JPH0317576B2 - - Google Patents

Info

Publication number
JPH0317576B2
JPH0317576B2 JP6231187A JP6231187A JPH0317576B2 JP H0317576 B2 JPH0317576 B2 JP H0317576B2 JP 6231187 A JP6231187 A JP 6231187A JP 6231187 A JP6231187 A JP 6231187A JP H0317576 B2 JPH0317576 B2 JP H0317576B2
Authority
JP
Japan
Prior art keywords
mold
casting
ceramic
aluminum titanate
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6231187A
Other languages
Japanese (ja)
Other versions
JPS63230249A (en
Inventor
Yasuo Nagasaka
Toshuki Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP6231187A priority Critical patent/JPS63230249A/en
Publication of JPS63230249A publication Critical patent/JPS63230249A/en
Publication of JPH0317576B2 publication Critical patent/JPH0317576B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はセラミツク製鋳型に係り、特に、耐熱
性、耐久性に優れ、高品質の鋳物を鋳造すること
ができるセラミツク製鋳型に関する。 [従来の技術] 鋳型は鋳込まれた金属に所定の形状、寸法を与
えて、そのまま凝固させ、所定の鋳造品を作る目
的に使用することから、鋳型の必要条件としては
次のような条件が一般に望まれる。 造型性がよく、適当な強さ、硬さおよび通気
度を有する。 適当な熱伝導性を有する。 鋳込まれた金属の温度、熱に十分耐える。 熱膨張率が小さい。 鋳造品に悪影響を及ぼさない。 公害、作業環境劣化の原因とならない。 反復使用でき、かつ安価である。 従来、鋳型には砂粒を粘結剤とともに成形した
砂型、あるいは、軟鋼、ベリリウム銅製金型など
が用いられている。 [発明が解決しようとする問題点] 砂型は耐熱性に優れるものの、砂に起因する製
品欠陥が発生し易く、良好な鋳肌が得られないた
めに、鋳造品の仕上げ処理が容易ではない。また
設備が大掛りとなるため工業的に不利であるとい
う問題がある。 一方、金型ではこのような砂型の問題点はない
が、耐熱性、耐久性の面で問題がある。即ち、金
型では、鋳込みに際してその表面に急熱されるの
に対して、その裏側は徐熱されるので、表裏の温
度差に基く熱応力が発生し、金型表面に発生する
クレージングや全体的な変形の原因となる。これ
らの現象は金型の寿命に大きな影響を与える。 このようなことから、金型は鋳造可能温度に限
度があり、このため鋳造可能な金属にも制限があ
つた。例えば水道の蛇口材である青銅(鋳込温度
1200℃)は金型鋳造を行なうことができず、ま
た、真鍮(鋳込温度1100℃)は軟鋼型材、ベリリ
ウム銅型材の金型で鋳造可能ではあるが、金型の
耐久使用回数は約6〜7万回であつた。 [問題点を解決するための手段] 本発明のセラミツク製鋳型は、チタン酸アルミ
ニウムを40〜80重量%含有し、残部が実質的にコ
ージエライト、ムライト、Fe2O3、SiO2、MgO、
ZrO2、Li2O、及び粘土よりなる群から選ばれる
1種又は2種以上で構成されたものである。 以下に本発明を詳細に説明する。 なお、本明細書において、「%」は特記しない
限り「重量%」を表す。 本発明のセラミツク製鋳型は、チタン酸アルミ
ニウムAl2O3・TiO2を40〜80%含む特定のセラミ
ツクで構成されている。 チタン酸アルミニウムは熱膨張率が極めて小さ
く、融点も著しく高い。このためチタン酸アルミ
ニウムを40〜80%含有するセラミツクで構成され
る鋳型は、極めて耐熱性、耐久性に優れたものと
なる。 本発明においては、鋳型構成材であるセラミツ
クは、チタン酸アルミニウムの他に、コージエラ
イト、ムライト、Fe2O3、SiO2、MgO、ZrO2
Li2O及び粘土よりなる群から選ばれる1種又は
2種以上を配合してなる。これらの成分の適量配
合により、鋳型の機械的強度や安定性を高めるこ
とができる。ただし、その配合量があまりに多過
ぎると、チタン酸アルミニウムによる鋳型の耐熱
性や耐久性が損なわれ、また、少な過ぎても成形
性が低下するため、これらの他の成分の配合量は
60〜20%とする。 このような本発明のセラミツク製鋳型は、例え
ば泥漿鋳込法等により容易に製造することができ
る。即ち、チタン酸アルミニウムと前記他の成分
とを分散剤を用いるなどして水に懸濁して泥漿鋳
込み成形し、得られた成形体は乾燥後1100〜1500
℃程度で焼成して本発明の鋳型とする。 本発明のセラミツク製鋳型の製造法としてはこ
のような泥漿鋳込方法が好適であるが、勿論、他
の方法を採用することもできる。 本発明のセラミツク製鋳型は極めて耐熱性に優
れ、青銅、その他、黄銅、銅、鋳鉄、鋼、軽合金
等の金属又は合金の鋳造にも好適に使用すること
ができる。 [作用] セラミツクは、金属に比し、耐熱性、耐食性等
に優れ、特に、チタン酸アルミニウムは熱膨張率
が極めて小さい。また、チタン酸アルミニウム焼
結体は1860℃以上の高融点を有する。 従つて、このような特性を有するチタン酸アル
ミニウムを40〜80%含む本発明のセラミツク製鋳
型は、金属に比し、耐熱性が良好で、また高温域
における変形が少なく耐久性にも優れる。 また、砂型のように大掛りな設備を必要とせ
ず、しかも砂型に比し、鋳肌が美麗であるため、
仕上げ処理が容易である。 [実施例] 以下、実施例を挙げて本発明をより具体的に説
明するが、本発明はその要旨を超えない限り、以
下の実施例に限定されるものではない。 実施例 1 泥漿鋳込み法により、下記セラミツク組成で、
第1図に示す断面形状の水道蛇口鋳造用鋳型1を
製造し、第1図に示す如く砂型中子2と組み合せ
て鋳造を行なつた。なお、第1図において、11
は注湯口、12は堰、13,14,15はガス抜
き口、3は鋳造空間、4は押湯部である。 セラミツク組成 チタン酸アルミニウム:50% コージエライト:20% ムライト:10% 粘土:20% 鋳造に用いた溶湯組成及び溶湯温度は下記の通
りである。 溶湯組成 銅:85% 亜鉛:5% 錫:5% 鉛:5% 溶湯温度:1200℃ その結果、鋳肌の美麗な鋳塊を高い精度で容易
に鋳造することができた。 また、この鋳造を10万回繰り返したが、鋳型に
は全く変形等は生じることがなく、本発明の鋳型
は極めて耐久性に優れることが立証された。 実施例2〜4、比較例1〜3 実施例1において、セラミツク組成を第1表に
示す通りとしたこと以外は、同様にして鋳型を製
造し、同様に鋳造を行なつた。 結果を第1表に示す。
[Industrial Application Field] The present invention relates to a ceramic mold, and particularly to a ceramic mold that has excellent heat resistance and durability and is capable of casting high-quality castings. [Prior Art] Since a mold is used to give a predetermined shape and dimensions to cast metal and solidify it as is to make a predetermined cast product, the following conditions are necessary for the mold: is generally desired. It has good moldability and has appropriate strength, hardness, and air permeability. It has suitable thermal conductivity. Sufficiently withstands the temperature and heat of cast metal. Low coefficient of thermal expansion. Does not have a negative effect on cast products. Does not cause pollution or deterioration of the working environment. It can be used repeatedly and is inexpensive. Conventionally, as a mold, a sand mold formed by molding sand grains together with a binder, or a mold made of mild steel or beryllium copper has been used. [Problems to be Solved by the Invention] Although sand molds have excellent heat resistance, they are prone to product defects due to sand, and a good casting surface cannot be obtained, making it difficult to finish castings. Furthermore, there is a problem in that the equipment is large-scale, which is industrially disadvantageous. On the other hand, molds do not have the problems of sand molds, but they do have problems in terms of heat resistance and durability. In other words, during casting, the surface of a mold is rapidly heated, while the back side is gradually heated. This creates thermal stress based on the temperature difference between the front and back surfaces, causing crazing and overall damage to the mold surface. This may cause deformation. These phenomena greatly affect the life of the mold. For this reason, there is a limit to the temperature at which the mold can be cast, and therefore there is also a limit to the metals that can be cast. For example, bronze, which is a faucet material (casting temperature
(1200℃) cannot be cast with a mold, and brass (casting temperature 1100℃) can be cast with a mold made of mild steel or beryllium copper, but the durability of the mold is approximately 6 times. ~70,000 times. [Means for Solving the Problems] The ceramic mold of the present invention contains 40 to 80% by weight of aluminum titanate, with the remainder being substantially cordierite, mullite, Fe 2 O 3 , SiO 2 , MgO,
It is composed of one or more selected from the group consisting of ZrO 2 , Li 2 O, and clay. The present invention will be explained in detail below. In addition, in this specification, "%" represents "weight %" unless otherwise specified. The ceramic mold of the present invention is made of a specific ceramic containing 40 to 80% aluminum titanate Al 2 O 3 .TiO 2 . Aluminum titanate has an extremely low coefficient of thermal expansion and an extremely high melting point. Therefore, a mold made of ceramic containing 40 to 80% aluminum titanate has extremely high heat resistance and durability. In the present invention, the ceramic that is the mold constituent material includes cordierite, mullite, Fe 2 O 3 , SiO 2 , MgO, ZrO 2 , in addition to aluminum titanate.
It is made by blending one or more selected from the group consisting of Li 2 O and clay. By blending appropriate amounts of these components, the mechanical strength and stability of the mold can be increased. However, if the amount of these other ingredients is too large, the heat resistance and durability of the aluminum titanate mold will be impaired, and if it is too small, the moldability will decrease, so the amount of these other ingredients should be adjusted accordingly.
60-20%. Such a ceramic mold of the present invention can be easily manufactured by, for example, a slurry casting method. That is, aluminum titanate and the other components mentioned above are suspended in water using a dispersant, etc., and slurry cast molded, and the obtained molded product has a temperature of 1,100 to 1,500 after drying.
The mold of the present invention is prepared by firing at a temperature of about 10°C. Although such a slurry casting method is suitable as a method for manufacturing the ceramic mold of the present invention, other methods may of course be employed. The ceramic mold of the present invention has extremely excellent heat resistance and can be suitably used for casting bronze, other metals or alloys such as brass, copper, cast iron, steel, and light alloys. [Function] Ceramics have superior heat resistance, corrosion resistance, etc. compared to metals, and in particular, aluminum titanate has an extremely small coefficient of thermal expansion. Furthermore, the aluminum titanate sintered body has a high melting point of 1860°C or higher. Therefore, the ceramic mold of the present invention containing 40 to 80% of aluminum titanate having such characteristics has better heat resistance than metal, less deformation in high temperature ranges, and excellent durability. In addition, unlike sand molds, large-scale equipment is not required, and the casting surface is beautiful compared to sand molds.
Easy to finish. [Examples] Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example 1 Using the slurry casting method, the following ceramic composition was made:
A water faucet casting mold 1 having the cross-sectional shape shown in FIG. 1 was manufactured, and casting was performed by combining it with a sand mold core 2 as shown in FIG. In addition, in Figure 1, 11
12 is a weir, 13, 14, 15 are gas vents, 3 is a casting space, and 4 is a feeder. Ceramic composition Aluminum titanate: 50% Cordierite: 20% Mullite: 10% Clay: 20% The molten metal composition and molten metal temperature used for casting are as follows. Molten metal composition Copper: 85% Zinc: 5% Tin: 5% Lead: 5% Molten metal temperature: 1200°C As a result, an ingot with a beautiful casting surface could be easily cast with high precision. Furthermore, this casting process was repeated 100,000 times, but no deformation occurred in the mold, proving that the mold of the present invention is extremely durable. Examples 2 to 4, Comparative Examples 1 to 3 Molds were manufactured in the same manner as in Example 1, except that the ceramic composition was as shown in Table 1, and casting was performed in the same manner. The results are shown in Table 1.

【表】 なお、チタン酸アルミニウムを90%含む比較例
3では、成形が不可能であつた。 [発明の効果] 以上詳述した通り、本発明のセラミツク製鋳型
は、チタン酸アルミニウムを40〜80%含む特定の
セラミツクで構成されているものであつて、 耐熱温度が極めて高く、高温溶湯にも適用す
ることができる。 熱膨張率が極めて小さいため、高温により変
形、損傷することが殆どない。 このため、耐久性が著しく高く、長寿命とな
る。 得られる鋳塊の鋳肌は極めて美麗で仕上げ処
理が容易である。 大掛りな設備を必要とすることがない。 等の効果を有する。このため、本発明のセラミツ
ク製鋳型によれば、各種鋳造製品を高精度で容易
かつ効率的に製造することができ、工業的に極め
て有利である。
[Table] In Comparative Example 3 containing 90% aluminum titanate, molding was impossible. [Effects of the Invention] As detailed above, the ceramic mold of the present invention is made of a specific ceramic containing 40 to 80% aluminum titanate, has an extremely high heat resistance temperature, and is suitable for high-temperature molten metal. can also be applied. Since the coefficient of thermal expansion is extremely low, it is hardly deformed or damaged by high temperatures. Therefore, the durability is extremely high and the life span is long. The surface of the resulting ingot is extremely beautiful and finishing treatment is easy. Does not require large-scale equipment. It has the following effects. Therefore, according to the ceramic mold of the present invention, various cast products can be manufactured easily and efficiently with high precision, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で用いた鋳型を示す断面図で
ある。 1……鋳型、2……砂型中子、3……鋳造空
間、4……押湯部。
FIG. 1 is a sectional view showing the mold used in Example 1. 1...Mold, 2...Sand mold core, 3...Casting space, 4...Riser section.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸アルミニウムを40〜80重量%含有
し、残部が実質的にコージエライト、ムライト、
Fe2O3、SiO2、MgO、ZrO2、Li2O、及び粘土よ
りなる群から選ばれる1種又は2種以上で構成さ
れていることを特徴とするセラミツク製鋳型。
1 Contains 40 to 80% by weight of aluminum titanate, with the remainder being substantially cordierite, mullite,
A ceramic mold comprising one or more selected from the group consisting of Fe 2 O 3 , SiO 2 , MgO, ZrO 2 , Li 2 O, and clay.
JP6231187A 1987-03-17 1987-03-17 Mold made of ceramic Granted JPS63230249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231187A JPS63230249A (en) 1987-03-17 1987-03-17 Mold made of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231187A JPS63230249A (en) 1987-03-17 1987-03-17 Mold made of ceramic

Publications (2)

Publication Number Publication Date
JPS63230249A JPS63230249A (en) 1988-09-26
JPH0317576B2 true JPH0317576B2 (en) 1991-03-08

Family

ID=13196462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231187A Granted JPS63230249A (en) 1987-03-17 1987-03-17 Mold made of ceramic

Country Status (1)

Country Link
JP (1) JPS63230249A (en)

Also Published As

Publication number Publication date
JPS63230249A (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US4277539A (en) Refractory articles and composite metal-ceramic articles (cermets) prepared from a silicate-containing aluminum titanate
US3957715A (en) Casting of high melting point metals and cores therefor
US3204303A (en) Precision investment casting
JPS6045973B2 (en) Normal solidification casting method for superalloys
US3764575A (en) Salt core containing synthetic resin and water-glass as binders
US6494250B1 (en) Impregnated alumina-based core and method
US8007580B2 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JPH0317576B2 (en)
JP2000119070A (en) Castable refractory and refractory brick using the same
JP7504100B2 (en) Improved foundry slurry for shell mold manufacturing
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
EP0240190A2 (en) Process for manufacturing ceramic sintered bodies and mold to be used therefor
JPH0663683A (en) Production of casting mold
JPH05200479A (en) Ceramic core for precision casting
JP2001150095A (en) Thick and large size steel casting and mold
JPH11320026A (en) Manufacture of mold for precision casting of ti and ti alloy
JPH10156484A (en) Mold for precision casting
JPS6167540A (en) Casting mold
JPH05123820A (en) Mold for precision casting of titanium or tianium alloy
SU1284674A1 (en) Coating composition for metal moulds
JPS608988B2 (en) Immersion nozzle composition for casting
JP3362106B2 (en) Coated sand for casting
RU2024344C1 (en) Method for manufacture of ceramic molds
SU816684A1 (en) Method of producing permanent moulds
JPH01205847A (en) Mold for casting