * 1987-05-21 1990-01-02 Interatom Gmbh Method for producing a ceramic-coated metallic component
EP0315566A2 (en) * 1987-11-03 1989-05-10 Lanxide Technology Company, Lp. Compliant layer

Similar Documents

Publication Publication Date Title
US4849266A (en) Compliant layer
CA2227839C (en) Refractory material of vitreous silica
US5350609A (en) Insulating monolithic refractory material, manufacturing process and article according to the process
JPH02275755A (en) Production of self-supporting aluminum titanate composite and product concerning that composite
US4956319A (en) Compliant layer
JPS6021173A (en) Production of ceramic-inserted casting
US4528244A (en) Fused silica shapes
EP0851402B1 (en) Light-weight ceramic acoustic absorber and method of manufacturing the same
US3329514A (en) Refractory body and method of making same
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JP2826012B2 (en) Heat insulation material for molten metal and heat insulation method
JP2698186B2 (en) Manufacturing method of casting nozzle member
JPS59223268A (en) Ceramic formed body for casting
JPH02311B2 (en)
US4135939A (en) Refractory article and method of making the same
JPH0565471B1 (en)
JPS6079945A (en) Manufacture of ceramics-metal composite body
JPH074905B2 (en) Adiabatic ceramic composite and manufacturing method thereof
JPH02180763A (en) Cast-in casting body of heat insulating ceramic and its production
JPS6123822A (en) Joint body of metal and ceramic
JPH1160323A (en) Inorganic fibered molded body and its production
JPH0220654A (en) Heat holding material for molten metal and production thereof
JPH0472003A (en) Manufacture of sintered body
JPS63129065A (en) Ceramic burnt body
JPH10328780A (en) Coated sand for casting