JPH0152354B2 - - Google Patents

Info

Publication number
JPH0152354B2
JPH0152354B2 JP58030514A JP3051483A JPH0152354B2 JP H0152354 B2 JPH0152354 B2 JP H0152354B2 JP 58030514 A JP58030514 A JP 58030514A JP 3051483 A JP3051483 A JP 3051483A JP H0152354 B2 JPH0152354 B2 JP H0152354B2
Authority
JP
Japan
Prior art keywords
metal
chromium compound
ceramic member
felt
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58030514A
Other languages
Japanese (ja)
Other versions
JPS59156976A (en
Inventor
Masayoshi Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP3051483A priority Critical patent/JPS59156976A/en
Publication of JPS59156976A publication Critical patent/JPS59156976A/en
Publication of JPH0152354B2 publication Critical patent/JPH0152354B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明はガスタービン、電磁流体発電、デイー
ゼルエンジン、ガソリンエンジン又はガスバーナ
ーカン等の高温ガス流の通路等に使用される金属
部材に耐熱性、断熱性、耐摩耗性等を賦与するた
めのセラミツク部材との接合体及びその結合方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides heat resistance, heat insulation, and abrasion resistance for metal members used in high-temperature gas flow passages in gas turbines, magnetohydrodynamic power generation, diesel engines, gasoline engines, gas burner cans, etc. The present invention relates to a bonded body with a ceramic member for imparting the same, and a method for bonding the same.

従来、デイーゼルエンジンのシリンダーライナ
ーとして高温焼結されたZrO2セラミツクスやプ
ラズマコーテング等が試用されているが、製造コ
ストが極めて高いこと、一方、ピストン頂部にお
いてFCやセラミツクスの嵌合、かしめ、ボルト
締めなどが提案されているが、稼動時の亀裂や剥
落等の損傷があり、信頼性やコストの点で問題が
あり、未だ実用化に至つていないのが現状であ
る。
Hitherto, high-temperature sintered ZrO 2 ceramics and plasma coating have been used as cylinder liners for diesel engines, but manufacturing costs are extremely high.On the other hand, it is difficult to fit, caulk, and bolt the FC and ceramics at the top of the piston. Although such methods have been proposed, they suffer from damage such as cracks and peeling during operation, and have problems in terms of reliability and cost, so they have not yet been put into practical use.

本発明は、このような従来の問題点を除去する
ため、耐熱性、断熱性、耐摩耗性のすぐれたセラ
ミツク部材と熱膨張差の比較的大きい金属部材と
の接合において、両部材間にクロム化合物により
繊維を強化した弾力性及び可撓性を有する繊維構
造からなる中間層を介在せしめ、可溶性クロム化
合物の濃溶液からなる接合剤により各部材を相互
に接合し、比較的低温度において熱処理すること
で接合部を結合するようにしたものであり、非常
に広範な材質の選択ができるセラミツク部材と金
属部材との接合体を安価に提供せんとするもので
ある。以下本発明の一実施例を図面により詳細に
説明する。
In order to eliminate these conventional problems, the present invention has been developed by using chromium between the ceramic members, which have excellent heat resistance, heat insulation, and abrasion resistance, and the metal members, which have a relatively large difference in thermal expansion, when joining them together. An intermediate layer consisting of a fiber structure with elasticity and flexibility reinforced with a compound is interposed, each member is bonded to each other with a bonding agent made of a concentrated solution of a soluble chromium compound, and heat treated at a relatively low temperature. The purpose is to provide a joined body of a ceramic member and a metal member at a low cost, which allows a very wide range of materials to be selected. An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明接合体の一実施例を示す断面図
である。図に示すようにセラミツク部材1と金属
部材2との間にクロム化合物の処理により強化さ
れた弾力性及び可撓性を有する繊維構造からなる
フエルト部材3を介在せしめ、セラミツク部材
1、フエルト部材3及び金属部材2の夫々の接合
面に接合剤4としてクロム化合物溶液又は少量の
金属酸化物を含有するクロム化合物の溶液を塗布
して各部材を重ね合せ、好ましくは460℃以上の
温度において熱処理し、クロム化合物のCr2O3
換により、セラミツク部材1と金属部材2とを繊
維構造フエルト3を介して前記クロム化合物系に
よる接合剤4により接合する。
FIG. 1 is a sectional view showing an embodiment of the joined body of the present invention. As shown in the figure, a felt member 3 made of a fiber structure having elasticity and flexibility reinforced by treatment with a chromium compound is interposed between a ceramic member 1 and a metal member 2. A chromium compound solution or a chromium compound solution containing a small amount of metal oxide is applied as a bonding agent 4 to each bonding surface of the metal members 2, and the members are stacked together, and then heat treated preferably at a temperature of 460° C. or higher. By converting the chromium compound into Cr 2 O 3 , the ceramic member 1 and the metal member 2 are bonded via the fiber structure felt 3 with the bonding agent 4 based on the chromium compound.

なお、本発明において用いられるセラミツク部
材1の材質は耐熱性、断熱性、耐摩耗性、熱衝撃
抵抗性及び靭性等、特に重要な性能により選定す
べきであるが、例えば通常Al2O3、3Al2O3
2SiO2(ムライト)、2MgO・2Al2O3・5SiO2(コー
ジライト)、MgAl2O4(スピネル)、2MgO・SiO2
(ホルステライト)、ZrO2、ZrO2・SiO2(ジルコ
ン)、Ca(Sr)ZrO3、MgO・ZrO2、MgO及びガ
ラスセラミツクスなどの酸化物、SiC及びSi3N4
等の1種又は1種以上の複合系を用い、熱膨脹係
数に制限されない。
The material of the ceramic member 1 used in the present invention should be selected depending on particularly important properties such as heat resistance, heat insulation, abrasion resistance, thermal shock resistance, and toughness. For example, Al 2 O 3 , 3Al 2 O 3
2SiO 2 (mullite), 2MgO・2Al 2 O 3・5SiO 2 (cordierite), MgAl 2 O 4 (spinel), 2MgO・SiO 2
(forsterite), ZrO 2 , ZrO 2・SiO 2 (zircon), Ca (Sr) ZrO 3 , MgO ・ZrO 2 , MgO and oxides such as glass ceramics, SiC and Si 3 N 4
One type or one or more types of composite systems are used, without being limited by the coefficient of thermal expansion.

これらセラミツク部材1は原料粉末の成形体又
はその仮焼体を可溶性クロム化合物の濃水溶液、
例えばH2CrO4、ZnCrO4+H2CrO4及びMgCrO4
+H2CrO4などを含浸及び熱処理により結合・硬
化してセラミツクスを強化したもの及び高温焼結
体を用いる。また、熱衝撃抵抗性や耐熱性を高め
るため、材質にもよるが、一般に気孔率10〜18%
であること、又中間層としてのフエルト部材3と
の接合面は接合剤4との接触面積が大きくなるよ
うに粗面化されていることが好ましい。
These ceramic members 1 are made by converting a molded body of raw material powder or a calcined body thereof into a concentrated aqueous solution of a soluble chromium compound.
For example H 2 CrO 4 , ZnCrO 4 + H 2 CrO 4 and MgCrO 4
Ceramics strengthened by impregnation with +H 2 CrO 4 and the like and bonded and hardened by heat treatment and high-temperature sintered bodies are used. In addition, to increase thermal shock resistance and heat resistance, the porosity is generally 10 to 18%, depending on the material.
It is also preferable that the bonding surface with the felt member 3 as the intermediate layer is roughened so that the contact area with the bonding agent 4 is increased.

次に、金属部材2は設備、機器の構造部材とし
て一般に使用される鉄系合金及び非鉄系合金、例
えば炭素鋼、ステンレス鋼、ニツケル鋼、クロム
鋼、ニツケル・クロム合金、インコネル、ハステ
ロイ、アルミニウム合金、銅系合金などを用い、
その材質は接合品のセラミツクス部材1の表面温
度、金属部材2の温度、使用箇所の熱流速や各部
材の熱伝導率などの熱的条件及び構造物の構成等
により選定されるべきものであり一定しない。し
かし金属部材2が炭素鋼、アルミニウム合金及び
銅系合金などであり、これらと繊維構造フエルト
3とを接合するとき、クロム化合物系接合剤4を
用いる場合、より良好な接合を得るには部材2の
接合面に予めニツケル又はクロム鍍金を施すこと
が好ましく、又アルミニウム合金ではこの鍍金の
代りに陽極酸化被膜を施しても好結果が得られ
る。
Next, the metal member 2 is made of ferrous alloys and non-ferrous alloys commonly used as structural members of equipment and equipment, such as carbon steel, stainless steel, nickel steel, chrome steel, nickel-chromium alloy, Inconel, Hastelloy, and aluminum alloy. , using copper-based alloys, etc.
The material should be selected based on thermal conditions such as the surface temperature of the ceramic member 1 of the joined product, the temperature of the metal member 2, the heat flow velocity at the point of use, and the thermal conductivity of each member, and the structure of the structure. Not constant. However, when the metal member 2 is made of carbon steel, aluminum alloy, copper-based alloy, etc., and a chromium compound-based bonding agent 4 is used when joining these to the fiber structure felt 3, in order to obtain a better bond, the member 2 It is preferable to apply nickel or chromium plating to the joint surfaces in advance, and in the case of aluminum alloys, good results can also be obtained by applying an anodic oxide coating instead of this plating.

また、セラミツク部材1と金属部材2との間に
介在せしめる繊維構造フエルト部材3,3′は両
部材1,2の熱膨張差による熱歪を緩和するため
に敷設される中間層であり、金属質又は非金属無
機質及びこれらの複合系の繊維構造からなるフエ
ルトであり、例えばステンレススチール繊維、ニ
ツケルクロム繊維、インコネル繊維、ハステロイ
繊維、アルミナ繊維、炭化珪素繊維、窒化珪素繊
維、ガラス繊維、銅ニツケル被覆炭素繊維、ガラ
ス被覆金属繊維などで、フイラメント直径5〜
200μmから加工されたフエルト、マツト、ウエ
ブであり、弾力性、可撓性及び線径等によりフエ
ルトのカサ密度は一定しないが、通常20〜70%を
有するものを可溶性クロム化合物の濃水溶液に浸
漬して繊維を被覆し、余分に付着した液を遠心分
離機を用いて除去した後、460℃以上の温度にお
いて加熱処理を行う。この溶液への浸漬及び熱処
理を2〜4回、反復操作することにより繊維が交
叉・接触している箇所は、この点に付着した溶液
の加熱によるCr2O3への変換に伴う化学結合によ
り硬化し、繊維の強化が行われる。
Further, the fiber structure felt members 3, 3' interposed between the ceramic member 1 and the metal member 2 are intermediate layers laid to alleviate thermal strain due to the difference in thermal expansion between the two members 1, 2. It is a felt consisting of a fiber structure of a synthetic or non-metallic inorganic material and a composite system thereof, such as stainless steel fiber, nickel chrome fiber, Inconel fiber, Hastelloy fiber, alumina fiber, silicon carbide fiber, silicon nitride fiber, glass fiber, copper nickel fiber, etc. Coated carbon fiber, glass-coated metal fiber, etc., filament diameter 5~
Felt, mat, and web are processed from 200μm.The bulk density of felt varies depending on elasticity, flexibility, wire diameter, etc., but it usually has a bulk density of 20 to 70% and is immersed in a concentrated aqueous solution of a soluble chromium compound. After the excess liquid is removed using a centrifuge, heat treatment is performed at a temperature of 460°C or higher. By repeating immersion in this solution and heat treatment 2 to 4 times, the points where the fibers intersect and contact are bonded due to chemical bonding caused by conversion to Cr 2 O 3 by heating the solution attached to these points. It hardens and strengthens the fibers.

さらに接合剤4としての可溶性クロム化合物の
濃溶液はZnO又はMgO及びこの両者をH2CrO4
濃水溶液に溶解したものを用い、ZnO又はMgO
及びMgO+ZnO等の溶解させる量はH2CrO4中の
CrO31モルに対し、0.15〜0.5モルの割合とし、水
溶液の比重は1.2〜1.5が適当である。
Further, as the concentrated solution of the soluble chromium compound as the bonding agent 4, ZnO or MgO or a solution of both dissolved in a concentrated aqueous solution of H 2 CrO 4 is used.
The amount of dissolved MgO + ZnO etc. in H 2 CrO 4
The appropriate proportion is 0.15 to 0.5 mol per 1 mol of CrO 3 , and the specific gravity of the aqueous solution is 1.2 to 1.5.

また、各部材の接合剤4の調製には可溶性クロ
ム化合物の濃水溶液又はこの溶液にZrO2、TiO2
SiO2、Al2O3、Cr2O3、Fe2O3、MgAl2O4などの
金属酸化物の44μm以下、好ましくは20μm以下
の微粉末の1種又は1種以上を少量、好ましくは
濃液に対し合量で4〜10重量%を添加し、ボール
ミルを用い粉砕、混合した水スラリーを調製す
る。可溶性クロム化合物の濃水溶液としてはZnO
又はMgO及びこれの混合物を少量、例えばクロ
ム酸溶液中のCrO31モルに対し0.15〜0.5モルの酸
化物を溶解せしめ比重1.65〜1.7に調製したもの
である。
In addition, to prepare the bonding agent 4 for each member, a concentrated aqueous solution of a soluble chromium compound or ZrO 2 , TiO 2 ,
A small amount, preferably one or more of one or more fine powders of metal oxides such as SiO 2 , Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , MgAl 2 O 4 with a size of 44 μm or less, preferably 20 μm or less A total of 4 to 10% by weight of the concentrated liquid is added, ground and mixed using a ball mill to prepare an aqueous slurry. ZnO as a concentrated aqueous solution of soluble chromium compounds
Alternatively, a small amount of MgO or a mixture thereof, for example, 0.15 to 0.5 mol of oxide per 1 mol of CrO 3 in a chromic acid solution is dissolved to give a specific gravity of 1.65 to 1.7.

次に、接合体の製造工程について述べる。 Next, the manufacturing process of the joined body will be described.

第1図に示す各部材の接合にクロム化合物系接
着剤4を用いて接合体を製造する工程において
(勿論、中間層とする繊維構造フエルト部材3は
クロム化合物により予め強化されている)、相互
に接合すべき面の少なくとも何れか一方の面、好
ましくは相対する両面に可溶性クロム化合物の濃
水溶液又は少量の酸化物粉末を含有したクロム化
合物のスラリーからなる接合剤を塗布し、次に、
この各部材を重ね合せ、好ましくは460℃以上に、
3.5℃/minの速度で温度をあげ熱処理を行う。
熱処理温度及び雰囲気は各部材の材質により一定
しないが、例えば繊維構造フエルトがニツケル被
覆した炭素繊維であるときや銅合金基体などにお
いては400℃以上の温度は不活性又は還元性雰囲
気において、又アルミニウム合金基体であるとき
は450〜500℃を最高処理温度にすることが適当で
ある。
In the process of manufacturing a bonded body using a chromium compound adhesive 4 to bond each member shown in FIG. A bonding agent consisting of a concentrated aqueous solution of a soluble chromium compound or a slurry of a chromium compound containing a small amount of oxide powder is applied to at least one of the surfaces to be bonded, preferably to both opposing surfaces;
Layer these parts together, preferably at a temperature of 460°C or higher,
Heat treatment is performed by raising the temperature at a rate of 3.5°C/min.
The heat treatment temperature and atmosphere vary depending on the material of each member, but for example, when the fiber structure felt is nickel-coated carbon fiber or when the copper alloy base is used, a temperature of 400°C or higher may be applied in an inert or reducing atmosphere, or when aluminum is used. When the substrate is an alloy, it is appropriate to set the maximum treatment temperature to 450 to 500°C.

このようにして製造された接合体は中間層とし
て弾力性及び可撓性を有する繊維構造フエルトが
介在するためセラミツク部材と金属部材との熱膨
張差に制限されることがなく、各材質を広範囲の
自由度をもつて選択することが可能となり、ガス
タービン、電磁流体発電、デイーゼルエンジン、
ガソリンエンジン及び高温ガスバーナー等の高温
ガス流路壁、ライナー、ピストンなどの断熱、耐
熱、耐摩耗性構造部材に使用して大きな効果をあ
げることができる。
Since the bonded body manufactured in this way has a fiber structure felt having elasticity and flexibility as an intermediate layer, it is not limited by the difference in thermal expansion between the ceramic member and the metal member, and each material can be used over a wide range. It is now possible to select with a degree of freedom, including gas turbines, magnetohydrodynamic power generation, diesel engines,
It can be used to great effect in heat-insulating, heat-resistant, and wear-resistant structural members such as high-temperature gas passage walls, liners, and pistons in gasoline engines and high-temperature gas burners.

実施例 1 (1) セラミツク部材として SiC(α型) 44μm以下の微粉末25重量部 Si3N4(α+β型)
44μm以下の微粉末25重量部 3Al2O3・2SiO2
20μmの以下の微粉末50重量部 の配合物をアルミナ質ボールミルを用いて粉
砕・混合し、この乾燥物に比重1.65のH2CrO4
濃水溶液を粉末に対し約13重量%加えてよく混
和し、この湿潤した粉末を金型に詰め、300
Kg/cm2で加圧成形した。この成形物を電気炉に
おいて3.5℃/minの速度で加熱し、最高700℃
において40min保持した。この硬化体をさらに
上記H2CrO4溶液に浸漬し、液を含浸させ、上
記と同様に700℃において熱処理を行い、この
含浸及び熱処理を8回反復操作して外径50mm、
肉厚5mmの円筒形セラミツクスを調製した。こ
のようにして得られた部材の見掛気孔率は9.3
%であり、硬度ロツクウエル15−N93.5を示し
た。
Example 1 (1) SiC (α type) as a ceramic member 25 parts by weight of fine powder of 44 μm or less Si 3 N 4 (α + β type)
25 parts by weight of fine powder of 44 μm or less 3Al 2 O 3・2SiO 2
A blend of 50 parts by weight of fine powder with a diameter of 20 μm or less was ground and mixed using an alumina ball mill, and this dried product was mixed with H 2 CrO 4 with a specific gravity of 1.65.
Add about 13% by weight of a concentrated aqueous solution to the powder, mix well, pack this wet powder into a mold, and
Pressure molded at Kg/ cm2 . This molded product is heated at a rate of 3.5°C/min in an electric furnace to a maximum temperature of 700°C.
The temperature was maintained for 40 min. This hardened body was further immersed in the above H 2 CrO 4 solution to impregnate it, and heat treated at 700°C in the same manner as above, and this impregnation and heat treatment were repeated 8 times to obtain an outer diameter of 50 mm.
Cylindrical ceramics with a wall thickness of 5 mm were prepared. The apparent porosity of the member thus obtained was 9.3.
% and showed a hardness of Rockwell 15-N93.5.

(2) 繊維構造部材(中間層) ニツケル被覆した炭素繊維(フイラメント直
径10μm、3000本集合体)及び高珪素塩質ガラ
ス繊維(フイラメント直径10μm、1000本集合
体)容積比約50/50の複合組成からなる内径50
mm、長さ50mm、肉厚3.5mmの円筒形フエルトを
CrO3100gを溶解して作つたH2CrO4の濃水溶
液にZnO17gを溶解して比重1.4の水溶液を調
製し、この溶液にフエルトを浸漬して濡らし、
これを遠心分離器にかけて繊維間に余分に付着
している液を除去した後、この処理物を電気炉
により5℃/minで温度を上昇し、400℃以上
はN2ガス雰囲気下において最高500℃に40min
加熱処理を行い、さらにこの液の浸漬及び熱処
理を3回反復操作した。この処理により各繊維
の相互に交叉する接触点は付着した溶液の
Cr2O3への変換・結合により著しく強化された
非金属無機繊維構造のフエルトが形成され、カ
サ密度は約50%であり、相当の弾力性を有して
いた。
(2) Fiber structural member (intermediate layer) Composite of nickel-coated carbon fiber (filament diameter 10 μm, aggregate of 3000 fibers) and high silicon salt glass fiber (filament diameter 10 μm, aggregate of 1000 fibers) with a volume ratio of approximately 50/50 Inner diameter consisting of composition 50
mm, length 50mm, wall thickness 3.5mm cylindrical felt
Dissolve 17 g of ZnO in a concentrated aqueous solution of H 2 CrO 4 made by dissolving 100 g of CrO 3 to prepare an aqueous solution with a specific gravity of 1.4, and wet the felt by immersing it in this solution.
After applying this to a centrifuge to remove excess liquid adhering between the fibers, the treated material is heated at a rate of 5°C/min in an electric furnace. ℃40min
Heat treatment was performed, and further, immersion in this liquid and heat treatment were repeated three times. Through this treatment, the contact points of each fiber that intersect with each other are exposed to the adhering solution.
By converting and bonding to Cr 2 O 3 , a significantly strengthened felt with a non-metallic inorganic fiber structure was formed, with a bulk density of about 50% and considerable elasticity.

(3) 金属部材 アルミニウム合金鋳物(JIS AC−4C相当
品)を内径57.3mm、長さ50mm、肉厚8mmの円筒
に加工し、これの接合すべき内面にH2SO4
解液を用いて陽極酸化被覆、膜厚45μmを施し
た。
(3) Metal parts Aluminum alloy castings (JIS AC-4C equivalent) were processed into cylinders with an inner diameter of 57.3 mm, a length of 50 mm, and a wall thickness of 8 mm, and H 2 SO 4 electrolyte was used on the inner surface to be joined. Anodized coating was applied to a film thickness of 45 μm.

(4) 接合剤の調製 先ず、CrO3、200grを水に溶解し、
H2CrO4の濃水溶液を作り、これにZnO17g及
びMgO8gを溶解し、水を加えて比重1.65に
し、さらにこの液にAl2O3及びSiO2の10μm以
下の粉末を溶液に対し約3.5重量%ずつを加え、
アルミナ質ボールミルを用いて24hr粉砕・混合
して接着剤を調製した。
(4) Preparation of binder First, dissolve 200g of CrO 3 in water,
Make a concentrated aqueous solution of H 2 CrO 4 , dissolve 17 g of ZnO and 8 g of MgO in it, add water to make the specific gravity 1.65, and add powders of Al 2 O 3 and SiO 2 of 10 μm or less to this solution by about 3.5 weight per solution. Add % increments,
An adhesive was prepared by grinding and mixing for 24 hours using an alumina ball mill.

(5) 接合手順 (1)〜(3)記載の各部材の接合すべき面に(4)の接
合剤をよく塗布した後、夫々を重ね合せ、これ
を3.5℃/minの割合で温度をあげ、最高500℃
において40min保持し、セラミツク部材と金属
部材の接合体を製造した。
(5) Bonding procedure After thoroughly applying the bonding agent in (4) to the surfaces of each member described in (1) to (3) to be bonded, stack them one on top of the other and heat them at a rate of 3.5℃/min. Fried, maximum 500℃
The temperature was maintained for 40 minutes to produce a joined body of the ceramic member and the metal member.

この円筒形接合体について、500℃、1hr加熱
(電気炉)常温1hr(空冷)、10サイクルの急熱急
冷試験を行つた。
This cylindrical joined body was subjected to a rapid heating and cooling test at 500°C for 1 hour (electric furnace) and room temperature for 1 hour (air cooling) for 10 cycles.

試験後、この試料を切断し、セラミツクス部材
の亀裂、剥離について検査した結果、異常は認め
られなかつた。
After the test, this sample was cut and inspected for cracks and peeling of the ceramic member, and no abnormalities were found.

このように本発明は高温に晒される金属構造部
材の耐熱性、断熱性及び耐摩耗の賦与に極めて有
用な部材が提供でき、製造費も低廉であるため工
業的製造方法として好適である。
As described above, the present invention can provide a member that is extremely useful for imparting heat resistance, heat insulation, and wear resistance to metal structural members exposed to high temperatures, and the manufacturing cost is low, so it is suitable as an industrial manufacturing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明接合体の一実施例を示す断面図
である。 1……セラミツク部材、2……金属部材、3…
…繊維構造フエルト部材(中間層)、4……接合
剤。
FIG. 1 is a sectional view showing an embodiment of the joined body of the present invention. 1...Ceramic member, 2...Metal member, 3...
...Fiber structure felt member (middle layer), 4...Binding agent.

Claims (1)

【特許請求の範囲】 1 金属部材とセラミツク部材との間に、予めク
ロム化合物により強化された弾力性及び可撓性を
有する金属質或いは非金属無機質又はこれら複合
体の繊維構造からなるフエルト部材を敷設介在せ
しめ、かつこれらそれぞれの接合面を金属酸化物
の1種以上を含有するクロム化合物によつて相互
に一体結合せしめたことを特徴とする金属部材と
セラミツク部材との結合体。 2 予め可溶性クロム化合物の濃溶液に浸漬して
表面に、その濃溶液の被覆層を有する弾力性及び
可撓性を有する金属質或いは非金属無機質又はこ
れら複合体の繊維構造からなるフエルト部材を、
熱処理して繊維の強化処理を行わしめ、しかる後
にその両側の接合面若しくは、金属部材側及びセ
ラミツク部材側のそれぞれの接合面に、金属酸化
物の1種以上を含有する可溶性クロム化合物の濃
溶液を塗布してフエルト部材を前記金属部材とセ
ラミツク部材との間に敷設介在せしめ、更にこの
状態で熱処理することにより前記濃溶液のCr2O3
への変換による硬化層を介して相互の接合面を一
体に結合せしめたことを特徴とする金属部材とセ
ラミツク部材との結合方法。
[Scope of Claims] 1. A felt member made of a fiber structure of a metallic or non-metallic inorganic material or a composite thereof, which has elasticity and flexibility and has been reinforced with a chromium compound, is placed between the metal member and the ceramic member. 1. A combination of a metal member and a ceramic member, characterized in that the metal member and the ceramic member are interposed and their joint surfaces are integrally bonded to each other by a chromium compound containing one or more metal oxides. 2. A felt member made of a fiber structure of an elastic and flexible metallic or non-metallic inorganic material or a composite thereof, which has been pre-immersed in a concentrated solution of a soluble chromium compound and has a coating layer of the concentrated solution on the surface.
The fibers are strengthened by heat treatment, and then a concentrated solution of a soluble chromium compound containing one or more metal oxides is applied to the joint surfaces on both sides or the joint surfaces on the metal member side and the ceramic member side. The felt member is interposed between the metal member and the ceramic member by applying Cr 2 O 3 in the concentrated solution, and then heat-treated in this state.
A method for joining a metal member and a ceramic member, characterized in that the mutual joining surfaces are integrally joined through a hardened layer formed by conversion into a ceramic member.
JP3051483A 1983-02-25 1983-02-25 Metal member-ceramic member bonded body and method therefor Granted JPS59156976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051483A JPS59156976A (en) 1983-02-25 1983-02-25 Metal member-ceramic member bonded body and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051483A JPS59156976A (en) 1983-02-25 1983-02-25 Metal member-ceramic member bonded body and method therefor

Publications (2)

Publication Number Publication Date
JPS59156976A JPS59156976A (en) 1984-09-06
JPH0152354B2 true JPH0152354B2 (en) 1989-11-08

Family

ID=12305913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051483A Granted JPS59156976A (en) 1983-02-25 1983-02-25 Metal member-ceramic member bonded body and method therefor

Country Status (1)

Country Link
JP (1) JPS59156976A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725595B2 (en) * 1985-12-17 1995-03-22 株式会社東芝 How to join ceramics
FR2894500B1 (en) * 2005-12-08 2009-07-10 Snecma Sa BRAZING ASSEMBLY OF A METAL PIECE WITH A PIECE OF CERAMIC MATERIAL
JP6716296B2 (en) * 2016-03-11 2020-07-01 日本特殊陶業株式会社 Porous composite material
KR20220124252A (en) * 2020-08-21 2022-09-13 니뽄 도쿠슈 도교 가부시키가이샤 Bonding Body, Retaining Device, and Electrostatic Chuck

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155077A (en) * 1980-04-16 1981-12-01 Mtu Muenchen Gmbh Metal-ceramic member and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155077A (en) * 1980-04-16 1981-12-01 Mtu Muenchen Gmbh Metal-ceramic member and its manufacture

Also Published As

Publication number Publication date
JPS59156976A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
JPS60235778A (en) Ceramic structure and manufacture
US4559270A (en) Oxidation prohibitive coatings for carbonaceous articles
US4598054A (en) Ceramic material for a honeycomb structure
JPS58135181A (en) Manufacture of porous ceramic seal
US5665463A (en) Fibrous composites including monazites and xenotimes
JPH0573713B2 (en)
US4810677A (en) Heat-insulating lining for a gas turbine
US4975314A (en) Ceramic coating bonded to metal member
JPS5884189A (en) Composite member
JPH01500331A (en) Method for spraying a fire-resistant layer onto a surface and the coating layer produced thereby
CA1053996A (en) Chromium oxide densification, hardening and strengthening of formed bodies and coatings having interconnected porosity
JPH0365847B2 (en)
JP2001505519A (en) Refractory composites protected from oxidation at high temperatures, precursors of the above materials, their production
JPH0152354B2 (en)
JPH0250994B2 (en)
JP3948579B2 (en) Inorganic fiber block and furnace
JPH08501266A (en) Ceramic composites used especially at temperatures above 1400 ° C
JPS5851913B2 (en) Manufacturing method for fiber-reinforced ceramics
JPH0458433B2 (en)
JPS6126781A (en) Heat resisting laminated body and its manufacture
JPS60155677A (en) High-temperature heat insulating structural body
JPS62221445A (en) Coating composition for combustion catalyst
CA2135061C (en) A ceramic composite, particularly for use at temperatures above 1400.degre.c
JPS583999B2 (en) Method for manufacturing composite material consisting of ceramics and metal
JPH0892719A (en) Refractory coating structural body