JPS6111908B2 - - Google Patents

Info

Publication number
JPS6111908B2
JPS6111908B2 JP23323182A JP23323182A JPS6111908B2 JP S6111908 B2 JPS6111908 B2 JP S6111908B2 JP 23323182 A JP23323182 A JP 23323182A JP 23323182 A JP23323182 A JP 23323182A JP S6111908 B2 JPS6111908 B2 JP S6111908B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
ceramic
iron
bonded
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23323182A
Other languages
Japanese (ja)
Other versions
JPS59128274A (en
Inventor
Masayoshi Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP23323182A priority Critical patent/JPS59128274A/en
Publication of JPS59128274A publication Critical patent/JPS59128274A/en
Publication of JPS6111908B2 publication Critical patent/JPS6111908B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はデイーゼルエンジンのピストンに用い
られるアルミニウム合金鋳物部材の耐熱性、断熱
性及び耐摩耗性等を改善し、エンジンの燃焼、熱
効率及び始動性を高めるため、ピストン頂部のア
ルミニウム合金部分とセラミツクス部材との結合
体及びその製法に関するものである。 一般にデイーゼルエンジンに現用されている燃
焼方式には、直接噴射式や予燃焼室式或はうず室
式等がある。そのうち直接噴射式は燃料消費率及
び熱負荷が少なく、耐久性がすぐれており、一般
に大、中型車用として採用されているが、最近に
なり小型車用としても試作研究が進められている
状態である。しかし、これらに使用されるピスト
ン用アルミニウム合金は頂面の熱負荷から温度の
上昇に伴ない、強度と硬度が急激に低下するた
め、高温度においては摩耗や亀裂が生じ易く、ま
た熱膨張による焼付きを起したり、リング部分の
摩耗によるガスシールができなくなり、出力低下
や始動不良が生ずる欠点があつた。 そのため、これらの対策が各方面で盛に行わ
れ、ピストン頂部への鋳鉄の嵌合やボルト締め、
さらにはセラミツクスやサーメツトの鋳造嵌合な
どが検討されている。しかし、これらの改善方法
はアルミニウム鋳造時の急速加熱による亀裂の発
生、エンジンの稼動、高温化による「ガタツキ」
(熱膨張差のため)から破損するなど信頼性の点
で未だ実用化されるに至つていない現状にある。 本発明は、このような問題点を解決するもの
で、耐熱性、断熱性、耐摩耗性のすぐれたセラミ
ツクスと熱膨張係数の差が比較的小さく、一方、
アルミニウム合金との親和性が大であり、また靭
性の大きな鉄又は鉄系合金をセラミツクス部材と
アルミニウム合金部材との中間層として介在せし
め、相互に接合することによりセラミツクス部材
を被着結合したアルミニウム合金鋳造体及びその
製法を提供しようとするものである。 次に、本発明の結合体及びその製法について説
明する。 図は本発明セラミツクス部材を被着結合したア
ルミニウム合金鋳造体の一実施例を示す断面図で
ある。 図に示すセラミツク部材1は熱膨張係数の比較
的大きく、若干吸水性を有するものを用い、好ま
しくは線膨張係数が8×10-6/℃(RT〜1000
℃)以上、見掛気孔率が10〜18%を有するもので
ある。この見掛気孔率を限定した理由は10%以下
では熱衝撃に弱く、また18%以上では機械的強度
が劣化するためである。このようなセラミツクス
の出発原材料はAl2O3,Cr2O3,Fe2O3,ZrO2
TiO2,SiO2,MgAl2O4系、CaZrO3,MgZrO3
びMgTiO3などの酸化物であり、その1種又は1
種以上、粒度44μ以下の微粉末を特公昭55−
14833号記載の方法を用い、酸化クロムによる結
合、硬化されたもの、又は上記酸化物の1種又は
1種以上を成分とし、気孔率15〜40%を有するセ
ラミツク仮焼体を前記特許と同様の方法を用いて
Cr2O3により結合強化されたもの、又は前記の酸
化物の1種又は1種以上からなる高温焼結体で見
掛気孔率10〜18%を有するセラミツク部材であ
る。 次に、前記セラミツク部材1と後記するアルミ
ニウム合金鋳物部材3との中間層とする金属部材
2には鉄又は鉄系合金を用いる。これら金属部材
2はニツケル又はクロムメツキ膜2aを包含す
る。そして鉄系合金としては炭素鋼、ニツケル
鋼、ステンレス鋼等で、好ましくは熱膨張係数が
前記セラミツク部材1に比較的近い値を示す材
質、例えば鉄・ニツケル合金においてFe64%、
Ni36%組成合金は線膨張係数9×10-6/℃(RT
〜500℃)、Fe50%、Ni29%、Co17%組成のコバ
ールは9.3×10-6/℃(30〜700℃)、シルバニア
No.4合金は9.6〜10.2×10-6(25〜400℃)の値を
示し、安定化ZrO2,Al2O3+Cr2O3+SiO2の複合
金組成、ジルコネート及びチタネート質セラミツ
クスの膨張係数とほぼ同じ程度であり、この両部
材1,2はクロム酸濃水溶液を主とするスラリー
塗布層4を熱処理によりCr2O3に変換する反応に
より極めて良好な結合体が得られる。 また、アルミニウム合金部材3は融点570℃以
上を有するAl−Si−Cu(−Ni,−Mg)系合金
で、好ましくは熱膨張係数の比較的小さいアルミ
ニウム合金鋳物、例えばJISAC−4C,AC8A〜C
(線膨張係数α=20〜25×10-6/℃)、シルミン系
合金等であり、市販のハイパーシルミン(Si18
%、Cu2%、Mg1%、Cr0.5%、残Al)はα≒17
×10-6/℃の値を示し、好適な材質である。 次に、このアルミニウム合金鋳物部材3とセラ
ミツクス部材1との接合における製造工程を述べ
る。 先ず、第1工程としてセラミツクス部材1と鉄
合金部材2とを接合する。即ち、所望の形状寸法
に加工された両部材1,2の接合すべき面の少な
くとも、いずれか片方の面、好ましくは両部材の
接合面に可溶性クロム化合物の濃水溶液、例えば
ZnCrO4,CaCrO4,MgCrO4,Cr2O3などを
H2CrO4の比重1.6以上の水溶液に溶解して調整さ
れた比重1.65の溶液、又はAl2O3,Cr2O3
SiO2,ZrO2,TiO2の44μ以下、好ましくは20μ
以下の微粉末の1種又は1種以上をH2CrO4、比
重1.7の濃水溶液に重量で5〜25%含有させ、ボ
ールミルを用いて24hrよく粉砕、混合してスラリ
ーとし、このスラリーを塗布した塗布層4を介し
て10〜15分後に両部材1,2を嵌合し、接着す
る。 そして、この接着体を固定した状態において電
気炉を用い、3.5℃/minの速度で温度を上昇
し、好ましくは460〜660℃において熱処理を行
う。その最高温度における加熱保持時間はこれら
部材の大きさにより一定しないが、通常30minで
満足される接合体が得られる。 次に、第2工程としては、第1工程において接
合されたセラミツクス部材1と鉄合金接合体の鉄
系合金部材2の露出接合面に市販の清浄用フラツ
クス、例えばFL−3を塗布コートしておき、こ
の接合体をアルミニウム合金鋳型内にセツトし、
約250〜300℃に保持した状態においてアルミニウ
ム合金融液を注入し、鋳造する。この場合、セラ
ミツクス部材1は鋳造温度においてはアルミニウ
ム合金と互に濡れ合わない。従つて鉄又は鉄合金
部材2とのみの接合が行なわれ、アルミニウム合
金鋳造体3とセラミツクス部材1との接合品が製
造される。 このようにして製造されたアルミニウム合金鋳
物・セラミツクス接合体について、接合面に対し
垂直に2×2cm2の面積をもつた試片を切り出し、
セラミツク面とアルミニウム合金面とに2本の金
属棒をそれぞれエポキシ系接着剤を用いて接着
し、引張り試験を行つた。 その結果、各部材の組合せの選択により、かな
りの差異があつたが、良好な系の組合せにおいて
は接合強度は450Kg/cm2以上の値を示した。ま
た、セラミツク部材の熱伝導率は、前記酸化物の
組合せの種数や気孔率に関連した異つた値を示す
が、見掛気孔率10〜15%に調製されたセラミツク
スにおいては0.002〜0.008cal/cm・sec・Cの範
囲であつた。さらに、染色含浸液による亀裂検査
においてはアルム合金の鋳込時の亀裂発生は認め
られなかつた。 以上説明したように、本発明によればデイーゼ
ルエンジン用アルミニウム合金製ピストン頂部に
セラミツクスを強固に接合することができ、ピス
トンの耐熱性、断熱性及び耐摩耗性等が著しく改
善できることが明らかとなり、従来法の欠点とさ
れる亀裂の発生、運転中の「ガタツキ」などによ
る破損が解消され、デイーゼルエンジンの熱負荷
対策としてアルミニウム合金鋳物とセラミツクス
の接合品はデイーゼルエンジン用ピストンの工業
的製造方法として好適である。 次に、実施例により本発明をさらに詳述する。 実施例 1 1.1 セラミツクス部材の調整
The present invention aims to improve the heat resistance, heat insulation, wear resistance, etc. of the aluminum alloy casting member used in the piston of a diesel engine, and to improve the combustion, thermal efficiency, and startability of the engine. This article relates to a conjugate with and a method for producing the same. Combustion methods currently used in diesel engines include direct injection, pre-combustion chamber, and swirl chamber. Among these, the direct injection type has low fuel consumption and heat load, and has excellent durability, and is generally used for large and medium-sized cars, but recently, prototype research is also underway for use in small cars. be. However, the aluminum alloy used for these pistons rapidly loses strength and hardness as the temperature rises due to the heat load on the top surface, so it is prone to wear and cracking at high temperatures, and due to thermal expansion. There were drawbacks such as seizing and abrasion of the ring part, which made it impossible to seal the gas, resulting in a decrease in output and poor starting. For this reason, these countermeasures have been actively implemented in various fields, such as fitting cast iron to the top of the piston, tightening bolts,
Furthermore, casting fittings of ceramics and cermets are being considered. However, these improvement methods can cause cracks to occur due to rapid heating during aluminum casting, and "rattling" due to engine operation and high temperatures.
The current situation is that it has not yet been put into practical use due to reliability issues such as damage due to differences in thermal expansion. The present invention solves these problems, and has a relatively small difference in coefficient of thermal expansion from ceramics, which have excellent heat resistance, heat insulation, and wear resistance.
An aluminum alloy that has a high affinity with aluminum alloys and is made by interposing iron or an iron-based alloy with high toughness as an intermediate layer between the ceramic member and the aluminum alloy member, and bonding the ceramic member to the ceramic member by bonding them to each other. The purpose is to provide a cast body and a method for manufacturing the same. Next, the conjugate of the present invention and its manufacturing method will be explained. The figure is a sectional view showing an embodiment of an aluminum alloy cast body to which a ceramic member of the present invention is adhered and bonded. The ceramic member 1 shown in the figure has a relatively large coefficient of thermal expansion and is slightly water-absorbing. Preferably, the coefficient of linear expansion is 8 x 10 -6 /°C (RT~1000
℃) or more, and the apparent porosity is 10 to 18%. The reason why this apparent porosity is limited is that if it is less than 10%, it will be susceptible to thermal shock, and if it is more than 18%, the mechanical strength will deteriorate. The starting raw materials for such ceramics are Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , ZrO 2 ,
Oxides such as TiO 2 , SiO 2 , MgAl 2 O 4 , CaZrO 3 , MgZrO 3 and MgTiO 3 , and one or more of them.
Fine powder with a particle size of 44μ or less, which is larger than seeds, is produced in 1984.
Using the method described in No. 14833, a ceramic calcined body having a porosity of 15 to 40%, which is bonded and hardened with chromium oxide, or one or more of the above oxides, is produced as in the above patent. using the method of
The ceramic member is bond-strengthened with Cr 2 O 3 or a high-temperature sintered body made of one or more of the above-mentioned oxides and has an apparent porosity of 10 to 18%. Next, iron or an iron-based alloy is used for a metal member 2 which is an intermediate layer between the ceramic member 1 and an aluminum alloy cast member 3 to be described later. These metal members 2 include a nickel or chrome plating film 2a. The iron-based alloy is carbon steel, nickel steel, stainless steel, etc., and preferably a material whose coefficient of thermal expansion is relatively close to that of the ceramic member 1, such as an iron-nickel alloy with Fe64%,
The 36% Ni composition alloy has a linear expansion coefficient of 9×10 -6 /℃ (RT
~500℃), Kovar with a composition of 50% Fe, 29% Ni, and 17% Co is 9.3 × 10 -6 /℃ (30 ~ 700℃), Sylvania
No. 4 alloy shows a value of 9.6 to 10.2×10 -6 (25 to 400℃), with a composite gold composition of stabilized ZrO 2 , Al 2 O 3 + Cr 2 O 3 + SiO 2 , and expansion of zirconate and titanate ceramics. The coefficients are approximately the same, and an extremely good bonded body can be obtained in both members 1 and 2 by a reaction in which the slurry coating layer 4, which is mainly composed of a concentrated aqueous solution of chromic acid, is converted into Cr 2 O 3 by heat treatment. The aluminum alloy member 3 is an Al-Si-Cu (-Ni, -Mg) alloy having a melting point of 570°C or higher, and is preferably an aluminum alloy casting having a relatively small coefficient of thermal expansion, such as JISAC-4C, AC8A to C
(linear expansion coefficient α = 20 to 25
%, Cu2%, Mg1%, Cr0.5%, remaining Al) is α≒17
×10 -6 /°C, making it a suitable material. Next, the manufacturing process for joining the aluminum alloy cast member 3 and the ceramic member 1 will be described. First, as a first step, the ceramic member 1 and the iron alloy member 2 are joined. That is, a concentrated aqueous solution of a soluble chromium compound, e.g.
ZnCrO 4 , CaCrO 4 , MgCrO 4 , Cr 2 O 3 etc.
A solution with a specific gravity of 1.65 prepared by dissolving H 2 CrO 4 in an aqueous solution with a specific gravity of 1.6 or more, or Al 2 O 3 , Cr 2 O 3 ,
44μ or less of SiO 2 , ZrO 2 , TiO 2 , preferably 20μ
One or more of the following fine powders are contained in a concentrated aqueous solution of H 2 CrO 4 with a specific gravity of 1.7 at 5 to 25% by weight, thoroughly ground and mixed using a ball mill for 24 hours to form a slurry, and this slurry is applied. After 10 to 15 minutes, both members 1 and 2 are fitted and bonded via the coated layer 4. Then, with this adhesive body fixed, the temperature is increased at a rate of 3.5°C/min using an electric furnace, and heat treatment is performed preferably at 460 to 660°C. The heating retention time at the maximum temperature varies depending on the size of these members, but a satisfactory joined body can usually be obtained within 30 minutes. Next, in the second step, a commercially available cleaning flux, for example FL-3, is coated on the exposed joint surfaces of the ceramic member 1 and the iron-based alloy member 2 of the iron alloy joined body that were joined in the first step. and set this joined body in an aluminum alloy mold,
While maintaining the temperature at approximately 250-300°C, aluminum alloy liquid is injected and cast. In this case, the ceramic member 1 does not wet the aluminum alloy at the casting temperature. Therefore, only the iron or iron alloy member 2 is joined, and a joined product of the aluminum alloy cast body 3 and the ceramic member 1 is manufactured. For the aluminum alloy casting/ceramics bonded body manufactured in this way, a specimen with an area of 2 x 2 cm 2 was cut perpendicular to the bonding surface, and
Two metal rods were bonded to the ceramic surface and the aluminum alloy surface using epoxy adhesive, respectively, and a tensile test was conducted. As a result, although there were considerable differences depending on the selection of the combination of each member, in a good system combination, the joint strength showed a value of 450 Kg/cm 2 or more. In addition, the thermal conductivity of ceramic members shows different values related to the number of combinations of oxides and porosity, but in ceramics prepared with an apparent porosity of 10 to 15%, it is 0.002 to 0.008 cal. /cm・sec・C. Furthermore, crack inspection using a dyed impregnating solution revealed that no cracks occurred during casting of the aluminum alloy. As explained above, it has become clear that according to the present invention, ceramics can be firmly bonded to the top of an aluminum alloy piston for a diesel engine, and the heat resistance, heat insulation, wear resistance, etc. of the piston can be significantly improved. The disadvantages of conventional methods such as cracks and damage caused by rattling during operation have been eliminated, and as a countermeasure to the heat load of diesel engines, the bonded product of aluminum alloy castings and ceramics has been adopted as an industrial manufacturing method for pistons for diesel engines. suitable. Next, the present invention will be explained in further detail with reference to Examples. Example 1 1.1 Adjustment of ceramic parts

【表】 をボールミルで48hr粉砕混合して鋳込用泥漿を
つくり、これを内径44mm、深さ2.2mmの平底カ
ツプ形のシヤモツト質の成形型に注入して厚さ
5mmの肉厚のカツプ形に固形鋳込みを行い、半
乾燥後、中型を抜き取り、これをCr2O3をクロ
ム酸の濃水溶液に溶解して得た比重1.65の
xCrO3−yCr2O3・zH2O組成よりなる溶液で十
分に湿潤した後、電気炉において成形型と共に
3.5℃/minの上昇速度で温度をあげ、最高660
℃、30min保持して加熱処理を行い、酸化物粒
子相互間をCr2O3により結合・硬化させ、冷却
した。 この熱処理によりセラミツク素体は取扱上、
十分の強度を有するので、離型し、この素体を
比重1.7のH2CrO4の濃水溶液に浸漬して液を含
浸させ、表面に付着した液を拭きとり、炉中
3.5℃/minの速度で温度を上昇し、最高温度
660℃において30min加熱保持した。さらに、
この溶液による含浸・熱処理を8回反復して処
理を行ないセラミツクス部材を調整した。 この処理物は2回目の反復処理において、普
通の工作工具により容易に加工できるので、別
に加工された鉄合金部材の接合面と合致するよ
うにセラミツク素体に加工仕上を行い、3回目
以降の含浸・熱処理をしてセラミツクス部材を
調製した。 これと同条件で調製したテスト用セラミツク
試験片の物性は見掛気孔率12%、熱伝導率
0.003〜0.004cal/cm・sec・℃、線熱膨張係数
10.2×10-6/℃の値であつた。 1.2 中間層とする鉄系合金部材 この部材としてはステンレス鋼430{線熱膨
張係数10.8×10-6/℃(20〜500℃)}を使用
し、肉厚1.2mm、内径43.2mm、深さ21.6mmに加工
されたカツプの内外面を王水により表面を粗面
化した。 1.3 接合剤(溶液)の調製 結合剤としてはα−Al2O31重量部、ZrO21重
量部、TiO21重量部からなる何れも10μ以下の
混合微粉末をH2CrO4の濃水溶液にZnOを溶解
してなるZnCrO4+H2CrO4の比重1.7の溶液を
重量比で20%加え、ボールミルを用いて48hr混
和し、スラリーを調製した。 1.4 セラミツクス部材と鉄合金部材の接合 1.3項のスラリーをセラミツクス部材及び鉄
合金部材の両接合面によく塗布し、10分後両部
材を嵌合し接着した。これを固定した状態で電
気炉に入れ、3.5℃/minの速度で温度をあ
げ、最高560℃に30min保持して熱処理を行
い、放冷してセラミツクスと鉄合金部材の接合
を完了した。 1.5 アルミニウム合金の鋳造によるセラミツク
ス部材との接合 鋳造用アルミニウム合金としてシルミン系合
金(Si16%、Cu2%、MgO1.3%、Al残)(α≒
18×10-6)を用いた。先ず、内径60mm、深さ70
mmの鋳造用金型内に1.4項記載の接合体のセラ
ミツクス部を上にして鋳物に埋込まれるように
型上部の中央部にセツトし、約300℃に加熱保
持し、これに約720℃のアルミニウム合金融液
を型内に注入し鋳造した。 このようにしてセラミツクス部材とアルミニウ
ム合金鋳物部材とが鉄合金の薄層を中間層として
介在せしめることにより、セラミツクスに対し可
成り大きな熱膨張を有し、しかも両者が濡れ合わ
ないアルミニウム合金材料を鋳造法により容易に
接合することができる。 この接合体のアルミニウム鋳物は直径60mm、長
さ70mmの円柱状であり、頂部にセラミツクカツプ
が埋込まれている。この円柱の外周を水冷パイプ
により冷却しながらセラミツク部にプロパンガス
バーナーを用いて燃焼火炎を吹きつけ、セラミツ
クカツプ内の表面温度を約500℃に保持し、10hr
の加熱試験を行つた。 その結果、セラミツク部に亀裂の発生は認めら
れなかつた。また試験片による接合強度は360
Kg/cm2以上(エポキシ系接着剤アームストロング
735接着面で剥離)であつた。 実施例 2 2.1 セラミツクス部材の調整
[Table] was pulverized and mixed in a ball mill for 48 hours to create a casting slurry, and this was poured into a flat-bottom cup-shaped chamois mold with an inner diameter of 44 mm and a depth of 2.2 mm to form a cup-shaped cup with a wall thickness of 5 mm. Solid casting was performed, and after semi-drying, the medium mold was taken out and poured into a mold with a specific gravity of 1.65 obtained by dissolving Cr 2 O 3 in a concentrated aqueous solution of chromic acid.
After sufficiently moistening with a solution consisting of xCrO 3 −yCr 2 O 3・zH 2 O,
Raise the temperature at a rate of 3.5℃/min to a maximum of 660℃
℃ for 30 minutes to bond and harden the oxide particles with Cr 2 O 3 and then cooled. This heat treatment makes the ceramic body difficult to handle.
Since it has sufficient strength, it is released from the mold, immersed in a concentrated aqueous solution of H 2 CrO 4 with a specific gravity of 1.7, impregnated with the solution, wiped off the liquid adhering to the surface, and placed in a furnace.
Increase the temperature at a rate of 3.5℃/min until the maximum temperature
Heating was maintained at 660°C for 30 minutes. moreover,
Impregnation and heat treatment with this solution were repeated eight times to prepare a ceramic member. Since this processed material can be easily machined with ordinary machine tools in the second iteration, the ceramic body is finished so that it matches the joint surface of the separately machined iron alloy component, and then the third and subsequent iterations A ceramic member was prepared by impregnation and heat treatment. The physical properties of a test ceramic specimen prepared under the same conditions were an apparent porosity of 12% and a thermal conductivity of 12%.
0.003 to 0.004 cal/cm・sec・℃, linear thermal expansion coefficient
The value was 10.2×10 -6 /°C. 1.2 Iron-based alloy member used as the intermediate layer This member is made of stainless steel 430 {linear thermal expansion coefficient 10.8×10 -6 /℃ (20 to 500℃)}, with a wall thickness of 1.2 mm, an inner diameter of 43.2 mm, and a depth of The inner and outer surfaces of the 21.6 mm cup were roughened using aqua regia. 1.3 Preparation of binder (solution) The binder is a mixed fine powder of 1 part by weight of α-Al 2 O 3 , 1 part by weight of ZrO 2 , and 1 part by weight of TiO 2 , all of which are less than 10μ in size, and mixed with a concentrated amount of H 2 CrO 4 . A 20% by weight solution of ZnCrO 4 +H 2 CrO 4 having a specific gravity of 1.7, which is obtained by dissolving ZnO in an aqueous solution, was added and mixed for 48 hours using a ball mill to prepare a slurry. 1.4 Joining the ceramic member and the iron alloy member The slurry described in Section 1.3 was thoroughly applied to both the joint surfaces of the ceramic member and the iron alloy member, and after 10 minutes, the two members were fitted and bonded. This was placed in an electric furnace in a fixed state, heated at a rate of 3.5°C/min, held at a maximum of 560°C for 30 minutes for heat treatment, and then allowed to cool to complete the bonding of the ceramic and iron alloy parts. 1.5 Joining with ceramic parts by casting aluminum alloy Silumin alloy (Si16%, Cu2%, MgO1.3%, Al remainder) (α≒
18×10 -6 ) was used. First, the inner diameter is 60mm and the depth is 70mm.
The joined body described in Section 1.4 was placed in the center of the upper part of the mold with the ceramic part facing up so as to be embedded in the casting in a casting mold of 1.5 mm in diameter, heated and held at approximately 300°C, and then heated to approximately 720°C. The aluminum alloy liquid was injected into the mold and cast. In this way, by interposing the ceramic member and the aluminum alloy casting member with a thin layer of iron alloy as an intermediate layer, an aluminum alloy material is cast that has a considerably large thermal expansion relative to the ceramics, and the two do not wet each other. It can be easily joined by the method. The aluminum casting of this joint has a cylindrical shape with a diameter of 60 mm and a length of 70 mm, with a ceramic cup embedded in the top. While the outer periphery of this cylinder was cooled by a water-cooled pipe, a combustion flame was blown onto the ceramic part using a propane gas burner, and the surface temperature inside the ceramic cup was maintained at approximately 500°C for 10 hours.
A heating test was conducted. As a result, no cracks were observed in the ceramic part. In addition, the bonding strength of the test piece was 360
Kg/cm 2 or more (epoxy adhesive Armstrong
735 peeled off on the adhesive surface). Example 2 2.1 Adjustment of ceramic parts

【表】 の配合物をボールミルで48hr湿式混合した後、
脱水し、含水量を約20%程度にし、よく混練し
た。 これを内径45mm、深さ80mmの円筒形、強化石
膏型中に約100Kg/cm2の圧力で圧入し、半乾燥
後離型し、厚さ10mmの円筒に粗加工し、乾燥後
電気炉で約1050℃において仮焼した。次に、こ
の仮焼体を外径39.8mm、長さ60mm、肉厚6mmの
円筒セラミツクスに旋盤加工した。 これを比重1.65、H2CrO4の濃水溶液に浸漬
して、溶液をよく含浸し、表面に付着した液を
軽く拭きとり、3.5℃/minの速度で最高760℃
に加熱し、約30min保持し、熱処理した。この
H2CrO4溶液の含浸及び熱処理を反復して8回
操作してセラミツクス部材を強化し調整した。
これと同条件で調製した試験片の物性は見掛気
孔率12%、熱伝導率0.007Cal/cm・sec.℃、線
熱膨張係数8.5×10-6(RT〜1000℃)の値を示
した。 2.2 中間層とする鉄系合金部材 鉄系合金部材としてニツケル鋼(インバール
Ni36%、熱膨張係数9×10-6/℃(RT〜500
℃)、肉厚1.2mm、内径40mm、長さ60mmの円筒を
用い王水(HNO3容積1+HCl容積2.5)液に浸
漬し、表面を粗面化した。 2.3 接合剤(溶液)の調製 実施例1の1.3項に同じ 2.4 セラミツクス部材と鉄系合金部材の接合 実施例1の1.4項記載に同じ 2.5 アルミニウム合金の鋳部によるセラミツク
ス部材との接合 アルミニウム合金としてはシルミン系合金、
市販のハイパーシルミン(Si18%、Cu1%、
Mg0.7%、Ni1.7%、残Al組成)、線熱膨張係数
17×10-6(RT〜100℃)を用い、2.4項記載の
接合体をアルミニウム合金用鋳型内に300℃に
加熱保持された状態において710℃のアルミニ
ウム合金融液を型に注入し、セラミツクス、鉄
合金の外周に肉厚10mmのアルミニウム合金の外
筒を形成させ、アルミニウム合金鋳物・セラミ
ツクスの接合体を製造した。 この製品を円筒の軸方向に切断し、内面のセラ
ミツク部の亀裂状態を調べ、またアルミ外面を冷
却しながらセラミツク面にプロパンガス燃焼火炎
を吹きつけて約450℃に加熱し、1hr保持後、1hr
強制空冷する試験を10回繰返した。その結果、接
合部及びセラミツク部に亀裂、剥離等の異状は認
められなかつた。また、この試料から角形に切り
出した試片について引張接合強度テストを実施例
1と同様に行ない、接着樹脂強度限界の350Kg/
cm2以上の接合強度であつた。
After wet mixing the formulation in [Table] in a ball mill for 48 hours,
The mixture was dehydrated to a water content of about 20% and kneaded thoroughly. This was press-fitted into a cylindrical reinforced plaster mold with an inner diameter of 45 mm and a depth of 80 mm at a pressure of approximately 100 kg/cm 2 . After semi-drying, the mold was released and roughly processed into a cylinder with a thickness of 10 mm. After drying, it was placed in an electric furnace. It was calcined at about 1050°C. Next, this calcined body was turned into a ceramic cylinder having an outer diameter of 39.8 mm, a length of 60 mm, and a wall thickness of 6 mm. This was immersed in a concentrated aqueous solution of H 2 CrO 4 with a specific gravity of 1.65, thoroughly impregnated with the solution, gently wiped off the liquid adhering to the surface, and heated at a maximum temperature of 760°C at a speed of 3.5°C/min.
and held for about 30 minutes for heat treatment. this
The H 2 CrO 4 solution impregnation and heat treatment were repeated 8 times to strengthen and condition the ceramic component.
The physical properties of a test piece prepared under the same conditions showed an apparent porosity of 12%, a thermal conductivity of 0.007 Cal/cm・sec.℃, and a linear thermal expansion coefficient of 8.5×10 -6 (RT to 1000℃). Ta. 2.2 Iron-based alloy members used as intermediate layer Nickel steel (Invar) is used as the iron-based alloy member.
Ni36%, thermal expansion coefficient 9×10 -6 /℃ (RT~500
A cylinder with a wall thickness of 1.2 mm, an inner diameter of 40 mm, and a length of 60 mm was immersed in aqua regia (HNO 3 volume 1 + HCl volume 2.5) to roughen the surface. 2.3 Preparation of bonding agent (solution) Same as Section 1.3 of Example 1 2.4 Joining of ceramic members and iron-based alloy members Same as described in Section 1.4 of Example 1 2.5 Bonding of aluminum alloy cast parts to ceramic members As aluminum alloy is a silumin alloy,
Commercially available hypersilumin (Si18%, Cu1%,
Mg0.7%, Ni1.7%, remaining Al composition), coefficient of linear thermal expansion
Using 17×10 -6 (RT ~ 100℃), the joined body described in Section 2.4 was heated and held at 300℃ in an aluminum alloy mold, and 710℃ aluminum alloy liquid was poured into the mold to form a ceramic. An aluminum alloy outer cylinder with a wall thickness of 10 mm was formed around the outer periphery of the iron alloy, and an aluminum alloy casting/ceramics joint was manufactured. This product was cut in the axial direction of the cylinder, and the state of cracks in the inner ceramic part was examined.Also, while cooling the aluminum outer surface, a propane gas combustion flame was blown onto the ceramic surface to heat it to approximately 450℃, and after holding it for 1 hour, 1hr
The forced air cooling test was repeated 10 times. As a result, no abnormalities such as cracks or peeling were observed in the joints and ceramic parts. In addition, a tensile bonding strength test was conducted on a rectangular specimen cut from this sample in the same manner as in Example 1.
The bonding strength was cm 2 or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明セラミツクス部材を被着結合したア
ルミニウム合金鋳造体の一実施例を示す断面図で
ある。 1……セラミツクス部材、2……鉄又は鉄系合
金部材、3……アルミニウム合金鋳物部材、4…
…スラリー塗布層、2a……ニツケル又はクロム
メツキ膜。
The figure is a sectional view showing an embodiment of an aluminum alloy cast body to which a ceramic member of the present invention is adhered and bonded. 1...Ceramics member, 2...Iron or iron-based alloy member, 3...Aluminum alloy casting member, 4...
...Slurry coating layer, 2a...Nickel or chrome plating film.

Claims (1)

【特許請求の範囲】 1 Ni又はCrの鍍金膜を有するか、有しない鉄
又は鉄系合金部材の表面に、ZrO2,Al2O3
Cr2O3,SiO2,Fe2O3,TiO2,CaZrO3又は
MgAl2O4等の金属酸化物の1種又は之等1種以
上の粉末、或は之等酸化物からなる仮焼状態で、
酸化Crにより結合強化したセラミツクス部材、
若くは之等酸化物からなる高温焼結した見掛気孔
率10%乃至18%を有するセラミツクス部材を、相
互の接着面に熱処理によりCr2O3に変換する可溶
性Cr化合物の濃水溶液と少量のAl2O3,Cr2O3
SiO2,ZrO2又はTiO2等の金属酸化物の1種又は
之等1種以上を含有するスラリーの塗布層を介し
て強固に結着せしめ、更に、この結着体を前記鉄
又は鉄系合金部材側が中間層として介在するよう
アルミニウム合金鋳造体表面に接着構成せしめた
ことを特徴とするセラミツクス部材を被着結合し
たアルミニウム合金鋳造体。 2 Ni又はCrの鍍金膜を有するか、有しない鉄
又は鉄系合金部材の表面に、ZrO2,Al2O3
Cr2O3,SiO2,Fe2O3,TiO2,CaZrO3、又は
MgAl2O4等の金属酸化物の1種又は之等1種以
上の粉末、或は之等酸化物からなる仮焼状態で、
酸化Crにより結合強化したセラミツクス部材、
若くは之等酸化物からなる高温焼結した見掛気孔
率10%乃至18%を有するセラミツクス部材を、相
互の接着面の少なくとも何れか一方に熱処理によ
りCr2O3に変換し得る可溶性Cr化合物の濃水溶液
の単味、又は少量のAl2O3,Cr2O3,SiO2,ZrO2
又はTiO2等の金属酸化物の1種又は之等1種以
上を含有する可溶性Cr化合物の濃水溶液を塗布
して両部材を重合し、しかる後、加熱処理を施す
ことによつて強固に結着せしめ、更にこの結着体
をアルミニウム合金鋳型内にセツトし、適温から
なる加熱状態下においてアルミニウム合金融液を
注入鋳造して前記鉄又は鉄系合金部材側を中間層
として介在するようアルミニウム合金鋳造体表面
に接着せしめるようにしたことを特徴とするセラ
ミツクス部材を被着結合したアルミニウム合金鋳
造体の製法。
[Claims] 1. ZrO 2 , Al 2 O 3 ,
Cr 2 O 3 , SiO 2 , Fe 2 O 3 , TiO 2 , CaZrO 3 or
In a calcined state consisting of one or more powders of metal oxides such as MgAl 2 O 4 or such oxides,
Ceramic components with bond strength strengthened by Cr oxide,
High-temperature sintered ceramic members with an apparent porosity of 10% to 18 % , which are made of oxides such as Al 2 O 3 , Cr 2 O 3 ,
It is strongly bonded through a coating layer of slurry containing one or more metal oxides such as SiO 2 , ZrO 2 or TiO 2 , and this bond is further bonded to the iron or iron-based metal oxide. 1. An aluminum alloy cast body having a ceramic member adhesively bonded to the surface of the aluminum alloy cast body so that the alloy member side is interposed as an intermediate layer. 2 ZrO 2 , Al 2 O 3 ,
Cr 2 O 3 , SiO 2 , Fe 2 O 3 , TiO 2 , CaZrO 3 , or
In a calcined state consisting of one or more powders of metal oxides such as MgAl 2 O 4 or such oxides,
Ceramic components with bond strength strengthened by Cr oxide,
A soluble Cr compound that can be converted into Cr 2 O 3 by heat treatment on at least one of the mutual bonding surfaces of a high-temperature sintered ceramic member having an apparent porosity of 10% to 18% made of an oxide. A simple concentrated aqueous solution or a small amount of Al 2 O 3 , Cr 2 O 3 , SiO 2 , ZrO 2
Alternatively, both parts may be polymerized by applying a concentrated aqueous solution of a soluble Cr compound containing one or more metal oxides such as TiO2 , and then heat-treated to form a strong bond. This bonded body is further set in an aluminum alloy mold, and an aluminum alloy liquid is injected and cast under heating conditions at an appropriate temperature to form an aluminum alloy so that the iron or iron-based alloy member side is interposed as an intermediate layer. A method for producing an aluminum alloy cast body in which a ceramic member is adhered and bonded to the surface of the cast body.
JP23323182A 1982-12-30 1982-12-30 Aluminum alloy casted body adhesion bonded with ceramic member and manufacture Granted JPS59128274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23323182A JPS59128274A (en) 1982-12-30 1982-12-30 Aluminum alloy casted body adhesion bonded with ceramic member and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23323182A JPS59128274A (en) 1982-12-30 1982-12-30 Aluminum alloy casted body adhesion bonded with ceramic member and manufacture

Publications (2)

Publication Number Publication Date
JPS59128274A JPS59128274A (en) 1984-07-24
JPS6111908B2 true JPS6111908B2 (en) 1986-04-05

Family

ID=16951804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23323182A Granted JPS59128274A (en) 1982-12-30 1982-12-30 Aluminum alloy casted body adhesion bonded with ceramic member and manufacture

Country Status (1)

Country Link
JP (1) JPS59128274A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135676U (en) * 1984-08-06 1986-03-05 臼井国際産業株式会社 Blade structure of scissors
US4764341A (en) * 1987-04-27 1988-08-16 International Business Machines Corporation Bonding of pure metal films to ceramics

Also Published As

Publication number Publication date
JPS59128274A (en) 1984-07-24

Similar Documents

Publication Publication Date Title
US4875616A (en) Method of producing a high temperature, high strength bond between a ceramic shape and metal shape
JPH0141431B2 (en)
EP0396240B1 (en) Ceramic meterial and method for producing the same
JPS6018621B2 (en) engine parts
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
US5043305A (en) High thermal expansion coefficient ceramic sinter and a composite body of the same and metal
JPH0527706B2 (en)
US5293923A (en) Process for metallurgically bonding aluminum-base inserts within an aluminum casting
JPS6111908B2 (en)
JPS61207566A (en) Formation of thermally sprayed ceramic film
JPS60187740A (en) Heat insulating piston of internal combustion engine and itsproduction
JPS6155589B2 (en)
JPS60125375A (en) Metal-ceramic joined body and manufacture thereof
JPS6014901B2 (en) Piston manufacturing method
JPS6187859A (en) Formation of sprayed film
JPS6126781A (en) Heat resisting laminated body and its manufacture
JPS646274B2 (en)
JPS6232275B2 (en)
JPS624357B2 (en)
JPH0448986B2 (en)
JPS6033361A (en) Preparation of ceramic-metal bonded body
JPH03189063A (en) Ferrous porous reinforced material and combined body of this and non-ferrous metal
JPS60110862A (en) Manufacture of thruster
JPH06207555A (en) Cylinder liner of internal combustion engine
JPH0538565A (en) Ceramic calcined body for internal chill