JPS583999B2 - Method for manufacturing composite material consisting of ceramics and metal - Google Patents

Method for manufacturing composite material consisting of ceramics and metal

Info

Publication number
JPS583999B2
JPS583999B2 JP13547779A JP13547779A JPS583999B2 JP S583999 B2 JPS583999 B2 JP S583999B2 JP 13547779 A JP13547779 A JP 13547779A JP 13547779 A JP13547779 A JP 13547779A JP S583999 B2 JPS583999 B2 JP S583999B2
Authority
JP
Japan
Prior art keywords
metal
ceramics
alloy
composite material
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13547779A
Other languages
Japanese (ja)
Other versions
JPS5659682A (en
Inventor
奥尾隆保
江畑儀弘
小瀬三郎
植月倫夫
片岡長正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13547779A priority Critical patent/JPS583999B2/en
Publication of JPS5659682A publication Critical patent/JPS5659682A/en
Publication of JPS583999B2 publication Critical patent/JPS583999B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はセラミックスと金属とから成る複合材料の製造
方法に関し、更に詳しくはセラミックスとニッケル又は
その合金の発泡体(以下これらを総称して「金属発泡体
」という)とを一体的に接着した複合材料の製造方法に
関する。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a composite material consisting of ceramics and metal, and more specifically to a method for manufacturing a composite material consisting of ceramics and nickel or an alloy thereof (hereinafter collectively referred to as "metal foam"). The present invention relates to a method of manufacturing a composite material in which the following materials are integrally bonded together.

セラミックスと金属とが接合された複合材料は耐熱器壁
としては他の材料に在し好適なものである。
Composite materials in which ceramics and metals are bonded are suitable for use as walls of heat-resistant vessels in addition to other materials.

この種耐熱器壁はこれを機械や装置の一部又は全部に使
用することにより高温運転を可能にすることが出来るが
、器壁内部の温度勾配による熱応力破壊を受け易いこと
が難点として指摘されている。
This type of heat-resistant vessel wall can be used in part or all of machinery or equipment to enable high-temperature operation, but it has been pointed out that it is susceptible to thermal stress failure due to temperature gradients inside the vessel wall. has been done.

またこの耐熱器壁は一般に高温状態で使用されるため熱
応力下での苛酷な環境と雰囲気に耐える構造でなければ
ならず、このため器壁を構成するセラミックスと金属と
を強力に接着する方法が強く要望されている。
In addition, since this heat-resistant vessel wall is generally used in high-temperature conditions, it must have a structure that can withstand harsh environments and atmospheres under thermal stress.For this reason, a method is used to strongly bond the ceramic and metal that make up the vessel wall. is strongly requested.

上記要望にかなり応え得る耐熱器壁構造体が開発された
A heat resistant vessel wall structure has been developed which can considerably meet the above requirements.

これはセラミックスと金属とを接合したセラミックスか
ら金属にいたる間に金属の濃度変化をつけたものであり
、その代表的構造を示せばセラミックスとしてカルシャ
又はイットリャで安定化させた気孔率40係程度のジル
コニャ(Zr02)層とニッケル合金層との間にZrO
2−NiCr系の混合物層を設ける。
This is a combination of ceramic and metal, in which the metal concentration changes between the ceramic and the metal.A typical structure is a ceramic with a porosity of about 40 coefficients stabilized with Kalusha or Ittria. ZrO between the zirconia (Zr02) layer and the nickel alloy layer
2-A NiCr-based mixture layer is provided.

この際この混合物層はニッケル合金層に近ずくに従って
NiCrの含有量を多くし、ニッケル合金層に接する部
分はNiCrからなるようにして一体的に加熱して蝋接
したものである。
At this time, the NiCr content of this mixture layer increases as it approaches the nickel alloy layer, and the portion in contact with the nickel alloy layer is made of NiCr and is integrally heated and soldered.

この耐熱器壁の構造体の製法は各層の成分を湿式混合し
て、上記の構成になるように積層してコールド・プレス
により成形し、乾燥後接合用金属(ニッケル合金層)を
接触せしめて不活性雰囲気中で、焼成するものである。
The manufacturing method for this heat-resistant container wall structure involves wet mixing the components of each layer, stacking them to form the above structure, forming them by cold pressing, and then contacting them with a bonding metal (nickel alloy layer) after drying. It is fired in an inert atmosphere.

従ってこの方法に於いては、所定の濃度に調整された金
属一ZrO2層の形成をはじめ、この状態を保持したま
\でのプレス成形並びに不活性雰囲気下での焼成など複
雑な工程操作が不可欠である。
Therefore, this method requires complicated process operations such as forming a metal-ZrO2 layer adjusted to a predetermined concentration, press forming while maintaining this state, and firing in an inert atmosphere. It is.

本発明者は従来から耐熱器壁構造について鋭意研究を続
けて来たが、この研究に於いて、セラミックスと金属と
の複合材料を調製するに際し、金属として金属発泡体を
用いるという新しい着想にいたり、引き続き種々研究を
続けた結果、ついに銅またはこれを含む合金を介在させ
ることにより、セラミックスと金属発泡体とを大きな接
着強度をもって接着出来ることを見出し、鼓に本発明を
完成するにいたった。
The present inventor has been conducting intensive research on the wall structure of heat-resistant containers, and in this research, he came up with a new idea of using metal foam as the metal when preparing a composite material of ceramics and metal. As a result of continuing various research, they finally discovered that ceramics and metal foam can be bonded with great adhesive strength by interposing copper or an alloy containing copper, and finally completed the present invention.

即ち本発明はニッケル又はその合金の発泡体とセラミッ
クスとの間に銅又はその合金を介在させて酸化雰囲気下
に加熱することを特徴とするセラミックスと金属とから
成る複合材料の製造方法に係るものである。
That is, the present invention relates to a method for producing a composite material consisting of ceramics and metal, characterized in that copper or its alloy is interposed between a foam of nickel or its alloy and ceramics, and the mixture is heated in an oxidizing atmosphere. It is.

本発明法はセラミックスとニッケル又はその自金の発泡
体との間に銅又はその合金を介在させて酸化雰囲気中で
加熱してセラミックスと該発泡付とを強固に接合せしめ
るものであり、金属発泡付をこの種耐熱器壁構造に応用
するという従来全く例を見ない特徴を有す。
The method of the present invention involves interposing copper or its alloy between ceramics and nickel or its own foam, and heating it in an oxidizing atmosphere to firmly bond the ceramic and the foamed material. It has a completely unprecedented feature in that it is applied to this type of heat-resistant vessel wall structure.

本発明に於いて使用するセラミックスとしてはシリカ系
、アルミナ系、マグネシャ系、ジルコニャ系、ランタン
クロマイト系セラミックスが使用される。
The ceramics used in the present invention include silica-based, alumina-based, magnesia-based, zirconia-based, and lanthanum chromite-based ceramics.

本発明に於いて使用される金属発泡体としては、ニッケ
ル系発泡体、ニッケル、鉄及びクロムの少くとも2種か
な成る合金の発泡体が使用される。
The metal foam used in the present invention is a nickel-based foam or an alloy foam made of at least two of nickel, iron, and chromium.

この金属発泡体は通常多孔率85〜98係程度、比表面
積500 〜9000m2/m3程度のものが使用され
、独立気泡体、連通気泡体、これ等の混合体いずれでも
良いが、連通気泡体の多いものかどららかというと望ま
しい。
This metal foam usually has a porosity of about 85 to 98 coefficients and a specific surface area of about 500 to 9000 m2/m3, and may be closed cell, open cell foam, or a mixture of these, but open cell foam may be used. It's more or less desirable.

尚この多孔率は次の様にして測定したものである。The porosity was measured as follows.

即ら該発泡体の具体例としては住友電気工業■製『セル
メット』の各種品番のものを挙げることが出来る。
Specifically, specific examples of the foam include various product numbers of "Celmet" manufactured by Sumitomo Electric Industries, Ltd.

セラミックスと金属発泡体との間に介在させるべき銅又
はその合金と忰では、銅、銅一鉄、銅一ニッケル等の合
金を例示出来る。
Examples of copper or an alloy thereof to be interposed between the ceramic and the metal foam include alloys such as copper, copper-iron, and copper-nickel.

本発明に於いてはセラミックス及び金属発泡体の形は特
に限定されることは無く、広い範囲から適宜に使用目的
に応じて決定されれば良く、たとえば板状、管状等を代
表例として挙げることが出来る。
In the present invention, the shapes of the ceramic and metal foams are not particularly limited, and may be appropriately determined from a wide range depending on the purpose of use; representative examples include plate shapes and tube shapes. I can do it.

また銅またはその合金としては板状、粉状粒状等適宜な
構造のものが使用出来る。
Moreover, as copper or its alloy, those having an appropriate structure such as a plate shape, a powdery granule shape, etc. can be used.

これ等鋼又はその合金の使用量はセラミックスと発泡体
とを接合出来るに足る量であれば良く、これ等両者の形
状等により適宜に選定される。
The amount of steel or its alloy to be used is sufficient as long as it can join the ceramic and the foam, and is appropriately selected depending on the shapes of the two.

本発明実施に際しては、セラミックスと金属発泡体の間
に銅又はその合金を介在させ、酸化雰囲気中で1000
〜1200℃好ましくは1100〜1150℃で加熱す
る。
When carrying out the present invention, copper or its alloy is interposed between the ceramic and the metal foam, and the
Heating is performed at ~1200°C, preferably 1100-1150°C.

この際の酸化雰囲気としては空気、酸素、空気または酸
素の混合ガス、更にはまた不活性ガスと酸素との混合ガ
スが例示出来、これ等のなかでは空気が特に好ましい。
Examples of the oxidizing atmosphere at this time include air, oxygen, a mixed gas of air or oxygen, and a mixed gas of an inert gas and oxygen, and among these, air is particularly preferred.

本発明で得られる複合材料は、セラミックスと金属発泡
体とが、銅又はその合金を介して加熱一体化された構造
となっている。
The composite material obtained by the present invention has a structure in which ceramics and metal foam are heated and integrated via copper or an alloy thereof.

更に詳しくは、セラミックスと金属発泡体と銅又はその
合金、あるいは加熱により酸化された銅又はその合金が
溶融して両者を一体的に接合している。
More specifically, the ceramic, the metal foam, and copper or its alloy, or the copper or its alloy oxidized by heating, are melted and integrally joined together.

セラミックス側では該溶融化合物は、セラミックスの表
面に若干含浸した構造となっておシ、また一方金属発泡
体側ではその表面部分は気泡のなかに溶融化合物が充分
含浸された構造となっていて、極めて強い力で両者が銅
又はその化合物を介して一体的に接合しているというこ
とが出来る。
On the ceramic side, the molten compound has a structure in which the surface of the ceramic is slightly impregnated, while on the metal foam side, the surface part has a structure in which the molten compound is sufficiently impregnated into air bubbles, which is extremely It can be said that the two are integrally joined by strong force via copper or its compound.

以下に実症例を示して本発明を具体的に説明する。The present invention will be specifically explained below by showing actual cases.

但し下記例に於いて部又は係とあるは特に説明しないか
ぎり重量部又は重量係を示す。
However, in the following examples, parts or parts refer to parts by weight or parts by weight unless otherwise specified.

実施例1 15X15X5mmのマグネシャ板(純度995チ)と
ニッケル系発泡金属「セルメット≠3」との間に、15
X15X5mmの銅板(純度99.9%)を介在させ、
1150℃の空気中で20分間加熱した後炉より取り出
し自然放玲した。
Example 1 Between the 15x15x5mm magnesia plate (purity 995%) and the nickel-based foam metal "Celmet≠3", 15
A copper plate (purity 99.9%) of X15X5mm is interposed,
After heating in air at 1150° C. for 20 minutes, it was taken out of the oven and allowed to cool naturally.

得られた複合材料は、銅が酸化された状態で金属発泡体
内にある程度の厚みをもって含浸されていると共にセラ
ミックスにも若干含浸され強固に一体となっていた。
In the obtained composite material, the copper in an oxidized state was impregnated into the metal foam to a certain degree of thickness, and the ceramic was also impregnated to some extent and was strongly integrated.

この引張り強度を測定した所、340kg/cm2であ
った。
The tensile strength was measured and found to be 340 kg/cm2.

またこれを1200℃で10分間再加熱して炉より取り
出し直ちに水中に投入する操作を数回繰り返して耐熱衝
撃性を測定した結果、接合部には全く剥離は生じておら
ず、セラミックス板の表面に若干の亀裂が見受けられる
だけであった。
We also measured the thermal shock resistance by reheating it at 1,200°C for 10 minutes, taking it out of the furnace, and immediately putting it into water several times. As a result, no peeling occurred at the joint, and the surface of the ceramic plate Only some cracks were visible.

またその化学安定性は48%KOH水溶液に70℃で5
0時間浸漬しても全く変化はなかった。
Also, its chemical stability is 5% at 70℃ in 48% KOH aqueous solution.
There was no change at all even after immersion for 0 hours.

また、金属発泡体として用いたセルメットは高温焼付の
ために酸化が促進される。
Furthermore, Celmet used as a metal foam is oxidized due to high temperature baking.

これがために強度劣化等が発生する。This causes strength deterioration and the like.

これを防止するために前処理としてセルメット表面を耐
熱琺瑯を施すことにより、上記の強度劣化を防止するこ
とができた。
In order to prevent this, the above strength deterioration could be prevented by applying heat-resistant enamel to the Celmet surface as a pretreatment.

また、耐熱琺瑯以外の手段として、ニッケルクローム合
金発泡体、メッキ、蒸着、高周波スパツタ、塗装なども
有効である。
Furthermore, as means other than heat-resistant enamel, nickel-chromium alloy foam, plating, vapor deposition, high-frequency sputtering, painting, etc. are also effective.

実施例2 15X15X5mmのマグネシア板(純度99.5%)
とニッケル板(純度99.9%)との間に、15×15
X5mmの銅板(純度99.9係)を介在させ、空気に
IOV%の酸素を混入した雰囲気下において1150℃
で20分間加熱した後炉より取り出し自然放伶した。
Example 2 15x15x5mm magnesia plate (purity 99.5%)
and a nickel plate (99.9% purity).
1150°C in an atmosphere containing IOV% oxygen mixed with air with a copper plate (purity 99.9) of 5mm
After heating for 20 minutes, the mixture was taken out of the oven and allowed to air.

得られた複合材料の引張り強度を測定した所、350k
g/cm2であった。
The tensile strength of the resulting composite material was measured and was found to be 350k.
g/cm2.

実施例3 上記実施例1においてマグネシャ板に代えて下記第1表
に示す所定のセラミツクン板を用い、その他は実施例1
と同様に処理して各種の複合材料を調製した。
Example 3 In place of the magnesia plate in Example 1 above, a predetermined ceramic plate shown in Table 1 below was used, and the other conditions were as in Example 1.
Various composite materials were prepared in the same manner as above.

これ等の各種物性も第1表に併記した。These various physical properties are also listed in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 1 ニッケル又はその合金の発泡体とセラミックスとの
間に銅又はその合金を介在させて酸化雰囲気下に加熱す
ることを特徴とするセラミックスと金属とから成る複合
材料の製造方法。
1. A method for producing a composite material consisting of ceramics and metal, which comprises interposing copper or its alloy between a foam of nickel or its alloy and ceramics, and heating the mixture in an oxidizing atmosphere.
JP13547779A 1979-10-20 1979-10-20 Method for manufacturing composite material consisting of ceramics and metal Expired JPS583999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13547779A JPS583999B2 (en) 1979-10-20 1979-10-20 Method for manufacturing composite material consisting of ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13547779A JPS583999B2 (en) 1979-10-20 1979-10-20 Method for manufacturing composite material consisting of ceramics and metal

Publications (2)

Publication Number Publication Date
JPS5659682A JPS5659682A (en) 1981-05-23
JPS583999B2 true JPS583999B2 (en) 1983-01-24

Family

ID=15152620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13547779A Expired JPS583999B2 (en) 1979-10-20 1979-10-20 Method for manufacturing composite material consisting of ceramics and metal

Country Status (1)

Country Link
JP (1) JPS583999B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935074A (en) * 1982-08-20 1984-02-25 東陶機器株式会社 Ceramic sheet
JPS5939779A (en) * 1982-08-25 1984-03-05 住友特殊金属株式会社 Ceramics and metal bonding method and composite material therefor
JP2002184620A (en) * 2000-12-19 2002-06-28 Honda Motor Co Ltd Rare earth magnet unit
JP2008008878A (en) * 2006-06-27 2008-01-17 Chiyoda Technol Corp Calibrating device for dosemeter

Also Published As

Publication number Publication date
JPS5659682A (en) 1981-05-23

Similar Documents

Publication Publication Date Title
Nicholas et al. Some observations on the wetting and bonding of nitride ceramics
JPS606910B2 (en) metal-ceramics joint
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPH0549633B2 (en)
US4559277A (en) Ceramic and aluminum alloy composite
US5340014A (en) Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
CN101823188B (en) High-temperature amorphous solder for soldering Si3N4 ceramics
JPS6051420B2 (en) Composite parts
NO173862B (en) SUMMARY, FIXED GOODS INCLUDING CARBID, BORIDE, NITRIDE, SILICID AND / OR SULFIDE, AND PROCEDURES FOR PRODUCING THEREOF
CA2012235A1 (en) Transfer tube with insitu heater
JPS583999B2 (en) Method for manufacturing composite material consisting of ceramics and metal
JPS61262625A (en) Protective pipe for thermocouple and its preparation
US5376421A (en) Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
US4528244A (en) Fused silica shapes
WO1994016859A1 (en) Combustible slurry for joining metallic or ceramic surfaces or for coating metallic, ceramic and refractory surfaces
US3244539A (en) Bonded alumina refractory
US4126654A (en) Alumina or alumina-chromia refractories
US4107392A (en) High temperature abrasion-resistant material and method of producing same
US4685607A (en) Nitride ceramic-metal complex material and method of producing the same
CN104475702B (en) The ZrO connected based on infiltration2the preparation method of/hot die steel composite die material
JP4017135B2 (en) Electromagnetic cooking container and method for manufacturing the same
JPH0452208B2 (en)
JPH0134954B2 (en)
SU843730A3 (en) Lamellar article
JPS61215278A (en) Manufacture of ceramics with porous surface layer