JPS60125375A - Metal-ceramic joined body and manufacture thereof - Google Patents

Metal-ceramic joined body and manufacture thereof

Info

Publication number
JPS60125375A
JPS60125375A JP23092583A JP23092583A JPS60125375A JP S60125375 A JPS60125375 A JP S60125375A JP 23092583 A JP23092583 A JP 23092583A JP 23092583 A JP23092583 A JP 23092583A JP S60125375 A JPS60125375 A JP S60125375A
Authority
JP
Japan
Prior art keywords
ceramic
metal
layer
coefficient
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23092583A
Other languages
Japanese (ja)
Other versions
JPH0250994B2 (en
Inventor
Masayoshi Usui
正佳 臼井
Osamu Yonemochi
米持 修
Toshihiko Hoshino
星野 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP23092583A priority Critical patent/JPS60125375A/en
Publication of JPS60125375A publication Critical patent/JPS60125375A/en
Publication of JPH0250994B2 publication Critical patent/JPH0250994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Abstract

PURPOSE:To manufacture a metal-ceramic joined body having superior heat resistance, wear resistance and a significant heat insulating effect by coating the surface of a metallic material with ceramics contg. Cr2O3 in the form of a slurry and by carrying out heat treatment to join firmly the ceramic layer to the metal. CONSTITUTION:The surface of an engine is roughened by sand blast, and it is coated with a slurry prepd. by adding at least one among SiO2, ZrO2, Al2O3, Fe2O3 and CaF to a concd. aqueous soln. of a soluble Cr compound such as CrO3 so that the expansion coefft. of the resulting ceramics is made close to that of the metal of the engine. The coated engine is heat treated to form a ceramic layer contg. Cr2O3 converted from CrO3. A mixed ceramic layer consisting of Cr2O3 and at least one among SiO2, ZrO2, Al2O3, Fe2O3, CaF, ZrSiO4, 2MgO.2Al2O3.5SiO2, SiC and Si3N4 is then laminated on the formed ceramic layer. Thus, the thermal efficiency of the engine is improved.

Description

【発明の詳細な説明】 本発明は、金り部材とセラミックスとが強固に接合し、
耐熱性、断熱性及び!Ii+摩耗性にすぐれている金輌
−セラミックス接合体及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that a metal member and ceramics are firmly bonded,
Heat resistance, insulation and! This invention relates to a metal-ceramic bonded body having excellent wear resistance and a method for manufacturing the same.

誦温をともなう機械装置、たとえば、ディーゼルエンジ
ン、ガソリンエンジンなどにおいて、熱損失を軽減し熱
効率を高めようとする研究が盛んに行なわれ、たとえば
エンジン部品として、耐熱性、断熱性及び高温強度のす
ぐれたセラミックスと金粒との複合構造体か桓々提案さ
れている。これらは主としてセラミックスか焼き嵌めあ
るいはボルト締めなどに−よって金属と接合されたもの
であって、4合体がエンジンの稼動時のガタッキによる
亀裂の発生や剥落などの損傷をきたすおそれかあり、・
又、これに用いられるセラミックスはいずれも高度の製
造技術が必要であって製造コストがいちじるしく高くな
るなどの欠点があった。又、金紗1部I懺面にセラミッ
ク溶射コーティングした複合部材も試用されていて、こ
の方法は製造コストが比較的低廉であり被膜の熱伝導率
も割合率さいという利点ρ・ある反面、被膜と金属とは
機械的結合ンなしていて接合強度が小さく、優れた断熱
性を得るために必要な厚さの被膜を施した場合には被膜
ρ・剥離し易いというような欠点があった。
A lot of research is being conducted to reduce heat loss and increase thermal efficiency in mechanical devices that generate heat, such as diesel engines and gasoline engines. Composite structures of ceramics and gold particles have been frequently proposed. These are mainly made of ceramics and are joined to metal by shrink fitting or bolting, and there is a risk that the four pieces together may cause damage such as cracking or peeling due to looseness during engine operation.
Furthermore, the ceramics used for this purpose all require advanced manufacturing techniques, and have the disadvantage of significantly increasing manufacturing costs. In addition, a composite member in which ceramic spray coating is applied to one part of gold gauze surface is also being used.This method has the advantage of relatively low manufacturing cost and low thermal conductivity of the coating. Since there is no mechanical bond between the metal and the metal, the bonding strength is low, and when a coating is applied to the thickness necessary to obtain excellent heat insulation properties, the coating has the disadvantage that it easily peels off.

本発明省らは、セラミックスと金J%部材とか強固に結
合し1機械的、熱的に強靭な金属−セラミックス接合体
を得べく多くの研究を1ねているが、金かス部材表血上
のセラミック層を金kL部材の熱膨張係数に近似する熱
膨張係数を有するセラミックスを使用してtI′tAl
f被扶を形成することにより、さらに、枳層被aの各層
を形成するセラミックスの熱膨張係数ρ−前層の熱膨張
係数よりも小さいものを使用することによって、セラミ
ック粒子及び金属部材相互か加熱処理によって生成する
Cr、0.によって強固に結合してセラミック被膜が形
成され目的を達し得ることを認めて本発明の各発明をな
したものである。すなわち、本発明は、金属部材表面に
核金属とセラミック被膜の熱膨張係数が近似するように
S iow * Zr0t t Aft Os e F
@* Os +Cr、0.及びCaF’、かうなる群か
ら選ばれた少なくとも1flXI類の化合物微粉末と可
溶性クロム化合物の温水溶液とで調整したスラリーを塗
布し熱処理する処理を所望の被演厚が形成されるまで繰
返して行なうことによって金it部材に厚い強固なセラ
ミック被覆を形成してなる金属−セラミックス接合体及
びその製造方法である。さらに、前記発明によって形成
した@IMのセラミック被覆上に。
The Ministry of the Invention and others have carried out a lot of research in order to obtain a mechanically and thermally strong metal-ceramic bonded body that can firmly bond ceramics and gold members. The upper ceramic layer is made of a ceramic having a coefficient of thermal expansion approximating that of the gold kL member.
By forming the layer f, and by using a ceramic having a thermal expansion coefficient ρ smaller than the thermal expansion coefficient of the previous layer, the ceramic particles and the metal member can be mutually bonded. Cr produced by heat treatment, 0. The inventions of the present invention were made based on the recognition that the objects can be achieved by forming a ceramic coating by firmly bonding the ceramic coating. That is, the present invention provides S iow * Zr0t t Aft Os e F so that the thermal expansion coefficients of the core metal and the ceramic coating approximate to the surface of the metal member.
@* Os +Cr, 0. and CaF', a slurry prepared with a fine powder of at least 1 fl The present invention provides a metal-ceramic bonded body formed by forming a thick and strong ceramic coating on a gold IT member, and a method for manufacturing the same. Furthermore, on the @IM ceramic coating formed according to the invention.

このセラミックスの熱膨張係数よりも若干小さなF 6
2 (J3 、 Crt (Ja + cap’l l
 Zr 5104 H2Mg0 ’ 2A11 (% 
’5S 1t)2 + S tC及び5lsNiからな
る1“Cから選ばれた少なくとも1釉類の化合物微粉末
と可溶性クロム化合物とで調整したスラリーを塗布し熱
処理をする処理を行ない、以下、順次前層のセラミック
スの熱膨張係数より若干小さな熱膨張係数を有するスラ
リーをそれぞれ調整し、順次塗布−熱処理を行なって所
望の厚さの被覆を形成する金属−セラミックス接合体及
びその製造方法である。さらに、セラミックスの第工層
形成稜、及び/又は、最終層を形成後に1.可溶性りU
ム酸の濃水溶液を含浸し熱処理する処理を行なうことに
よって、金属部材とセラミック被膜との接合強度を増強
し得、あるいは、得られたセラミック被覆の組織を一段
と強化し得る方法を提供するものである。
F6 is slightly smaller than the coefficient of thermal expansion of this ceramic.
2 (J3, Crt (Ja + cap'l l
Zr 5104 H2Mg0' 2A11 (%
'5S 1t) 2 + S A slurry prepared with fine powder of at least one glaze compound selected from 1"C consisting of tC and 5lsNi and a soluble chromium compound is applied and heat treated. The metal-ceramic bonded body and its manufacturing method include preparing a slurry having a coefficient of thermal expansion slightly smaller than that of the ceramic layer, and sequentially applying and heat-treating the slurry to form a coating of a desired thickness. , after forming the first layer formation edge of ceramics and/or the final layer 1. Solubility U
The present invention provides a method for increasing the bonding strength between a metal member and a ceramic coating, or for further strengthening the structure of the obtained ceramic coating, by impregnating the metal member with a concentrated aqueous solution of muric acid and heat treating it. be.

本発明における金属部材としては、鋳鉄、炭素鋼、ステ
ンレス鋼などのような鉄及び鉄基合金、アルミニウム及
びアルミニウム合金あるいはニッケル及びニッケル基合
金などが用いられる。金属蔀和は +う9ツク村h#L
陛か行かへ前f索ふAいはスラリーか均一に翅布される
ように表面を酸やアルカリで洗汁し、さらにセラミック
スとの結合面チ′(を大きくするためにたとえばサンド
ブラストを用いて粗面化処理をすることか好ましく、粒
度297〜350μmの溶融アルミナ又は炭化ケイ累な
どな用いることが好ましい。又、金属部材が糾鉄の場合
には、前記の粗面化処理後、比重1.3〜1.6のルC
ry4の加温した水溶液中に浸漬し、70〜100℃に
おいて処理して部材表面にU呈している黒鉛分を除去す
る処理(特願昭58−61661号)を行なうことが好
ましい。又、金h4部劇かアルミニウム合金である場合
には、前記の粗面化処理をした後に硬質アルマイト処理
を行プエ5か、又はニッケルめっきを施しておくことか
好ましい。
As the metal member in the present invention, iron and iron-based alloys such as cast iron, carbon steel, stainless steel, aluminum and aluminum alloys, nickel and nickel-based alloys, etc. are used. Metal showa is + U9 Tsukumura h#L
Before going to the palace, the surface is washed with acid or alkali so that the slurry is evenly distributed, and then sandblasting is used, for example, to increase the bonding surface with the ceramics. It is preferable to perform a surface roughening treatment, and it is preferable to use fused alumina or silicon carbide with a particle size of 297 to 350 μm.Also, when the metal member is made of dung iron, after the surface roughening treatment, the specific gravity is 1. .3 to 1.6 le C
It is preferable to perform a treatment (Japanese Patent Application No. 58-61661) in which the material is immersed in a heated aqueous solution of RY4 and treated at 70 to 100 DEG C. to remove graphite that appears on the surface of the material. In addition, in the case of metal or aluminum alloy, it is preferable to perform hard alumite treatment after the above-mentioned surface roughening treatment and to perform pue 5 or nickel plating.

次に、金属部材に被接するセラミックスは、S iOt
 y Zr0t + At、 os 、 Fe2osl
 CrOm HcaF’、 、Zr5iO,*2Mg0
 ・2Alt On ’ 5 S 10! −S Ic
及び5lsN4などから適宜辿択した少なくとも1種類
の化合物とCr、Usとで調整するが、Slへとしては
、s i ox純度99.5%以上の硅石(α型石英結
晶)を、7.rへとしては、ZrO!純度99.51以
上のZrO,をCaO3及量チにより1550℃におい
て安定化処理した立方晶z r 0ffi固溶体を、A
l1 Osとしては、純度99.5%以上のg−A1.
Q、を、Z r S i O4としては、Z r S 
l’04純度99チ以上のジルコンサンドを、sicと
しては、StC純度99%以上のα−5tCを、Si、
N4としては、Si、凡純度98.5チ以上のα−81
mN4を、2Mg0・2A1101・581へとしては
、合成率98%の合成コープイライトを、F @!0@
 gCaFt + Crl O@などはいずれも市販品
を使用し得る。
Next, the ceramic in contact with the metal member is SiOt
y Zr0t + At, os, Fe2osl
CrOm HcaF', , Zr5iO, *2Mg0
・2Alt On' 5 S 10! -S Ic
and 5lsN4, etc., and Cr, Us. For Sl, use silica (α-type quartz crystal) with a Si ox purity of 99.5% or more. For r, ZrO! A cubic Zr Offi solid solution obtained by stabilizing ZrO with a purity of 99.51 or higher at 1550°C with CaO3,
As l1 Os, g-A1. with a purity of 99.5% or more is used.
Q, as Z r S i O4, Z r S
l'04 Zircon sand with a purity of 99% or more, StC, α-5tC with a purity of 99% or more, Si,
As N4, Si, α-81 with a purity of 98.5 or higher
To convert mN4 to 2Mg0・2A1101・581, use synthetic copierite with a synthesis rate of 98% as F @! 0@
Commercially available products such as gCaFt + Crl O@ can be used.

これらは、粒度44μm以下とし平均粒径10〜5μm
の微粉末に調整されていることが好ましい。
These have a particle size of 44 μm or less and an average particle size of 10 to 5 μm.
It is preferable that the powder be adjusted to a fine powder.

又、CrtO,01部は、Cry、を水に溶解した)I
ICr04の濃水溶液の形で補なうことができる。
In addition, 1 part of CrtO is prepared by dissolving Cry in water)I
It can be supplemented in the form of a concentrated aqueous solution of ICr04.

可溶性クロム化合物は、6価のクロムイオンを含有する
濃水溶液であり、たとえばCrO3を水に溶解したH、
CrO,濃水溶液あるいはZnO又はMgOをHs C
rQ、 1 モ/l/に対し0.1〜0.2モルを&C
rO4鎖水溶液に溶解したものなどがあげられ、首度は
比1165〜1.7に調整する。
A soluble chromium compound is a concentrated aqueous solution containing hexavalent chromium ions, such as H in which CrO3 is dissolved in water,
CrO, concentrated aqueous solution or ZnO or MgO as HsC
rQ, 0.1 to 0.2 mol for 1 mol/l/&C
Examples include those dissolved in an aqueous rO4 chain solution, and the degree of neck is adjusted to a ratio of 1165 to 1.7.

しかして、セラミックスの熱膨張係数が、金属部材のそ
れに近似するかあるいは積層セラミック層の各層間にお
いて直下層のセラミックスの熱膨張係数より小さな値を
有するセラミックスを被覆するものであって、そのため
に、あらかじめ前記化合物を適宜組合せて熱膨張係数を
測定しておくと便利である。すなわち、混合粉体を比重
1,7のH*Cr0411水溶液によって湿淘し、50
0 kg7am”で加圧成形し、乾燥した後、4℃/m
i n の昇温速度で700℃まで上げ、700℃で約
60分間焼成して硬化体とし、さらに前記&CrO4濃
水溶液を含浸させ前記と同様に熱処理した。との含浸−
熱処理を3回繰返して行ないセラミック試料を調製し、
常温〜600℃における熱膨張特性を測定した。この結
果の一部を第1界に例示する。
Therefore, the ceramic is coated with a ceramic whose coefficient of thermal expansion is close to that of the metal member, or whose coefficient of thermal expansion is smaller than that of the ceramic layer immediately below between each layer of the laminated ceramic layer, and therefore, It is convenient to suitably combine the above compounds and measure their thermal expansion coefficients in advance. That is, the mixed powder was wetted with an aqueous solution of H*Cr0411 with a specific gravity of 1.7, and
Pressure molded at 0 kg7am”, dried and then heated at 4°C/m
The temperature was raised to 700° C. at a rate of i n , and the material was fired at 700° C. for about 60 minutes to obtain a hardened product.The material was then impregnated with the &CrO4 concentrated aqueous solution and heat-treated in the same manner as above. Impregnation with
A ceramic sample was prepared by repeating the heat treatment three times,
Thermal expansion characteristics at room temperature to 600°C were measured. A part of this result is illustrated in the first world.

この嚢に基づいて金属部材の種類に応じあるいは前層の
セラミックスの熱膨張係数より小さい値のセラミックス
を選定する。すなわち、たとえば、第1層のS 10t
−A lt Os及びCr!0.からなるセラミックス
は、前述のような原料を使用してSin、54東量部、
AItos 15重量部及びCr、O,重量部16重量
部をいずれも平均粒径が10μmの粉末状のものをCr
、0.20重量部を水14重綾部に溶解した比重約1.
70H2CrQ46≧水溶液32重世部に加え、さらに
水20重量部を加えてアルミナ質ボールミ〃を用いて2
0時間混合してスラリーをI!INする。
Based on this bag, a ceramic is selected depending on the type of metal member or has a coefficient of thermal expansion smaller than that of the ceramic of the previous layer. That is, for example, S 10t of the first layer
-Alt Os and Cr! 0. Ceramics consisting of Sin, 54 Toryobe,
15 parts by weight of AItos and 16 parts by weight of Cr, O, both in powder form with an average particle size of 10 μm, were mixed with Cr.
, 0.20 parts by weight dissolved in 14 parts of water has a specific gravity of approximately 1.
70H2CrQ46≧In addition to 32 parts by weight of the aqueous solution, 20 parts by weight of water was added, and 2 parts by weight were added using an alumina ball mill.
Mix for 0 hours and make the slurry! IN.

又、 S [02、Zr(Jt及びcrowからなるセ
ラミックスは、同材にして5iOtts重量部、zro
、 68.5重量部及びCr、0.51景部の各微粉末
、比重が1.7のルcro4 affl水溶液24車量
部及び水14重置部をよく混合して調整する。又、Zr
O,及びCr、O,からなるセラミックスは、同様にし
てzrへ39重綾部及びCr、0.50重量部の各微粉
末、比重1,7のHsCr04濃水溶液22重量部及び
水15亀駄部をよく混合して[5する。又、Zr5(O
4eAI、0.及びCrtOAからなるセラミックスは
、Zr5iO,45重を部、AI!0.18重量部及び
Cr、0.22重量部の各微粉末、比重1.7の迅Cr
0432狐員部及び水14重量部を前記と同mKt、て
よく混合して調整する。さらK −Z r S 104
 e 2Mg 0・2A1,0.・5SiO,及びCr
O□からなるセラミックスは、同様にしてZr510a
 451景部、2Mg0・2Alt On ・5SiO
t 35重量部、及びCr!Ox 10重量部の各微粉
末、比重1.7の迅CrO4濃水溶液26重量部及び水
13重量部をよく混合して調整する。
In addition, ceramics consisting of S [02, Zr (Jt and crow) are made of the same material and have a content of 5iOtts parts by weight, zro
, 68.5 parts by weight of each fine powder of Cr, 0.51 parts by weight, 24 parts by volume of an aqueous solution of Cr4 Affl having a specific gravity of 1.7, and 14 parts by weight of water are mixed well to prepare. Also, Zr
Ceramics consisting of O, Cr, and O were similarly prepared by adding 39 parts by weight to ZR, 0.50 parts by weight of each fine powder, 22 parts by weight of a concentrated aqueous solution of HsCr04 with a specific gravity of 1.7, and 15 parts by weight of water. Mix well [5]. Also, Zr5(O
4eAI, 0. and CrtOA, Zr5iO, 45 parts, AI! 0.18 parts by weight and 0.22 parts by weight of each fine powder, Cr with a specific gravity of 1.7
0432 and 14 parts by weight of water are mixed well at the same mKt as above to prepare. SaraK-Z r S 104
e 2Mg 0・2A1,0.・5SiO, and Cr
Similarly, ceramics consisting of O□ are Zr510a
451 Keibu, 2Mg0・2Alt On・5SiO
t 35 parts by weight, and Cr! 10 parts by weight of each fine powder of Ox, 26 parts by weight of a concentrated aqueous solution of CrO4 with a specific gravity of 1.7, and 13 parts by weight of water are thoroughly mixed to prepare.

本発明の第1、第3の発明においては、このようにして
試製したたEえばS i Ot * Alt Os及び
Cr、0.からなるセラミックスラリ−な、脱脂洗浄、
粗面化及び脱カーボン処理をしたねずみ鋳鉄(熱#張係
数12 X 10”/’Cat常温〜600℃)表面に
款布する。塗布は、刷毛塗り、スプレー塗りあるいは浸
漬法などによって行ない得るが、均一な系M娶形成する
ためには全域部材をスラリー中に浸漬する浸漬法が好ま
しい。塗布された金属部材は、70−80℃において乾
燥後450〜600℃において熱処理される。熱処理の
昇温速度は、金属部材の形状、大きさにより一定しない
が通常3〜6°C/min であり、雰囲気はとくに制
限されない。セラミック被覆の積層は、前記の処理をし
た金属部材に前記と同一のスラリーを第1層上に塗布し
、前記と同様に乾燥及び熱処理を行なう。
In the first and third aspects of the present invention, for example, SiOt*AltOs and Cr,0. Ceramic slurry, degreasing and cleaning,
It is applied to the surface of roughened and decarbonized gray cast iron (thermal tensile coefficient 12 x 10"/'Cat room temperature to 600°C). Application can be done by brushing, spraying, dipping, etc. In order to form a uniform system, a dipping method is preferred in which the entire area of the member is immersed in a slurry.The coated metal member is dried at 70-80°C and then heat-treated at 450-600°C. The temperature rate varies depending on the shape and size of the metal member, but is usually 3 to 6°C/min, and the atmosphere is not particularly limited.Lamination of the ceramic coating is performed by applying the same treatment as above to the metal member that has undergone the above treatment. The slurry is applied onto the first layer and dried and heat treated as described above.

ついで、このような塗布−乾燥−熱処理といった処理を
セラミック被覆の厚さが所定の厚さになるまで繰返して
行なう方法によって金属−セラミック接合体が得られる
Then, a metal-ceramic bonded body is obtained by repeating the coating-drying-heat treatment process until the thickness of the ceramic coating reaches a predetermined thickness.

又、本発明の第2.第4の発明においては、たとえば、
前記のねずみ鋳鉄の場合には、前記のようにして調整し
た5i01.AI、O,及びCr、0.からなるスラリ
ーを用い前記の第1の発明の第1層形成条件と凹球な条
件で処理して第1層を形成し。
Moreover, the second aspect of the present invention. In the fourth invention, for example,
In the case of the above-mentioned gray cast iron, 5i01. AI, O, and Cr, 0. The first layer was formed by processing the slurry under the same concave-spherical conditions as the first layer forming conditions of the first invention.

第2層は、前記のよ5Kして調整したS i os 。The second layer is SiOS adjusted by 5K as described above.

zrO,及びCr@usからなるスラリーを用いて第1
層と同様にして形成する。ついで順次、第3層には、Z
r01及びCr、O,からなるスラリーを、第4層には
、ZrS 104− Alt On及びcrtosから
なるスラリーを、第5層には、ZrS i04 、2M
g0・2A1tOs ’5H!0及びOr、O,かうな
るスラリーをといったように順次前層より熱膨張係数の
小さいセラミックススラリーを用いて第1層形成と同様
にしてそれぞれの層な形成するものである。
The first step was carried out using a slurry consisting of zrO and Cr@us.
It is formed in the same manner as the layer. Then, in the third layer, Z
A slurry consisting of r01 and Cr, O, was used for the fourth layer, a slurry consisting of ZrS 104-Alt On and crtos was used for the fifth layer, and ZrS i04, 2M was used for the fifth layer.
g0・2A1tOs '5H! Each layer is formed in the same manner as the first layer using ceramic slurries having a smaller coefficient of thermal expansion than the previous layer, such as 0, Or, O, and so on.

さらに、機械的振動を強く受ける部品に本発明を適用す
る場合には、第5の発明のようにして金属部材とセラミ
ック被覆との接合強度を一段と高め、又、積層された各
層のセラミックス全体を強化することができる。すなわ
ち、本発明の第5の発明においては、金属部材に前記の
ようにして第1層のセラミックvI徨を施した後、前記
のようにして−1した同浴性クロム化合物の酸水溶液を
たとえば浸漬法によって第1FfJに含浸させ乾燥した
後、450〜600℃において熱処理する処理を行なう
ものである。この処理によって金属部材とセラミックス
との接合強度を増大するものであるが、8111eに示
すように被慌の気孔が減少しこの処理を多くすると該被
桝上に&層するセラミックの層厚を減少するので1〜3
回この処理を行なうことが好ましい。
Furthermore, when the present invention is applied to parts that are subject to strong mechanical vibrations, the bonding strength between the metal member and the ceramic coating is further increased as in the fifth invention, and the entire ceramic layer of each laminated layer is Can be strengthened. That is, in the fifth aspect of the present invention, after applying the first layer of ceramic VI to the metal member as described above, an acid aqueous solution of the bath-compatible chromium compound, which has been reduced to 1 as described above, is applied, for example. After impregnating the first FfJ with a dipping method and drying, a heat treatment is performed at 450 to 600°C. This treatment increases the bonding strength between the metal member and the ceramic, but as shown in 8111e, the number of pores is reduced, and increasing the amount of this treatment reduces the layer thickness of the ceramic layered on the mold. Therefore, 1 to 3
It is preferable to carry out this treatment twice.

第 2 衣 又、被接の強化をするためにセラミック被覆が所望の厚
さになるまで積層処理をした後に、前記と同様にし゛C
旬溶性クロム化合物を含浸−乾燥−熱処理させるもので
あって、この処理も数回繰返して処理することが好まし
く、処理回数を増加するとともにセラミック被覆の気孔
サイズ及び気孔量が減少し組織が緻密化し強度が増大す
るものである。
Second coating: After laminating the ceramic coating until it reaches the desired thickness to strengthen the bond, proceed as above.
The process involves impregnating, drying, and heat-treating the ceramic coating with a seasonally soluble chromium compound, and it is preferable to repeat this process several times.As the number of treatments increases, the pore size and amount of pores in the ceramic coating decrease, and the structure becomes denser. This increases the strength.

このようにしてセラミック被覆を形成することによって
、本発明の第1、第3の発明によって得られるセラミッ
ク被伏のル、さは、たとえば、第1屑において100〜
150μm、第2層が600〜700μm、第3層が1
100〜1200/jrn。
By forming the ceramic coating in this way, the radius of the ceramic covering obtained by the first and third aspects of the present invention is, for example, 100 to 100 in the first scrap.
150μm, second layer 600-700μm, third layer 1
100-1200/jrn.

第4層が1300〜1600μm、第5層が2500〜
3500μmといったような厚さを有するような層が順
次重なって形成され、全体として5.5〜7Ilのよう
な厚さのセラミック被覆を形成するものである。しかし
て、このセラミック被覆の厚さは、セラミックススラリ
ーに含有される固形粒子の形状、大きさ及びその分布、
スラリー濃度及び塗布条件などによって左右されるが、
これらが一定であるときセラミック被Φ上に形成される
層の厚さは下層の気孔量によって定まるものであって、
前記のように上層はど層厚が急増するものである。前記
のようにして形成されたセラミック被覆の見掛気孔率は
、20〜30チであり、見掛熱伝導率は、0.001〜
0.003 ca’/cWL1!lec’lc程度のも
のであって、断熱性が非常に優れた接合体が得られる。
4th layer is 1300~1600μm, 5th layer is 2500~
Layers having a thickness such as 3500 .mu.m are formed one on top of the other to form a ceramic coating having a total thickness of 5.5 to 7 Il. Therefore, the thickness of this ceramic coating depends on the shape, size and distribution of solid particles contained in the ceramic slurry.
It depends on the slurry concentration and coating conditions, etc.
When these are constant, the thickness of the layer formed on the ceramic coating Φ is determined by the amount of pores in the underlying layer,
As mentioned above, the thickness of the upper layer increases rapidly. The ceramic coating formed as described above has an apparent porosity of 20 to 30 cm, and an apparent thermal conductivity of 0.001 to 30 cm.
0.003 ca'/cWL1! It is possible to obtain a bonded body with extremely excellent heat insulation properties, which are on the order of lec'lc.

又、第2、第3の発明によって得られるセラミック被覆
は、前記のようにして5r@を形成した場合、各層の熱
膨張係数は、第1層が12.0 X 10yC。
Further, in the ceramic coating obtained by the second and third inventions, when 5r@ is formed as described above, the coefficient of thermal expansion of each layer is 12.0 x 10yC for the first layer.

第2層が10.4 X 101/’C,第3層が8.3
x10′″/6c。
2nd layer is 10.4 x 101/'C, 3rd layer is 8.3
x10''/6c.

第4層が6. OX 1 o−e/’C,第5層が3.
6 X 10−’/’Cと順次小さくなっており、層厚
は全体で5.7闘であり、平均気孔率は、24,3チで
あり、見掛熱伝導率は、0.0021 ca’/cm・
see・”cであった。この場合、40X40X厚さ6
111の鋳鉄板に同様に処理して約6露の厚さにセラミ
ック被覆した試料を製作し、電気炉中で500℃に30
分間保持した徒、常温の大気中に急冷して30分間保持
し再度急熱を行なう急熱急冷のサイクル試験を50回行
なった結果、試料に亀裂、剥離などの異常は認められず
良好な耐熱衝撃性を有することが認められ、温度変化の
激しい箇所に用いる部品として好適であることが認めら
れたつ 、又、第5の発明によってHICr04濃水溶液処理を
2回繰返して施した後、5層のセラミック被覆を形成し
3.2朋厚の被覆を得、平均気孔率は20.9チであり
、見掛熱伝導率は、0.0028 ca’/cWL・8
ee ’cであり引張強度は337 kg/(、”であ
った。
The fourth layer is 6. OX 1 o-e/'C, 5th layer is 3.
6 x 10-'/'C, the total layer thickness is 5.7 cm, the average porosity is 24.3 cm, and the apparent thermal conductivity is 0.0021 ca. '/cm・
see・”c. In this case, 40X40X thickness 6
A sample of No. 111 cast iron plate coated with ceramic to a thickness of about 6 dew was prepared in the same manner and heated to 500°C for 30 minutes in an electric furnace.
As a result of 50 cycles of rapid heating and cooling, in which the sample was held in the air at room temperature for 30 minutes, then rapidly heated again, no abnormalities such as cracks or peeling were observed in the sample, indicating good heat resistance. It has been recognized that it has impact resistance and is suitable for parts used in areas where temperature changes are severe. A ceramic coating was formed to obtain a coating with a thickness of 3.2 mm, an average porosity of 20.9 mm, and an apparent thermal conductivity of 0.0028 ca'/cWL・8.
ee'c, and the tensile strength was 337 kg/(,''.

さらに、最終層を形成した後、H,CrO,a水溶液処
理を5回繰返して行なった場合、セラミック被覆の見掛
気孔率は、14%であり、見掛熱伝導率は、0.003
1 ea’/crn・see ’CテアF)、引張強度
力370 kg/ryn”以上の被覆が得られた。
Furthermore, when the H, CrO, a aqueous solution treatment was repeated five times after forming the final layer, the apparent porosity of the ceramic coating was 14%, and the apparent thermal conductivity was 0.003.
A coating with a tensile strength of 370 kg/ryn'' or more was obtained.

このよ5なkb cro、 隙水溶液による処理は、第
1N被覆形成後あるいは最終層被覆形成後に行なうばか
りでなく、第1N被覆形成後及び最終層被し形成後の両
方について同様に処理することも可能であり、それぞれ
の利点が併せて得ることができる。
This treatment with a 5 kb cro, pore water solution is not only carried out after the formation of the first N coating or after the formation of the final layer, but can also be carried out in the same way both after the formation of the first N coating and after the formation of the final layer. possible, and the advantages of each can be obtained in combination.

有ら第1たセラミックス被覆は、クロム酸の加熱により
生成した極微細な結晶のcr、o、が原料粉末の粒子間
を化学結合してなるものであり、X線回析の結果から前
記セラミック用原材料配合物が700℃の焼成において
はCr、O,と前記各種粉末及び粉末相互の反応生成物
の存在は認められず、又、熱膨張特性の測置結果から前
記のような原材料からなるセラミックスの熱膨張係数は
加成性がみられる。このようなことから金属部材に近似
する熱膨張特性を有するセラミック被〜材料を選択する
ことができるものである。
The first ceramic coating is made by chemically bonding ultrafine crystals of CR, O, produced by heating chromic acid between particles of raw material powder, and the results of X-ray diffraction indicate that the ceramic coating When the raw material mixture was fired at 700°C, the presence of reaction products between Cr, O, and the above various powders and powders was not observed, and the measurement results of thermal expansion properties indicated that the raw materials were made of the above raw materials. The coefficient of thermal expansion of ceramics shows additivity. For this reason, it is possible to select a ceramic material having thermal expansion characteristics similar to those of a metal member.

したがって、ここに得られた金属−セラミックス接合体
は、耐熱性、断熱性、耐摩耗性に優れているので、断熱
型内燃機関におけるシリンダーライナー、ピストン頂部
、排気ボート、その他高温高圧のガス・液体などの輸送
管の内壁用部品などとして好適である。
Therefore, the metal-ceramic bonded body obtained here has excellent heat resistance, heat insulation, and abrasion resistance, so it can be used in cylinder liners, piston tops, exhaust boats, and other high-temperature, high-pressure gas and liquids in adiabatic internal combustion engines. It is suitable as a component for the inner wall of transport pipes, etc.

本発明は、金属部材のp?l膨張係数近似の熱膨張係数
を有するセラミックスによって第1Jiを形成し、その
後は、前記と同じセラミックスを′M層被覆するか、前
層より熱膨張係数が小さいセラミックスを順次積層する
ようにし、さらに、第1層形成後あるいは最終層を形成
した後、あるいは、第1層形成後と最終層形成後K H
t cro4 濃水溶液処理をするようにしたので、所
望の厚さの被覆が形成でき、得られた林梼は、断熱性、
耐熱性及び耐摩耗性が優れており、さらに使用箇所の所
望により耐熱衝撃性あるいは金属部材とセラミック核種
との接合強度の増大及びセラミックスの強度の増大や緻
密化などを実現し得るものであり、金属部材の形状にか
かわらず容易に施行し得るなど優れた効果が認められる
The present invention provides p? The first Ji is formed of a ceramic having a coefficient of thermal expansion close to the coefficient of expansion L, and thereafter, the same ceramic as described above is coated with M layers, or ceramics having a coefficient of thermal expansion smaller than that of the previous layer are sequentially laminated, and , after forming the first layer or after forming the final layer, or after forming the first layer and after forming the final layer K H
t cro4 Since the treatment was carried out with a concentrated aqueous solution, a coating of the desired thickness could be formed, and the resulting forest had good heat insulating properties,
It has excellent heat resistance and abrasion resistance, and can also achieve thermal shock resistance, increase the bonding strength between metal parts and ceramic nuclides, and increase the strength and densification of ceramics, depending on the location of use. Excellent effects have been recognized, such as ease of application regardless of the shape of the metal member.

次に、本発明の実施例を述べる。Next, examples of the present invention will be described.

実施例 1 (第1.第8の発明) 1)金ハ部拐の調整 ねずみ鋳鉄CJIS FC−25相当品、熱膨張係数1
2.3 X 10−@/’C(常温〜600℃))の4
゜X 40 X 6mの試片を295〜350μmの溶
融アルミナによって粗面化した後、51HC1溶液で苗
浄にし、さらに比重135のH!cro4水溶液に浸漬
し、80℃において15分間加熱処理して部材表面の黒
鉛分を除去し、ついでセラミック被嶺を施さない面にス
ラリーが被着しないようにマスクをして金り部材を調整
した。
Example 1 (1st. 8th invention) 1) Adjustment of gold parting Gray cast iron CJIS FC-25 equivalent, thermal expansion coefficient 1
2.3 x 10-@/'C (room temperature to 600℃))
After roughening the surface of a specimen measuring 40 x 6 m with molten alumina of 295 to 350 μm, it was cleaned with 51HC1 solution, and then HCl with a specific gravity of 135 was used. The metal part was immersed in a cro4 aqueous solution and heat-treated at 80°C for 15 minutes to remove graphite on the surface of the part, and then masked to prevent the slurry from adhering to the surface that was not coated with ceramic to prepare the metal part. .

2)セラミック被栓形成用剤の調整 1)可溶性クロム化合物濃水溶液の調整Cr、0.10
0重量部を水55重置部に溶解し、これに水を加えて比
重1.7の濃水溶液を調整した。
2) Preparation of ceramic plug forming agent 1) Preparation of concentrated aqueous solution of soluble chromium compound Cr, 0.10
0 parts by weight was dissolved in 55 parts of water, and water was added thereto to prepare a concentrated aqueous solution with a specific gravity of 1.7.

11)スラリーの調整 第1表からねずみSす鉄の熱膨張係数に近似する熱膨張
係数を有するセラミックスとして、810t−A 11
0S −Crtos系セラミックスを選定し、熱膨張係
数がほぼ12.3 X 10”7℃を示すものとしてS
iQ、99.5%以上の珪石54.5重量部、α−型A
l、0.15重量部、及びCr、 ol 15.5重量
部をいずれも44μm以下で平均粒径10μmの微粉末
として、1)で調整した比重1.7の、Ht G ”0
4 u水溶液32重量部及び水20重量部とともにアル
ミナ質ボールミルを用いて20時間混合して調整した。
11) Adjustment of slurry From Table 1, 810t-A 11 is a ceramic having a thermal expansion coefficient close to that of gray steel.
0S -Crtos ceramics were selected and the thermal expansion coefficient was approximately 12.3 x 10"7℃.
iQ, 54.5 parts by weight of 99.5% or more silica, α-type A
0.15 parts by weight of Cr, ol, and 15.5 parts by weight of Cr, ol were all made into fine powders of 44 μm or less and an average particle size of 10 μm, and Ht G ”0 with a specific gravity of 1.7 adjusted in 1) was prepared.
The mixture was mixed with 32 parts by weight of a 4U aqueous solution and 20 parts by weight of water for 20 hours using an alumina ball mill.

3)セラミック被徨の製造 1)でI−1整した納鉄部利を2)で調整したスラリー
中に浸漬し、数秒後引き上げることによって部材面に均
一な塗装ができる。これを、70℃に60分間乾燥した
後、昇温速度4℃/m i nで560℃まで温度をあ
げて20分間保持し、5℃/1m1nの速度で温度を下
げ約200℃になったときに炉外に取り出すことによっ
て鼾LNtlのセラミックid+ aを形成した。つい
で、該核種部材を前記と同一のスラリーを用いて同様な
条件でυ漬−乾燥−熱処理を行なって第2層被覆を形成
し、以後同条件で第4層枝状まで形成させた。
3) Manufacture of ceramic coating By immersing the steel stock prepared in step 1) in the slurry prepared in step 2) and pulling it out after a few seconds, a uniform coating can be applied to the surface of the member. After drying this at 70°C for 60 minutes, the temperature was raised to 560°C at a heating rate of 4°C/min, held for 20 minutes, and then lowered at a rate of 5°C/1 m1 to about 200°C. Ceramic id+a of snoring LNtl was formed by sometimes taking it out of the furnace. Next, the nuclide member was subjected to υ soaking-drying-heat treatment under the same conditions using the same slurry as above to form a second layer coating, and thereafter a fourth layer up to the branch shape was formed under the same conditions.

4)試験結果 セラミック被覆の各層の厚さは、第1層より順に、13
9,617.LIOo、1,490μmであり、祈願の
全厚さは、3.35mであった。鋳鉄部材とセラミック
スとの接合強度は、エポキシ系樹脂接着剤を使用して試
片のセラミック光面及び鋳鉄界面に開帳試験用治具を接
着して剥離試験によって試験したが、接着剤の接着面で
の剥離がおこり、その強反は275 ′に9Xcm”で
あり、核種の見掛気孔率は、水置換法(セラミックスの
気孔率の測定法とし一般的な方法)Kよる方法で行なっ
た結果28.1%であり、見掛熱伝尋率を熱線法によっ
て測定した結果は、0.0022 calム・see・
℃であって、優れた断熱性を有する部材であることが認
められた。
4) Test results The thickness of each layer of the ceramic coating, starting from the first layer, was 13.
9,617. LIOo was 1,490 μm, and the total thickness of the prayer was 3.35 m. The bonding strength between the cast iron member and the ceramic was tested by a peel test using an epoxy resin adhesive to adhere a spread test jig to the ceramic optical surface and cast iron interface of the specimen. Peeling occurred, and its strength was 275' to 9Xcm'', and the apparent porosity of the nuclide was determined by the water displacement method (a common method for measuring the porosity of ceramics). 28.1%, and the result of measuring the apparent thermal conductivity by the hot wire method is 0.0022 cal.
℃, and it was recognized that the material had excellent heat insulation properties.

実施例 2 (第2.m4の発明) 1)金ね部材のルを整 炭素鋼(JIS S−45C相尚品、#膨張係数14、
5 X 10″′Ll/℃(室温〜600℃))の40
X40 X 6 朋の試片を実施例1と同様にして表面
の粗面化処理を行ない、セラミックuJ&形成面以外の
面をマスク処理をして調整した0 2)セラミック被伊形成用剤の調整 1)可溶性クロム化合物濃水溶液の調整実施例1の2)
−1)と同様にして呻整した。
Example 2 (Invention of No. 2.m4) 1) The metal plate member was made of carbon steel (JIS S-45C compatible product, #expansion coefficient 14,
5 x 10″Ll/℃ (room temperature to 600℃))
X40 1) Preparation of soluble chromium compound concentrated aqueous solution Example 1-2)
- Adjustment was made in the same manner as in 1).

11)スラリーの調整 (イ)第1層形成用スラリー 第1嵌から炭素鋼の熱膨張係数に近似する熱膨張係数を
有するセラ〉ツクスとして、ZrO,−CaF、 −C
r、 os系セラミックスを選定し、熱膨張係数がは1
Y14. I X 10−67℃を示すものとしてCa
Ft 994以上の螢石30綾部部、CaO3重りJに
よって1550℃で安定処理して得た安定化zr0,5
7重量部及びCr、 OB 13 重量部をいずれも4
4μm以1−4W仙帖保111zzmの瞭船丈として一
前項によって調整した比重1.7の迅CrO,濃水溶液
18重量部及び水15重量部とともにアルミナ九ボール
ミ〃を用いて20時間混合して調製した。
11) Adjustment of slurry (a) Slurry for forming the first layer From the first layer, ZrO, -CaF, -C are used as ceramics having a thermal expansion coefficient approximating that of carbon steel.
R, OS ceramics are selected, and the coefficient of thermal expansion is 1.
Y14. I
Stabilized zr0,5 obtained by stabilizing at 1550°C with Ft 994 or higher fluorite 30 twill part, CaO3 weight J
7 parts by weight and 4 parts by weight of Cr, OB 13
As a clear ship length of 4 μm or more 1-4W Senchobo 111zzm, CrO with a specific gravity of 1.7 adjusted in the previous section was mixed with 18 parts by weight of a concentrated aqueous solution and 15 parts by weight of water using an alumina nine-ball mill for 20 hours. Prepared.

(ロ)第2層形成用スラリー 第1Mセラミックスの熱膨張係数より小さい値の熱膨張
係数を有するセラミックスとして第1懺からS l(%
 −Aft Ox −Fs、 o、 −c rl ol
系セラミックスを選定し、熱膨張係数がほぼI L 5
 X 10”7℃を示すものとしてs i 0ffi9
9.5チ以上の砂石39重量部、α−型A 1 t 0
s20in部、Fe、9316重量部及びCr*0s1
0重量部を、いずれも44μm以下で平均粒径10μm
の微粉末として、前記1)によって調整した比重1.7
の11ICr04a水溶液32重量部及び水10重量部
とともに前記ヒ)と同様にして調整した。
(b) Slurry for forming the second layer S l (%
-Aft Ox -Fs, o, -crl ol
We selected ceramics with a thermal expansion coefficient of approximately I L 5.
X 10” s i 0ffi9 as indicating 7℃
39 parts by weight of sand stone of 9.5 inches or more, α-type A 1 t 0
s20in part, Fe, 9316 parts by weight and Cr*0s1
0 parts by weight, all with an average particle size of 44 μm or less and 10 μm
as a fine powder with a specific gravity of 1.7 adjusted according to 1) above.
It was prepared in the same manner as in (a) above with 32 parts by weight of the 11ICr04a aqueous solution and 10 parts by weight of water.

(ハ)第3層形成用スラリー 前記(ロ)と同様にしてA 110B −Z r 02
− C%03糸セラミックス(熱膨張係数s、 5X 
10−’/’C)を選定し、α−型Al、0.37重量
部、前記(イ)と同様にして得た安定化zrO!30重
量部、Cr、0.18重量部を、いずれも前記同様の微
粉末として、前記l)によって調整した比重1.7のH
t CrO4淡水溶液32重量部及び水10重量部とと
もに前記ビ)と同様にして調整した。
(c) Third layer forming slurry A 110B -Z r 02 in the same manner as in (b) above
- C%03 thread ceramics (coefficient of thermal expansion s, 5X
10-'/'C), α-type Al, 0.37 parts by weight, and stabilized zrO obtained in the same manner as in (a) above. 30 parts by weight, 0.18 parts by weight of Cr, both as the same fine powder as above, and H with a specific gravity of 1.7 adjusted according to l) above.
It was prepared in the same manner as B) above with 32 parts by weight of CrO4 fresh water solution and 10 parts by weight of water.

に)第4M形成用スラリー 前記(ロ)と同様にして第1表からA120m−ZrS
104−Cr、 Os系セラミックス(熱膨張係! 6
. OX 10−8層℃) ft選定シ、a −yj、
II Al、 0818重量部、純度99%以上ノZr
510.45重量部及びCr、0.22重量部を、いず
れも前記同様の微粉末として、前記I)によって調整し
た比重1.7の)kcro4a水溶液32重量部及び水
9重量部とともに前記(イ)と同様にして調整した。
B) Fourth M forming slurry A120m-ZrS from Table 1 in the same manner as in (B) above
104-Cr, Os-based ceramics (thermal expansion! 6
.. OX 10-8 layers ℃) ft selection, a - yj,
II Al, 0818 parts by weight, purity 99% or more Zr
510.45 parts by weight and 0.22 parts by weight of Cr, both as the same fine powder as above, were mixed with 32 parts by weight of the aqueous solution of kcro4a (with a specific gravity of 1.7 prepared by I) above and 9 parts by weight of water. ) was adjusted in the same manner.

(ホ)第5層形成用スラリー 前記(ロ)と同様にして第1表からZ r S i 0
4−2Mg0・2A1t Os・531 Q、セラミッ
クス(熱膨張係数3.6 X 10@/’C)を選定し
、前記に)と同じZr810+ 50重量部、合成2M
g0−2AltOn −5SiO,(含量98%)31
kf、を部及びCr1019重量部を、いずれも前記と
同様の微粉末として、前記:)によって調整した比重L
7のHs cro4 濃水溶液26重量部及び水12重
量部とともに前記(イ)と同様にして調整した。
(e) Slurry for forming the fifth layer Z r Si 0 from Table 1 in the same manner as in (b) above
4-2Mg0・2A1t Os・531 Q, select ceramics (thermal expansion coefficient 3.6 x 10@/'C), same as above) Zr810+ 50 parts by weight, synthetic 2M
g0-2AltOn-5SiO, (content 98%) 31
Parts of kf and parts by weight of Cr1019 were both made into the same fine powders as above, and the specific gravity L was adjusted according to the above :).
It was prepared in the same manner as in (a) above with 26 parts by weight of Hs cro4 concentrated aqueous solution of No. 7 and 12 parts by weight of water.

3)セラミック被覆の製造 1)で調整した炭素鋼部材を2)−+1)−(イ)で調
整した第1層形成用スラリーを用いて実施例1−3)と
同様に塗布−乾燥−熱処理を行ない第1層被覆を形成し
、ついで、前記(ロ)、(ハ)、に)、(ホ)で調整し
た各雇用のスラリーを用いて塗布−乾燥−熱処理を順次
各層の上に施行して第2層乃至第5層の被包を形成する
3) Production of ceramic coating The carbon steel member prepared in 1) was coated, dried, and heat treated in the same manner as in Example 1-3) using the slurry for forming the first layer prepared in 2)-+1)-(a). to form a first layer coating, and then coating, drying, and heat treatment were sequentially performed on each layer using the slurries prepared in (B), (C), (C), and (E) above. to form the second to fifth layer encapsulations.

4)試験結果 このようにして得たセラミック被覆の各層の厚さは、第
1層より順に、124,186,1020゜L370.
a900.c+mであり、被覆の全厚サバ、6、Onで
あった。また、実施例1と同様にして試験した結果、見
掛気孔率26.3チ、熱伝導率は0.0025cal/
crIL・SeC・℃、金属部材とセラミックスとの接
合強度及びセラミックスの引張強さは305に9層cm
”以上であツタ。
4) Test results The thickness of each layer of the ceramic coating thus obtained was 124, 186, 1020°L370.
a900. c+m, and the total thickness of the coating was 6, On. Further, as a result of testing in the same manner as in Example 1, the apparent porosity was 26.3 cm, and the thermal conductivity was 0.0025 cal/
crIL・SeC・℃, the bonding strength between the metal member and the ceramics, and the tensile strength of the ceramics are 305 to 9 layers cm
“That’s it for ivy.

実施例 3 (第1.第3の発明に第5の発明の適用例
−1) 実施例1と同様にして第1層被覆を形成した後、2)−
1)によってit!I 整した比重1.7の1(tcr
o4濃水溶液中水溶液中て該溶液を含浸させ第1層被覆
形成と同条件で乾燥及び熱処理を行ない、さらにもう1
回含浸−乾燥−熱処理を行なった。ついで、実施例1と
同様にして第4層まで被覆を形成させた。
Example 3 (Application example of the fifth invention to the first and third invention-1) After forming the first layer coating in the same manner as in Example 1, 2)-
1) by it! I Adjusted specific gravity 1.7 1 (tcr
O4 concentrated aqueous solution is impregnated with the solution, dried and heat treated under the same conditions as for forming the first layer coating, and further coated with another layer.
A double impregnation-drying-heat treatment was performed. Subsequently, coatings up to the fourth layer were formed in the same manner as in Example 1.

得られたセラミック被覆の各層の厚さは、第1層より順
に、137,573,970.L380μmであり、被
膜の全部の厚さは3.06mとなった。又、金属部側と
セラミックスとの接合強度は、304 kg/crn”
であり、見掛気孔率は24.3 %、見掛熱伝導率はα
0027 ”l/an−see ’Cであった。
The thickness of each layer of the obtained ceramic coating, starting from the first layer, was 137,573,970. L was 380 μm, and the total thickness of the coating was 3.06 m. Also, the bonding strength between the metal part side and the ceramics is 304 kg/crn"
The apparent porosity is 24.3% and the apparent thermal conductivity is α
0027 ``l/an-see'C.

適用例−2) 実施例1と同様にして4層にセラミック被覆を形成した
後に、2)−1)によって得た比重1.7の)bcro
i9水溶液中に浸漬して該溶液を含浸させ第1層被株形
成と同条件で乾燥及び熱処理を行ない、さらに4回にわ
たって含浸−乾燥−熱処理を繰返して行なった。
Application example-2) After forming a four-layer ceramic coating in the same manner as in Example 1, bcro with a specific gravity of 1.7 obtained in 2)-1) was
The sample was immersed in i9 aqueous solution to be impregnated with the solution, dried and heat treated under the same conditions as for forming the first layer, and the impregnation-drying-heat treatment was repeated four times.

得られたセラミック被覆の各層の厚さは、第1層より胆
に、140,615.LO90,1490μmであり、
被伊の全部の厚さは、3.3mmであった。実施例1と
同様に試験した結果、鋳鉄部材とセラミックスとの接合
強度は290 kg/cm’でアリ、見掛気孔率は2α
2−1見掛熱伝導率はα0030e町価・SeC・℃で
あった。
The thickness of each layer of the resulting ceramic coating was 140,615 mm thicker than the first layer. LO90, 1490μm,
The total thickness of the coating was 3.3 mm. As a result of testing in the same manner as in Example 1, the bonding strength between the cast iron member and the ceramic was 290 kg/cm', and the apparent porosity was 2α.
2-1 Apparent thermal conductivity was α0030e town price/SeC/°C.

実施例 5 (第2.第4の発明に第5の発明を適用し
た例) 実施例2と同様にして第1層枝根を形成した後、2)−
1)によって調整した比重1.7のkb cro4 ’
1m水齢沿中に浸漬して該溶液を第1層被覆に含浸させ
、第1層被す形成と同条件で乾燥及び熱処理を行なつた
。さらにもう1回含浸−乾燥−熱処理を繰返して行なっ
た。つ、いで実施例2と同様にして第2層乃至第5層被
梳の形成を行ない、第5層被覆を形成した後、比重1.
7の)bcr04濃水溶液の含浸−乾燥−熱処理を第1
N被α上への処理と同様にし′″c8回繰返して施行し
た。
Example 5 (Example where the fifth invention is applied to the second and fourth invention) After forming the first layer branch root in the same manner as in Example 2, 2)-
1) kb cro4' with a specific gravity of 1.7 adjusted by
The first layer coating was impregnated with the solution by immersion in 1 m water, and dried and heat treated under the same conditions as for forming the first layer. The impregnation-drying-heat treatment was repeated one more time. Next, the second to fifth layers were formed in the same manner as in Example 2, and after forming the fifth layer, the specific gravity was 1.
7) Impregnation-drying-heat treatment of bcr04 concentrated aqueous solution first
The treatment was repeated 8 times in the same manner as on N α.

得られたセラミック核種の各層の厚さは、第1層より1
@に、135,340,610,965゜L350μm
であり、被覆の全部の厚さは3.13罪となった。又、
実施例1と同様に試験を行なった結果、見掛気孔率は′
1.3チであり、見掛熱伝導率は0.00358a′/
crIL・8eC・℃であり、金属部材とセラミックス
との接合強度及びセラミックの引張強さは438 kl
l/ca”以上である。さらに、500℃及び常温にそ
れぞれ30分間保持する急熱急冷する試験を50回実施
した結果、亀裂、剥落などの異常が認められず優れた耐
熱衝撃性及び断熱性を有することが認められた。
The thickness of each layer of the obtained ceramic nuclide is 1
@, 135,340,610,965°L350μm
The total thickness of the coating was 3.13. or,
As a result of conducting the same test as in Example 1, the apparent porosity was '
1.3 cm, and the apparent thermal conductivity is 0.00358a'/
crIL・8eC・℃, and the bonding strength between the metal member and the ceramic and the tensile strength of the ceramic are 438 kl.
l/ca" or more.Furthermore, as a result of 50 rapid heating and cooling tests held at 500℃ and room temperature for 30 minutes, no abnormalities such as cracks or peeling were observed, and the product has excellent thermal shock resistance and heat insulation properties. was recognized as having the following.

特許出願人 臼井国際産業株式会社 代理人 押田良久■ 自発手続、補正書 昭和59年1豐、26日 特許庁長官若杉和夫 殿 ■、事件の表示 昭和58年 特 許 願 第230925号2、発明の
名称 金属・セラミックス接合体及びその製造方法4、代理人 郁 正 書 特pf1昭58−230925 1、明細$第7頁河17行、第11WF12行および第
12百第6行re ros J ? rCroom=1
2補正する。
Patent applicant Yoshihisa Oshida, agent for Usui Kokusai Sangyo Co., Ltd. Voluntary procedure, amendment dated 1st 1980, 26th Kazuo Wakasugi, Commissioner of the Japan Patent Office, Indication of the case 1988 Patent Application No. 230925 2, Invention Name: Metal-ceramic bonded body and its manufacturing method 4, Agent Ikumasa Sho Special pf1 1982-230925 1, Details: $7, line 17, WF, line 11, WF, line 12, and 1200, line 6 re ros J? rCroom=1
2 Correct.

2 同第16百第19行「第3」ン「第4」と補正する
う 3゜1rii 第20頁第18行r Cr s OsJ
”x r C’r On」と補正する〇 特許出願人 臼井国際産業株式会社
2 Ibid No. 1600, line 19, amend “3rd” and “4th” 3゜1rii, page 20, line 18 r Cr s OsJ
Correct to "x r C'r On" 〇 Patent applicant Usui Kokusai Sangyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1)得られたセラミックスの熱に張係数が金属部材の熱
Tg帳係数に近似するように、Sin!。 Zr0t e Alt Us + Fe201及びC、
F、からなる群から選ばれた少なくとも1種類の化合物
とcrto、とを成分として調整したセラミックスを金
属部材に積層被覆してなることを特徴とする金属−セラ
ミックス接合体。 2)セラミックスを積層被覆した金践−セラミックス接
合体において、セラミックスの第1層は金和6部材の熱
に張係数に近似する熱膨張係数を有し、順次、上層のセ
ラミックスの熱膨張係数が前層のセラミックスの熱膨張
係数より小さくなるように、b 102 g zro、
 @ Alt On * F e@ 0B g cmF
、 lZr5104.2Mg0 ” 2A50m ” 
58 to、 * S IC及び5isN4からなる訃
から選ばれた少なくとも1種類の化合物とCr、0.と
を成分として調整したセラミックスを金属部材に順次積
層被覆してなることを特徴とする金楓−セラミックス接
合体。 3)得られたセラミックスの熱膨張係数が金属部材の熱
膨張係数に近似するようにSlへ、zrO1+A 11
0n + F @! Osg Crl 0m及びCaF
!からなる群から選ばれた少な(とも1種類の化合物微
粉末と可溶性クロム化合物の濃水溶液とで調整したセラ
ミックスラリ−を金属部材に被覆し熱処理する処理を繰
返し行ないセラミック私層被0を形成せしめることを特
徴とする金属−セラミックス接合体の製造方法。 4)セラミックスttfAffj被覆した金属−セラミ
ックス接合体を製造するに隙し、セラミックスの第1層
は金机部劇の熱膨張係数に近似する熱膨張保iを有し、
順次、上層のセラミックスの熱膨張係数か前l飲のセラ
ミックスの熱膨張係数より小さくなるようにS tow
 e Zr0m e Alv O@ 、 Few Os
 tCrl Os + CILP’t e ZrS 1
04 w 2Mg0 ” 2A110.’ 58101
 +SiC及びsi、N4からなる群から選ばれた少な
くとも1種Mの化合物微粉末と可溶性クロム化合物の濃
水溶液とで調整したセラミックスラリ−な金属部材に竺
嫌し熱処理する処理を順次行ないセラミックスの棺M被
覆を形成せしめることを特徴とする金属−セラミックス
接合体の製造方法。 5)金統部相にセラミック被覆を麹層形成するに屍し、
第1Mのセラミック被覆を形成した後及び/又は最終セ
ラミック被膜形成後に可溶性クロム化合物のシ水溶液を
含浸せしめ熱処理する処理を1回以上繰返して行なうこ
とを特徴とする金属−セラミックス接合体の製造方法。
[Claims] 1) Sin! so that the thermal tensile coefficient of the obtained ceramic approximates the thermal Tg coefficient of the metal member. . Zr0t e Alt Us + Fe201 and C,
A metal-ceramic bonded body, characterized in that a metal member is laminated and coated with a ceramic prepared by using CRTO and at least one compound selected from the group consisting of F. 2) In a metal-ceramic bonded body in which ceramics are laminated and coated, the first layer of ceramics has a coefficient of thermal expansion that approximates the thermal tensile coefficient of the Kinwa 6 member, and the coefficient of thermal expansion of the ceramics in the upper layer gradually increases. b 102 g zro, so that the coefficient of thermal expansion is smaller than that of the ceramic of the previous layer.
@Alt On * Fe @ 0B g cmF
, lZr5104.2Mg0 "2A50m"
At least one compound selected from the group consisting of 58 to, *SIC and 5isN4, Cr, 0. What is claimed is: 1. A gold maple-ceramic bonded body, characterized in that a metal member is sequentially laminated and coated with a ceramic prepared by using the following ingredients: 3) Add zrO1+A 11 to Sl so that the coefficient of thermal expansion of the obtained ceramic approximates the coefficient of thermal expansion of the metal member.
0n + F @! Osg Crl 0m and CaF
! A ceramic private layer is formed by coating a metal member with a ceramic slurry prepared from a small amount of fine powder of one type of compound and a concentrated aqueous solution of a soluble chromium compound selected from the group consisting of A method for manufacturing a metal-ceramic bonded body, characterized by: 4) In manufacturing a metal-ceramic bonded body coated with a ceramic ttfAffj, the first layer of ceramic has a thermal expansion coefficient close to that of a metal-ceramic bond. has expansion retention i,
Sequentially, the thermal expansion coefficient of the upper layer ceramic is smaller than the thermal expansion coefficient of the previous layer ceramic.
e Zr0m e Alv O@, Few Os
tCrl Os + CILP't e ZrS 1
04 w 2Mg0 ” 2A110.' 58101
+Ceramic slurry prepared with a fine powder of at least one M compound selected from the group consisting of SiC, Si, and N4 and a concentrated aqueous solution of a soluble chromium compound.A ceramic coffin is produced by sequentially subjecting a metal member to a grinding process and heat treatment. A method for manufacturing a metal-ceramic bonded body, comprising forming an M coating. 5) A ceramic coating is applied to the metal layer to form a koji layer,
A method for producing a metal-ceramic bonded body, characterized in that after forming the first M ceramic coating and/or after forming the final ceramic coating, impregnation with an aqueous solution of a soluble chromium compound and heat treatment are performed one or more times.
JP23092583A 1983-12-07 1983-12-07 Metal-ceramic joined body and manufacture thereof Granted JPS60125375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23092583A JPS60125375A (en) 1983-12-07 1983-12-07 Metal-ceramic joined body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23092583A JPS60125375A (en) 1983-12-07 1983-12-07 Metal-ceramic joined body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60125375A true JPS60125375A (en) 1985-07-04
JPH0250994B2 JPH0250994B2 (en) 1990-11-06

Family

ID=16915428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23092583A Granted JPS60125375A (en) 1983-12-07 1983-12-07 Metal-ceramic joined body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60125375A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253443A (en) * 1985-08-28 1987-03-09 株式会社東芝 Sub-nozzle of fluid jet type loom
JPS6357780A (en) * 1986-08-26 1988-03-12 Usui Internatl Ind Co Ltd Production of metallic carrier for exhaust gas cleaning converter
JPS63235481A (en) * 1987-03-06 1988-09-30 ワツカー‐ケミー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of protective film based on silicon carbide
US5360634A (en) * 1988-12-05 1994-11-01 Adiabatics, Inc. Composition and methods for densifying refractory oxide coatings
WO2008117665A1 (en) * 2007-03-27 2008-10-02 Central Research Institute Of Electric Power Industry Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion, and method of repairing heat-transfer tube
JP2011036913A (en) * 2009-08-13 2011-02-24 Shenzhen Futaihong Precision Industrial Co Ltd Metallic mold for high-temperature molding and method for manufacturing the same
JP2011149430A (en) * 2010-01-20 2011-08-04 J Eberspecher Gmbh & Co Kg Tube body and exhaust gas system
CN109181368A (en) * 2018-11-14 2019-01-11 长沙理工大学 A kind of ceramic pigment and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162342A (en) * 1983-03-08 1984-09-13 Izumi Jidosha Kogyo Kk Processing method of cylinder or cylinder liner and its surface for internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162342A (en) * 1983-03-08 1984-09-13 Izumi Jidosha Kogyo Kk Processing method of cylinder or cylinder liner and its surface for internal-combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253443A (en) * 1985-08-28 1987-03-09 株式会社東芝 Sub-nozzle of fluid jet type loom
JPS6357780A (en) * 1986-08-26 1988-03-12 Usui Internatl Ind Co Ltd Production of metallic carrier for exhaust gas cleaning converter
JPS63235481A (en) * 1987-03-06 1988-09-30 ワツカー‐ケミー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Production of protective film based on silicon carbide
US5360634A (en) * 1988-12-05 1994-11-01 Adiabatics, Inc. Composition and methods for densifying refractory oxide coatings
WO2008117665A1 (en) * 2007-03-27 2008-10-02 Central Research Institute Of Electric Power Industry Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion, and method of repairing heat-transfer tube
JP5110608B2 (en) * 2007-03-27 2012-12-26 一般財団法人電力中央研究所 Sulfide corrosion prevention method, sulfide corrosion resistant high temperature member and heat transfer tube repair method
JP2011036913A (en) * 2009-08-13 2011-02-24 Shenzhen Futaihong Precision Industrial Co Ltd Metallic mold for high-temperature molding and method for manufacturing the same
JP2011149430A (en) * 2010-01-20 2011-08-04 J Eberspecher Gmbh & Co Kg Tube body and exhaust gas system
CN109181368A (en) * 2018-11-14 2019-01-11 长沙理工大学 A kind of ceramic pigment and preparation method thereof
CN109181368B (en) * 2018-11-14 2020-10-20 长沙理工大学 Ceramic pigment and preparation method thereof

Also Published As

Publication number Publication date
JPH0250994B2 (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US4615913A (en) Multilayered chromium oxide bonded, hardened and densified coatings and method of making same
JPH06287092A (en) Method of coating ceramic composite material and its article
CN103692721B (en) A kind of wear-resistant thermal-shock-resistcomposite composite material and preparation method thereof
US4975314A (en) Ceramic coating bonded to metal member
JPS60125375A (en) Metal-ceramic joined body and manufacture thereof
US4882109A (en) Process of preparing zirconia-coated silicon nitride sintered member
JPS59205480A (en) Method for reinforcing ceramic plasma spraying coating layer for heat insulating engine parts
CN114605915A (en) Heat-resistant ceramic coating, surface coating and preparation method
JPS6232275B2 (en)
CN108707897B (en) Ceramic coating of exhaust pipe and preparation method thereof
JPH08501266A (en) Ceramic composites used especially at temperatures above 1400 ° C
Liu et al. Thermal properties and microstructure of a plasma sprayed wollastonite coating
JPS6033361A (en) Preparation of ceramic-metal bonded body
JPS6187859A (en) Formation of sprayed film
JPH04143262A (en) Ceramic coated heat resistant member
CN111574209A (en) Self-lubricating ceramic cutter with self-repairing capability and preparation method, repairing method and application thereof
JPS6126781A (en) Heat resisting laminated body and its manufacture
JPS646274B2 (en)
JPH0152354B2 (en)
JPS6111908B2 (en)
JPS59131586A (en) Bonded body of aluminum or aluminum alloy member and ceramicmember and bonding method
JPS621817B2 (en)
JPH0380172A (en) Coated carbon fiber reinforced composite material
JP3039269B2 (en) Method of forming thermal insulation film
JP2585548B2 (en) Hermetic ceramic coating and method for producing the same