JPH0549633B2 - - Google Patents

Info

Publication number
JPH0549633B2
JPH0549633B2 JP59240373A JP24037384A JPH0549633B2 JP H0549633 B2 JPH0549633 B2 JP H0549633B2 JP 59240373 A JP59240373 A JP 59240373A JP 24037384 A JP24037384 A JP 24037384A JP H0549633 B2 JPH0549633 B2 JP H0549633B2
Authority
JP
Japan
Prior art keywords
ceramic
network
coating
thickness
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59240373A
Other languages
Japanese (ja)
Other versions
JPS60235778A (en
Inventor
Rojaazu Morisu Jefuri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAI TETSUKU SERAMITSUKUSU Inc
Original Assignee
HAI TETSUKU SERAMITSUKUSU Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAI TETSUKU SERAMITSUKUSU Inc filed Critical HAI TETSUKU SERAMITSUKUSU Inc
Publication of JPS60235778A publication Critical patent/JPS60235778A/en
Publication of JPH0549633B2 publication Critical patent/JPH0549633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • F27D1/0009Comprising ceramic fibre elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • F27D1/063Individual composite bricks or blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、網目構造セラミツク、即ち、多孔性
セラミツク構造体に関する。 〔従来の技術〕 網目構造セラミツクは、三次元の網目状に広が
る固相と気孔相とから構成され、固相は比較的不
活性のセラミツク材料(耐熱性無機物、通常は酸
化物、炭化物等)からできている。かかる網目構
造セラミツクは、デイーゼル排気や金属溶湯等の
高温流体のフイルターとして、又、炉の断熱材と
して有用である。 網目構造セラミツクの製造方法については、シ
ユワルツバルダーらの米国特許第3090094号及び
英国特許第916784号に開示されている。 〔発明が解決しようとする課題〕 本発明の基本的な目的は、所定領域に気孔を寒
ぐための完全な薄いセラミツクコーテイングを形
成し、且つ、網目構造による所望の特性を保持し
た網目構造セラミツクを提供することにある。特
に、網目構造部とコーテイング部が一体に焼結さ
れた熱衝撃に強いセラミツクを提供することにあ
る。 しかし、上記のように網目構造部に形成する連
続した表層を所望の厚さにすることは容易ではな
く、網目構造を形成するウエブの太さ比べて相当
厚くなり易い。尚、本明細書において、「ウエブ」
は、網目構造を形成する棒状の一単位を意味す
る。即ち、複数のウエブか、その両端部で相互に
接続されて立体的な網目構造を形成する。同様
に、ウエブの太さ(以下、「ウエブサイズ」とも
いう)はウエブの相互接続点間の中間部における
太さを意味する。 又、網目構造部の気孔径が大きいほど、即ち気
孔度が粗い(例えば1インチ当り孔数30以下)ほ
ど、浸せきコーテイングにより薄い連続した表層
を形成することが困難となる。さらに、浸せきコ
ーテイングにより形成された表層は、予想される
ように、網目構造部まで入り込み内部のウエブの
表面と接合してしまう。一方、出願人は、シーリ
ング層(コーテイングと接する層)におけるウエ
ブ表面間の接合を少なくすることにより網目構造
セラミツクの特性が改善されることを発見してい
る。 又、耐火物にあつては、その強度や構造を維持
しながら高温、腐食し易い環境、及び急激な温度
変化に対して耐える特性がしばしば要求される。
さらには、熱容量や熱伝導度を最小に抑えながら
上記特性を最大にすることが望まれる。現在、
種々の耐火物が実用化されているが、そのうちの
フアイバ耐火物は、熱伝導性が低く熱容量が小さ
い点で優れるものの、耐荷重性、耐食性に劣り、
しかも上限使用温度で収縮する欠点がある。高密
度耐火物は、一般に高温での強度に優れ、耐食性
の良い物質で形成し得るが、高密度ゆえ熱容量が
比較的大きく、所定温度に達するまでに、フアイ
バ耐火物に比べて多くのエネルギーを必要とする
欠点がある。 本発明は、以上のような実情に鑑みてなされた
ものであつて、その目的は、網目構造セラミツク
にセラミツクコーテイングを形成するに際し、ウ
エブの平均太さとコーテイング部の厚さとマツチ
ング、及び、コーテイング部と網目構造部との適
当な接着力により、耐熱衝撃性(熱衝撃に対する
耐久性)を改善することにある。そして、耐荷重
性、耐食性に優れ、且つ、熱容量が小さい耐火物
を提供することにある。 〔課題を解決するための手段〕 本発明のセラミツク構造体は、複数の相互接続
ウエブから形成される網目構造セラミツク部(以
下、単に「網目構造部」という)と、この網目構
造部の所定の面上に焼結したセラミツクコーテイ
ング部(以下、単に「コーテイング部」という)
とから構成される。コーテイング部は、網目構造
部と実質的に同一の組成であることが好ましい。 網目構造部は、1インチ当たりの孔数が5〜
125(ppi)の気孔度を有する。コーテイング部の
厚さは3mm以下であるが、少なくとも0.25mmは必
要である。コーテイング部の厚さと網目構造部を
構成するウエブの平均太さとの比は1から10の範
囲内である。つまり、コーテイング部の厚さがウ
エブの平均太さの1〜10倍である。 又、本発明のセラミツク構造体の製造方法は、
網目構造部の調整する段階と、網目構造部にコー
テイングを形成する段階する含む。コーテイング
は、網目構造部の少なくとも一面上にセラミツク
スラリーを、ていねいにこて塗りし、刷毛塗り
し、又は吹き付けることにより形成される。 吹き付けによるコーテイングは、0.25〜0.5mm
程度の厚さの表層が得られ、65〜125ppi程度の気
孔度を有する網目構造セラミツクに適している。
こて塗り(ドクターブレード法)によるコーテイ
ングは、0.5〜3mm程度の厚さその表層が得られ、
5ppi程度の粗い気孔度の網目構造セラミツクから
微細な気孔度の網目構造セラミツクまで適用でき
る。通常、気功が大きいほど、即ち気孔度が粗い
ほどコーテイングの厚さを厚くする。 コーテイングが形成されたセラミツク構造体は
焼成され、網目構造部とコーテイング部との間に
焼結セラミツク結合が形成される。この発明のセ
ラミツク構造体は金属溶湯のフイルタに利用で
き、網目構造セラミツクには、フイルタを通過す
る加熱流体の流動方向に実質上平行な面にコーテ
イング面を形成する。また、2つの網目構造セラ
ミツクを1つのコーテイング部で焼結接続したも
のは、熱交換器として利用できる。すなわち、コ
ーテイング部を伝熱面とし、コーテイングの一方
側の網目構造セラミツクに加熱流体を、そして他
方側の網目構造セラミツクに冷却流体を通すよう
な構成とする。更に又、この発明のセラミツク構
造体は、支持台や棚板等の等道具に利用すること
ができる。この際、網目構造セラミツクから成る
基部には、使用目的に応じた選択区域にコーテイ
ング部が施させる。更には又、この発明のセラミ
ツク構造体は、単独で、又は、フアイバボードや
フアイバブランケツトと共に、炉のライニング用
の耐熱材として利用することができる。 〔実施例〕 第1図に、この発明を用いた金属溶湯用セラミ
ツクフイルタを示す。 中央部はデイスク状外形を有する網目構造セラ
ミツク部10から成つており、このデイスクの外
周面に薄状セラミツクコーテイング11が焼結さ
れている。デイスク外周面は当然の如く、網目構
造セラミツクの気孔の通過する溶湯の流れに平行
である。こうして網目構造セラミツクに物質を一
体コーテイングすることで、ユニツト全体として
の強度が高められている。第1図に示すセラミツ
クフイルタは、実際においては、溶湯を流し出す
漏斗等の支持体内部に挿入設置される。このコー
テツド溶湯フイルタは、脆性が比較的小さく、ポ
アカツプないしはタンデイツシユ内への挿入取付
けの際にも支障はない。またこのフイルタによれ
ば、溶湯がフイルタ周縁からフイルタカツプ界面
に沿つて流れ出すといつた不都合も除去される。
更にはまた、フイルタ自体の熱縮強度も改善され
る。 真空誘導溶融超合金のフイルタ用の適するセラ
ミツク材料としては、ムライト、半安定化ジルコ
ニア及びアルミナ(90−98%)などがある。とり
わけ、ムライト及びジルコニアは耐熱衝撃性に優
れており、その有用性が高い。気孔度は10ppi及
び20ppiが望ましいが、ごく一般に用いられる間
隙度は10、20及び30ppiである。30ppiの場合には
捕集効率が最大となるが、同時に熱流体の流れも
低下するのでその応用性に欠ける。 空気溶融鉄合金用のフイルタには、高強度で耐
熱衝撃性及び耐クリープ特性に優れた材料が要求
されるが、こうした要求を満たすセラミツク材料
としては、半安定化ジルコニア、種々のグレード
の高アムミナ及びクライトなどがある。気孔率は
比較的小さい方が望ましい。空気溶融非鉄金属用
のフイルタ材料としては、アルミナ組成物及びム
ライトなどが適している。 10ppiから65ppiの範囲内の気孔度のものが良好
な結果を与える。気孔度65ppiの円筒状ムライト
フイルタは特に効果的であり、また、多細孔質物
質(30ppi、45ppi、65ppi)が高捕集効率を示す
ことも判明した。 第2図に、この発明を用いた板材用の窯道具を
示す。この窯道具は網目構造セラミツク部20か
らなる円筒状の基部を有する。この基部の上面は
焼成される板材の下面に一致した形状を有し、加
工部材の収縮が自在となつている。また、基部の
上面には平滑表面を有する円環形の薄状セラミツ
クコーテイング21が焼結されており、収縮時に
おける板材すべりを容易にしている。この窯道具
は熱容量の増加が最小であるため、その分の熱量
が板材の焼成に有効利用され得る。 燃料の節約促進のため、炉用据付具の質量を減
じる試みが現在盛んになされている。焼成サイク
ル時間を短縮するには、従来よりも耐熱衝撃性に
優れた窯道具の使用が必要となる。 こうした点において、網目構造セラミツクの使
用、とりわけ据付具対製品の質量比が大きい電子
工業分野における使用が非常に有望なものとな
る。低質量窯道具は据付具対製品の質量比が高い
状況に最適である。なぜなら、こうした物品は上
方使用温度下において高荷重を受けクリープを起
こすおそれがあるからである。 細孔を有するムライト及び高アルミナ製品がこ
うした窯道具材に適する。電子工業に応用される
セラミツク組成物は多量の有機物質を含有してお
り、こうしたものの支給台に本発明のセラミツク
構造対を用いると、多孔質というその固有特性が
有利に働く。すなわち、有機揮発性物質が焼失す
る際に接触面に生ずる圧力が軽減される。この場
合、薄状セラミツクコーテイング21を有する面
は下面とし、基部20のもう一方の面を支持面と
して用いる。 第3図に、この発明による炉のライナーの一部
を示す。細長のセラミツクアンカー30が金属シ
エル31に固定されており、この金属シエル31
の内側にはフアイバブランケツト32が設けられ
ている。フアイバブランケツト32の内側には上
記のコーテツドセラミツク部材33が設けられて
おり、コーテツドセラミツク部材33は網目構造
セラミツク部34とコーテイング部35とから構
成されている。前記被覆耐火物は、少なくとも1
つの網目構造セラミツク部を2つのコーテイング
部ではさみこんだサンドイツチ型構成とすること
が望ましい。更には、2以上の網目構造セラミツ
ク部を複数の平行コーテイング部で別々にはさみ
こんだ多段サンドイツチ型構成としてもよい。こ
うした複合耐火物は、複数の平行コーテイング部
が熱流方向と実質的に垂直な配置方向となるよう
構成する必要がある。前記アンカー30は部材3
3の開口内に挿通され、その端部はキー36を介
してアンカーに固定されている。耐火フアイバブ
ラケツトを耐火セメントによりコーテツドセラミ
ツク部材の網目構造部側に結合することで、コー
テツドセラミツク部材と耐火フアイバブランケツ
トをモジユラユニツトに形成することができる。
この耐火セメントとしてはアルミン酸カルシウム
セメントが適している。フアイバブランケツトに
代え、他のセラミツクフアイバ耐火物、例えば耐
火フエルト、耐火フアイバブロツク、又は耐火フ
アイバボードなどを用いてもよい。セラミツクフ
アイバ耐火物は、新しいとその圧縮率は非常に小
さい。第3図にその一部が示されるモジユールは
炉内へ容易に設置することができ、フアイバ耐火
物の優れた断熱性と、収縮の生じない耐蝕面(例
えば、アルミナ耐火シートの場合3000〓の下で)
を提供する。このモジユールはフアイバ耐火物単
体よりもその耐久性が高く、ブラツシングによる
損傷とかダスチングといつた問題が生じない。こ
うした損傷及びダスチングといつた問題は、フア
イバ断熱材単体を高温下で使用した場合短期間で
明らかに生じるものである。高温下においては、
焼固や再結晶により脆化が起こり、コーテイング
保護のなされていないセラミツクフアイバ耐火物
はその圧縮性を失う。 剛性、靭性、耐食性を有し、更には使用上限温
度下にあつても収縮することのない低質量高断熱
体の使用が必須となる炉のライニング材として
は、網目構造セラミツクがうつてつけのものとな
る。フアイバ断熱材と網目構造セラミツクの共用
は、炉のライミングにセラミツクフアイバを使用
するという構想を一段と前進させる。断熱パネル
としては、ムライトから製作した45ppiから
100ppiの範囲の気孔度を有するものが適当であ
る。網目構造セラミツクには高密度のコーテイン
グを施し、表面を被覆保護する。こうした構成に
より、耐熱衝撃性、低熱伝導性、最小熱保持性と
いつた所望特性が損なわれるだけでなく、もろ
さ、ダスチング、低耐食性、失透及び焼固に起因
する収縮といつたフアイバが有する一般的な問題
が著しく改善される。更には又、荷重支持力も高
く、その加熱面バーナーブロツクを支持すること
も可能となる。こうした特徴は、れんが炉をフア
イバ断熱材で改装する際に非常に重要となる。フ
アイ断熱材は98%アルミナやジルコニア等の高性
能酸化物から製造することができるが、そのプロ
セスは困難であると共に、製造コストが高くつ
く。 図を参照しつつ説明したこの発明の構造体は、
以下に述べる方法で製作する。 連続気泡を有する多孔質有機物質(例えばウレ
タンフオーム)を、セラミツク微粉末(例えばム
ライト)に結合剤を混入したスラリー中に浸せき
して網目構造セラミツクを調製する。多孔質物質
への流し込みが終了すると、余分のスラリーを取
り除いた後、長し込みされた物質を焼成して有機
物質を焼失させ、同時に細粒セラミツク成分を焼
結させる(セラミツク結合)。この結果、多孔質
物質の内部構造がセラミツクにより複製される。
焼成後の種々の網目構造セラミツクの物性を以下
の表に示す。
[Industrial Field of Application] The present invention relates to a network ceramic structure, that is, a porous ceramic structure. [Prior Art] Network structure ceramic is composed of a solid phase and a pore phase that spread out in a three-dimensional network, and the solid phase is a relatively inert ceramic material (heat-resistant inorganic material, usually an oxide, carbide, etc.). made of. Such mesh-structured ceramics are useful as filters for high-temperature fluids such as diesel exhaust and molten metal, and as heat insulating materials for furnaces. Methods for making network ceramics are disclosed in Schwartzwalder et al., US Pat. No. 3,090,094 and British Patent No. 916,784. [Problems to be Solved by the Invention] The basic object of the present invention is to form a completely thin ceramic coating in a predetermined area for cooling pores, and to create a network-structured ceramic coating that retains the desired properties due to the network structure. Our goal is to provide the following. In particular, it is an object of the present invention to provide a ceramic that is resistant to thermal shock and has a network structure portion and a coating portion that are integrally sintered. However, it is not easy to make the continuous surface layer formed in the network structure have a desired thickness as described above, and it tends to be considerably thicker than the thickness of the web forming the network structure. In addition, in this specification, "web"
means a rod-shaped unit forming a network structure. That is, a plurality of webs are interconnected at both ends to form a three-dimensional network structure. Similarly, web thickness (hereinafter also referred to as "web size") refers to the thickness midway between the interconnect points of the web. Also, the larger the pore size of the network structure, that is, the rougher the porosity (for example, 30 or less pores per inch), the more difficult it becomes to form a thin continuous surface layer by dip coating. Furthermore, the surface layer formed by dip coating penetrates into the network structure and joins with the surface of the inner web, as expected. On the other hand, Applicants have discovered that the properties of network ceramics are improved by reducing the bonding between the web surfaces in the sealing layer (the layer in contact with the coating). Furthermore, refractories are often required to withstand high temperatures, corrosive environments, and rapid temperature changes while maintaining their strength and structure.
Furthermore, it is desirable to maximize the above characteristics while minimizing heat capacity and thermal conductivity. the current,
Various refractories have been put into practical use, but among them, fiber refractories are superior in that they have low thermal conductivity and small heat capacity, but they are inferior in load carrying capacity and corrosion resistance.
Moreover, it has the disadvantage of shrinking at the upper limit of its use temperature. High-density refractories generally have excellent strength at high temperatures and can be formed from materials with good corrosion resistance, but due to their high density they have a relatively large heat capacity and require more energy than fiber refractories to reach a certain temperature. There are drawbacks that require it. The present invention has been made in view of the above-mentioned circumstances, and its purpose is to match the average thickness of the web with the thickness of the coating part, and to improve the thickness of the coating part when forming a ceramic coating on a network structure ceramic. The objective is to improve thermal shock resistance (durability against thermal shock) by appropriate adhesive force between the mesh structure and the mesh structure. Another object of the present invention is to provide a refractory that has excellent load resistance and corrosion resistance, and has a small heat capacity. [Means for Solving the Problems] The ceramic structure of the present invention includes a network structure ceramic portion (hereinafter simply referred to as "network structure section") formed from a plurality of interconnected webs, and a predetermined portion of the network structure section. Ceramic coating part sintered on the surface (hereinafter simply referred to as "coating part")
It consists of Preferably, the coating portion has substantially the same composition as the network structure portion. The mesh structure has 5 to 5 holes per inch.
It has a porosity of 125 (ppi). The thickness of the coating part is 3 mm or less, but it is required to be at least 0.25 mm. The ratio between the thickness of the coating and the average thickness of the webs constituting the network structure is within the range of 1 to 10. That is, the thickness of the coating portion is 1 to 10 times the average thickness of the web. Further, the method for manufacturing a ceramic structure of the present invention includes:
The method includes conditioning the network and forming a coating on the network. The coating is formed by carefully troweling, brushing, or spraying a ceramic slurry onto at least one surface of the network. Coating by spraying is 0.25~0.5mm
It is suitable for network structure ceramics with a porosity of about 65 to 125 ppi.
Coating by troweling (doctor blade method) provides a surface layer with a thickness of approximately 0.5 to 3 mm.
It can be applied to network structure ceramics with a coarse porosity of about 5ppi to network structure ceramics with a fine porosity. Generally, the larger the qigong, that is, the coarser the porosity, the thicker the coating. The coated ceramic structure is fired to form a sintered ceramic bond between the network and the coating. The ceramic structure of the present invention can be used as a filter for molten metal, and a coating surface is formed on the network structure ceramic in a plane substantially parallel to the flow direction of the heated fluid passing through the filter. Furthermore, a structure in which two mesh ceramics are sintered and connected in one coating can be used as a heat exchanger. That is, the coating is configured to be a heat transfer surface, and a heating fluid is passed through the ceramic network on one side of the coating, and a cooling fluid is passed through the ceramic network on the other side of the coating. Furthermore, the ceramic structure of the present invention can be used for tools such as support stands and shelf boards. At this time, the base made of network ceramic is coated with a coating in selected areas depending on the intended use. Furthermore, the ceramic structure of the present invention can be used alone or together with a fiber board or fiber blanket as a heat-resistant material for lining a furnace. [Example] Fig. 1 shows a ceramic filter for molten metal using the present invention. The central part consists of a network ceramic part 10 having a disk-like external shape, and a thin ceramic coating 11 is sintered on the outer peripheral surface of this disk. Naturally, the outer peripheral surface of the disk is parallel to the flow of molten metal passing through the pores of the network structure ceramic. By integrally coating the network structure ceramic with the material, the strength of the unit as a whole is increased. The ceramic filter shown in FIG. 1 is actually inserted into a support such as a funnel through which molten metal is poured. This coated molten metal filter has relatively low brittleness and can be inserted into a pore cup or tundish without any problems. This filter also eliminates the inconvenience of the molten metal flowing out from the periphery of the filter along the filter cup interface.
Furthermore, the heat shrinkage strength of the filter itself is also improved. Suitable ceramic materials for vacuum induction fused superalloy filters include mullite, semi-stabilized zirconia and alumina (90-98%). In particular, mullite and zirconia have excellent thermal shock resistance and are highly useful. Porosity values of 10 ppi and 20 ppi are preferred, but porosity values of 10, 20 and 30 ppi are most commonly used. In the case of 30 ppi, the collection efficiency is maximum, but at the same time the flow of thermal fluid also decreases, so its applicability is lacking. Filters for air-molten iron alloys require materials with high strength, excellent thermal shock resistance, and creep resistance. Ceramic materials that meet these requirements include semi-stabilized zirconia and various grades of high-amina ceramic materials. and kleit, etc. It is desirable that the porosity be relatively small. Suitable filter materials for air-fused nonferrous metals include alumina compositions and mullite. Porosity in the range of 10 ppi to 65 ppi gives good results. Cylindrical mullite filters with a porosity of 65 ppi were found to be particularly effective, and porous materials (30 ppi, 45 ppi, 65 ppi) were also found to exhibit high collection efficiencies. FIG. 2 shows a kiln tool for plate material using this invention. This kiln tool has a cylindrical base made of a mesh ceramic part 20. The upper surface of this base has a shape that matches the lower surface of the plate material to be fired, allowing the workpiece to shrink freely. Further, a thin annular ceramic coating 21 having a smooth surface is sintered on the upper surface of the base to facilitate sliding of the plate during contraction. Since this kiln tool has a minimal increase in heat capacity, the amount of heat can be effectively used for firing the plate material. In order to promote fuel savings, there are currently many attempts to reduce the mass of furnace fixtures. Shortening firing cycle times requires the use of kiln tools with better thermal shock resistance than conventional kiln tools. In this respect, the use of mesh ceramics, especially in the electronics industry, where the mass ratio of fixture to product is high, is very promising. Low-mass kiln tools are ideal for situations where the fixture-to-product mass ratio is high. This is because such articles are subject to high loads at upper service temperatures and may suffer from creep. Porous mullite and high alumina products are suitable for such kiln tooling. Ceramic compositions applied in the electronics industry contain large amounts of organic substances, and when the ceramic structure pair of the present invention is used as a support for such compositions, its inherent property of being porous is advantageous. That is, the pressure generated at the contact surface when the organic volatile substance is burned off is reduced. In this case, the surface with the thin ceramic coating 21 is the lower surface, and the other surface of the base 20 is used as the support surface. FIG. 3 shows a portion of a furnace liner according to the invention. An elongated ceramic anchor 30 is fixed to a metal shell 31.
A fiber blanket 32 is provided inside. The above-mentioned coated ceramic member 33 is provided inside the fiber blanket 32, and the coated ceramic member 33 is composed of a mesh structure ceramic portion 34 and a coating portion 35. The coated refractory has at least 1
It is desirable to have a sandwich-type structure in which two mesh ceramic parts are sandwiched between two coating parts. Furthermore, a multi-stage sandwich structure may be used in which two or more mesh-structured ceramic parts are separately sandwiched between a plurality of parallel coating parts. Such composite refractories must be constructed such that the parallel coatings are oriented substantially perpendicular to the direction of heat flow. The anchor 30 is the member 3
3, and its end is fixed to the anchor via a key 36. By bonding the refractory fiber bracket to the network side of the coated ceramic member with refractory cement, the coated ceramic member and the refractory fiber blanket can be formed into a modular unit.
Calcium aluminate cement is suitable as this refractory cement. Instead of the fiber blanket, other ceramic fiber refractories may be used, such as refractory felt, refractory fiber block, or refractory fiberboard. Ceramic fiber refractories are new and their compressibility is very small. The module, a portion of which is shown in Figure 3, can be easily installed inside a furnace and combines the excellent thermal insulation properties of fiber refractories with a non-shrinking, corrosion-resistant surface (e.g. below)
I will provide a. The module is more durable than fiber refractories alone and does not suffer from problems such as brushing damage or dusting. These problems, such as damage and dusting, are obvious over short periods of time when fiber insulation alone is used at high temperatures. At high temperatures,
Sintering and recrystallization cause embrittlement, and unprotected ceramic fiber refractories lose their compressibility. Ceramic with a mesh structure is ideal as a lining material for furnaces, where it is essential to use a low-mass, high-insulation material that has rigidity, toughness, and corrosion resistance, and does not shrink even under the upper limit of operating temperature. Become something. The combination of fiber insulation and mesh ceramic advances the concept of using ceramic fiber for furnace riming. For insulation panels, start from 45ppi made from mullite.
Porosity in the range of 100 ppi is suitable. The mesh structure ceramic is coated with a high-density coating to protect the surface. These configurations not only compromise desirable properties such as thermal shock resistance, low thermal conductivity, and minimal heat retention, but also cause the fiber to suffer from brittleness, dusting, low corrosion resistance, devitrification, and shrinkage due to sintering. Common problems are significantly improved. Furthermore, it has a high load-bearing capacity and can support the heating surface burner block. These characteristics are very important when retrofitting brick furnaces with fiber insulation. Fiber insulation can be made from high-performance oxides such as 98% alumina and zirconia, but the process is difficult and expensive to manufacture. The structure of this invention explained with reference to the figures is
Manufactured using the method described below. A network ceramic is prepared by immersing a porous organic material having open cells (eg, urethane foam) into a slurry of fine ceramic powder (eg, mullite) mixed with a binder. When pouring into the porous material is completed, excess slurry is removed, and the poured material is fired to burn out the organic material and at the same time sinter the fine ceramic components (ceramic bonding). As a result, the internal structure of the porous material is replicated by the ceramic.
The physical properties of various network ceramics after firing are shown in the table below.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 表面コーテイングには、こて塗り、はけ塗り、
吹き付け塗り、又はドクターブレード法などの
種々の方法を用いる。吹き付けコーテイングは、
65ppiから100ppiの気孔度を有する網目構造セラ
ミツクのコーテイングに利用する。98%アルミナ
を用いて吹き付けコーテイングする際のスラリー
2000g中に含有される組成分の一例を示す。 アルミナ 1960g シリカ 100g 有機結合剤 200g 界面活性剤 5ml H2O 1000ml これらの組成物は高せん断下で混合して粘度調
整を行う。界面活性剤は、液中におけるセラミツ
ク成分の分散を助長させるためのものである。粘
度は250から1500センチポアズの範囲内に調整す
る。最適粘度は500センチポアズである。スラリ
ーの吹き付けは70psiの圧力で行い、吹き付け距
離は2インチから始めて最終的には4インチにま
で後退させる。吹き付けが終わると、柔軟なはけ
で表面をぬぐつて表面を均一にする。吹き付けス
ラリーの適性粘度はセラミツク組成に依存し、例
えば、マグネシアで部分的に安定化されたジルコ
ニア系であれば、適性粘度は1000から6000センチ
ポアズの範囲内で、最適粘度は4000センチポアズ
である。また、ムライト系であれば適性粘度は
250から4000センチポアズの範囲内で、最適粘度
は1500センチポアズである。 ダクターブレード法によるスリツプコーテイン
グによれば、いかなる気孔度の網目構造セラミツ
クもコーテイングすることができる。アルミナ含
有スリツプの1組成例を次に示す。 アルミナ 1960g シリカ 100g 有機結合剤 200g 界面活性剤 5ml H2O 750ml この場合もスリツプの適性粘度はセラミツク組
成に依存し、上記組成のスリツプであれば、適性
粘度は20000から30000センチポアズの範囲内で、
最適粘度は25000センチポアズである。また、ム
ライト組成分の最適粘度は22000センチポアズで
ある。MgO系で部分安定化されたジルコニアで
あれば、適性粘度は15000から40000センチポアズ
の範囲内で、最適粘度は25000から30000センチポ
アズの範囲内である。本法によれば、セラミツク
原料、結合剤等を分散混合したスリツプを、速度
制御付きのコンベヤ上を移動する網目構造セラミ
ツク上に流し出し、ドクターブレードで所要の厚
みにコーテイングする。次いでコーテイング後の
網目構造セラミツクを空熱乾燥機に移し60℃で乾
燥させる。乾燥時間は網目構造セラミツクのサイ
ズに応じて適宜変更される。乾燥後は、コーテイ
ングされた網目構造セラミツクを、組成に応じた
適当な温度及び時間の下で焼成する。こうした焼
成温度及び焼成時間の設定は当業者には自明の事
項である。 この発明によるコーテツドセラミツクの気孔
径、ウエブの太さ及びコーテイングの厚さは、例
えば、目盛動線対(接)眼レンズを備えたズーム
式双眼顕微鏡を使用して測定することができる。
こうして測定した典型的な測定値を以下のテーブ
ルに示す。
[Table] Surface coatings include troweling, brushing,
Various methods are used, such as spraying or doctor blading. Spray coating is
Used for coating network ceramics with porosity from 65ppi to 100ppi. Slurry for spray coating using 98% alumina
An example of the components contained in 2000g is shown. Alumina 1960 g Silica 100 g Organic binder 200 g Surfactant 5 ml H 2 O 1000 ml These compositions are mixed under high shear to adjust the viscosity. The surfactant is used to promote the dispersion of ceramic components in the liquid. The viscosity is adjusted within the range of 250 to 1500 centipoise. The optimum viscosity is 500 centipoise. The slurry is sprayed at a pressure of 70 psi, starting at 2 inches and ending at 4 inches. After spraying, wipe the surface with a flexible brush to even out the surface. The suitable viscosity of the spray slurry depends on the ceramic composition; for example, for zirconia partially stabilized with magnesia, the suitable viscosity is in the range of 1000 to 6000 centipoise, with an optimum viscosity of 4000 centipoise. In addition, if it is a mullite type, the appropriate viscosity is
In the range of 250 to 4000 centipoise, the optimum viscosity is 1500 centipoise. Slip coating by the ductor blade method allows the coating of network ceramics of any porosity. An example of the composition of an alumina-containing slip is shown below. Alumina 1960g Silica 100g Organic binder 200g Surfactant 5ml H 2 O 750ml In this case as well, the appropriate viscosity of the slip depends on the ceramic composition. For a slip with the above composition, the appropriate viscosity is within the range of 20,000 to 30,000 centipoise.
The optimum viscosity is 25000 centipoise. Further, the optimum viscosity of the mullite composition is 22,000 centipoise. For zirconia partially stabilized with MgO system, the suitable viscosity is within the range of 15,000 to 40,000 centipoise, and the optimum viscosity is within the range of 25,000 to 30,000 centipoise. According to this method, a slip in which ceramic raw materials, binders, etc. are dispersed and mixed is poured onto a mesh structure ceramic moving on a conveyor with speed control, and coated with a doctor blade to the required thickness. Next, the coated network ceramic is transferred to an air dryer and dried at 60°C. The drying time is appropriately changed depending on the size of the network ceramic. After drying, the coated network ceramic is fired at an appropriate temperature and time depending on the composition. Setting such firing temperature and firing time is obvious to those skilled in the art. The pore diameter, web thickness and coating thickness of the coated ceramic according to the invention can be measured, for example, using a zoom binocular microscope equipped with a graduated line pair (eyepiece).
Typical measurements made in this way are shown in the table below.

【表】 90、98%アルミナ、ムライト及び安定化ジルコ
ニアから成るこの発明のコーテツド網目構造セラ
ミツクは、金属溶湯用フイルタ、耐食性触媒担
体、軽量断熱材、低質量窯道具、特殊耐火物など
に利用することができる。また、アルミノケイ酸
リチウムから成るコーテツド網目構造セラミツク
は、触媒の担体、ガソリンやデイーゼル排気ガス
又はストーブ浄化フイルタとして利用することが
できる。
[Table] The coated network ceramic of the present invention, consisting of 90% and 98% alumina, mullite, and stabilized zirconia, can be used in filters for molten metal, corrosion-resistant catalyst supports, lightweight insulation materials, low-mass kiln tools, special refractories, etc. be able to. Coated network ceramics made of lithium aluminosilicate can also be used as catalyst carriers, gasoline and diesel exhaust gas or stove purification filters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による金属溶湯用セラミツク
フイルタの斜視図、第2図はこの発明による窯道
具の斜視図、第3図はこの発明による炉のライニ
ングの一部切欠き斜視図である。 10,20,34……網目構造セラミツク部、
11,21……薄状セラミツクコーテイング、3
3……コーテツドセラミツク部材。
FIG. 1 is a perspective view of a ceramic filter for molten metal according to the invention, FIG. 2 is a perspective view of a kiln tool according to the invention, and FIG. 3 is a partially cutaway perspective view of a furnace lining according to the invention. 10, 20, 34...Mesh structure ceramic part,
11, 21...Thin ceramic coating, 3
3...Coated ceramic member.

Claims (1)

【特許請求の範囲】 1 1インチ当たり孔数5から125の範囲の気孔
度を有する複数の相互接続ウエブから成る網目構
造セラミツク部と、その網目構造セラミツク部の
少なくとも一面上に焼結された厚さ0.25から3ミ
リメートルのセラミツクコーテイング部とから成
り、そのセラミツクコーテイング部の厚さと前記
網目構造セラミツク部を構成するウエブの平均太
さとの比が1から10の範囲内にあるセラミツク構
造体。 2 1インチ当たり孔数65から125の範囲の気孔
度を有する複数の相互接続ウエブから成る網目構
造セラミツクを調整する段階と、前記網目構造セ
ラミツクの少なくとも一面上にセラミツクスラリ
ーを吹き付け、厚さ0.25から0.5ミリメートルの
コーテイングを施す段階と、コーテイングを施し
た網目構造セラミツクを焼成する段階とからなる
セラミツク構造体の製造方法。 3 前記セラミツクスラリーの粘度が250から
6000センチポアズである特許請求の範囲第2項記
載のセラミツク構造体の製造方法。 4 1インチ当たり孔数5から125の範囲の気孔
度を有する複数の相互接続ウエブから成る網目構
造セラミツクを調整する段階と、前記網目構造セ
ラミツクの少なくとも一面上にセラミツクスリツ
プをこて塗りして厚さ0.5から3ミリメートルの
コーテイングを施す段階と、コーテイングを施し
た網目構造セラミツクを焼成する段階とからなる
セラミツク構造体の製造方法。 5 前記セラミツクスリツプの粘度が、15000か
ら40000センチボアズである特許請求の範囲第4
項記載のセラミツク構造体の製造方法。
Claims: 1. A networked ceramic portion comprising a plurality of interconnecting webs having a porosity ranging from 5 to 125 pores per inch, and a thickness sintered onto at least one side of the networked ceramic portion. A ceramic structure comprising a ceramic coating part with a thickness of 0.25 to 3 mm, and a ratio of the thickness of the ceramic coating part to the average thickness of the web constituting the network structure ceramic part is in the range of 1 to 10. 2. preparing a network ceramic consisting of a plurality of interconnecting webs with a porosity ranging from 65 to 125 pores per inch; spraying a ceramic slurry on at least one side of the network ceramic to a thickness of 0.25 to 0.25; A method for manufacturing a ceramic structure comprising the steps of applying a 0.5 mm coating and firing the coated network structure ceramic. 3 The viscosity of the ceramic slurry is from 250
A method for manufacturing a ceramic structure according to claim 2, wherein the ceramic structure has a diameter of 6000 centipoise. 4. Preparing a network ceramic consisting of a plurality of interconnecting webs having a porosity ranging from 5 to 125 pores per inch; and troweling a ceramic strip onto at least one side of the network ceramic to achieve a thick coating. A method for manufacturing a ceramic structure comprising the steps of applying a coating with a thickness of 0.5 to 3 mm and firing the coated network structure ceramic. 5. Claim 4, wherein the ceramic strip has a viscosity of 15,000 to 40,000 centiboads.
A method for producing a ceramic structure as described in Section 1.
JP59240373A 1984-04-26 1984-11-14 Ceramic structure and manufacture Granted JPS60235778A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/604,379 US4568595A (en) 1984-04-26 1984-04-26 Coated ceramic structure and method of making same
US604,379 1984-04-26

Publications (2)

Publication Number Publication Date
JPS60235778A JPS60235778A (en) 1985-11-22
JPH0549633B2 true JPH0549633B2 (en) 1993-07-26

Family

ID=24419369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240373A Granted JPS60235778A (en) 1984-04-26 1984-11-14 Ceramic structure and manufacture

Country Status (2)

Country Link
US (1) US4568595A (en)
JP (1) JPS60235778A (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR876M (en) 1960-10-12 1961-10-16
US4595664A (en) * 1983-02-16 1986-06-17 Matsushita Electric Industrial Co., Ltd. Burner skeleton
DE3501330C1 (en) * 1985-01-17 1986-01-23 Kraftanlagen Ag, 6900 Heidelberg Carrier matrix for taking up catalytically active compounds and method for producing the carrier matrix
US4902314A (en) * 1987-11-25 1990-02-20 Hidetoshi Nakajima Gas filter
US4846906A (en) * 1987-12-02 1989-07-11 The Duriron Company, Inc. Methods for the manufacture of porous ceramic shapes containing membraneous surfaces
US4812424A (en) * 1987-12-02 1989-03-14 The Duriron Company, Inc. Kiln furniture for the firing of ceramic articles
US5049324A (en) * 1987-12-23 1991-09-17 Hi-Tech Ceramics, Inc. Method of making a furnace lining with a fiber filled reticulated ceramic
US4923747A (en) * 1988-08-18 1990-05-08 The Dow Chemical Company Ceramic thermal barriers
US4900245A (en) * 1988-10-25 1990-02-13 Solaronics Infrared heater for fluid immersion apparatus
US4990059A (en) * 1988-12-19 1991-02-05 Aluminum Company Of America Method for filtering liquid-phase metals
US4968467A (en) * 1989-07-10 1990-11-06 Industrial Filter & Pump Mfg. Co. Hot gas filter
US5023217A (en) * 1989-09-18 1991-06-11 Swiss Aluminum Ltd. Ceramic bodies formed from partially stabilized zirconia
US4923830A (en) * 1989-09-18 1990-05-08 Swiss Aluminum Ltd. Ceramic bodies formed from partially stabilized zirconia
US5242882A (en) * 1992-05-11 1993-09-07 Scientific Design Company, Inc. Catalyst for the production of nitric acid by oxidation of ammonia
US5256387A (en) * 1992-05-11 1993-10-26 Scientific Design Company, Inc. Catalyst for the production of nitric acid by oxidation of ammonia
US5217939A (en) * 1992-05-11 1993-06-08 Scientific Design Company, Inc. Catalyst for the prduction of nitric acid by oxidation of ammonia
DE69401031T2 (en) * 1993-06-04 1997-04-30 Millipore Corp Metal filter element with high efficiency and process for its production
AU660126B2 (en) * 1993-08-30 1995-06-08 Morton International, Inc. Unitary filter for pyrotechnic airbag inflator
US5456833A (en) * 1994-05-02 1995-10-10 Selee Corporation Ceramic foam filter having a protective sleeve
US5759219A (en) * 1995-09-22 1998-06-02 Morton International, Inc. Unitary drop-in airbag filters
US5746793A (en) * 1996-01-16 1998-05-05 Morton International, Inc. Reinforced ceramic air bag filters
US5905180A (en) * 1996-01-22 1999-05-18 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process and catalyst
US5705071A (en) * 1996-08-16 1998-01-06 Vesuvius Crucible Company Pleated ceramic filter
US5785851A (en) * 1996-08-23 1998-07-28 Vesuvius Crucible Company High capacity filter
US6258900B1 (en) 1998-07-16 2001-07-10 Crystaphase International, Inc Filtration and flow distribution method for chemical reactors
US6291603B1 (en) 1997-07-18 2001-09-18 Crystaphase International, Inc. Filtration and flow distribution method for chemical reactors using reticulated ceramics with uniform pore distributions
US6254807B1 (en) 1998-01-12 2001-07-03 Regents Of The University Of Minnesota Control of H2 and CO produced in partial oxidation process
US8062521B2 (en) 1998-05-29 2011-11-22 Crystaphase Products, Inc. Filtering medium and method for contacting solids-containing feeds for chemical reactors
US6929866B1 (en) * 1998-11-16 2005-08-16 Ultramet Composite foam structures
FR2794632B1 (en) 1999-06-14 2001-09-07 Gerard Coudamy COOKING SUPPORT
US20050224335A1 (en) * 1999-11-22 2005-10-13 Gary Carmignani Apparatus and method for photocatalytic purification and disinfection of fluids
DE60202666T2 (en) * 2001-03-07 2005-06-09 Moltech Invent S.A. RESISTANT TO HEAT-INSULATING COMPONENTS THROUGH CORROSIVE HIGH-TEMPERATURE ENVIRONMENTS
DE60219646T2 (en) * 2001-09-24 2007-12-27 Millenium Biologix Technologies Inc., Kingston POROUS CERAMIC COMPOSITE BONE IMPLANTS
US7255848B2 (en) * 2002-10-01 2007-08-14 Regents Of The Univeristy Of Minnesota Production of hydrogen from alcohols
US7262334B2 (en) * 2002-11-13 2007-08-28 Regents Of The University Of Minnesota Catalytic partial oxidation of hydrocarbons
US7722832B2 (en) 2003-03-25 2010-05-25 Crystaphase International, Inc. Separation method and assembly for process streams in component separation units
US7393510B2 (en) * 2003-03-25 2008-07-01 Crystaphase International, Inc. Decontamination of process streams
US7265189B2 (en) * 2003-03-25 2007-09-04 Crystaphase Products, Inc. Filtration, flow distribution and catalytic method for process streams
US6958912B2 (en) * 2003-11-18 2005-10-25 Intel Corporation Enhanced heat exchanger
US7044124B2 (en) * 2004-03-30 2006-05-16 Rheem Manufacturing Company Heating apparatus having insulation-contacted fuel burners
US20050249602A1 (en) * 2004-05-06 2005-11-10 Melvin Freling Integrated ceramic/metallic components and methods of making same
WO2005116168A1 (en) 2004-05-25 2005-12-08 Regents Of The University Of Minnesota Production of olefins having a functional group
US20060244173A1 (en) * 2005-05-02 2006-11-02 Saint-Gobain Ceramics & Plastics, Inc. Method for making a ceramic article and ceramic extrudate
US20060246389A1 (en) * 2005-05-02 2006-11-02 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article, ceramic extrudate and related articles
US8197930B1 (en) 2007-05-10 2012-06-12 Hrl Laboratories, Llc Three-dimensional ordered open-cellular structures
US8287895B1 (en) 2008-04-24 2012-10-16 Hrl Laboratories, Llc Three-dimensional biological scaffold compromising polymer waveguides
US7687132B1 (en) 2008-03-05 2010-03-30 Hrl Laboratories, Llc Ceramic microtruss
US7382959B1 (en) 2006-10-13 2008-06-03 Hrl Laboratories, Llc Optically oriented three-dimensional polymer microstructures
US20090166214A1 (en) * 2007-05-02 2009-07-02 Celltech Power Llc Porous Ceramic Materials
BR122018070109B1 (en) * 2007-11-15 2019-06-04 Rutgers, The State University Of New Jersey Method for making a pottery by using a greenhouse gas
US8038869B2 (en) * 2008-06-30 2011-10-18 Uop Llc Integrated process for upgrading a vapor feed
US8983853B2 (en) * 2008-07-11 2015-03-17 Michael W. Shore Distributing alternatively generated power to a real estate development
US8852523B1 (en) 2009-03-17 2014-10-07 Hrl Laboratories, Llc Ordered open-cellular materials for mass transfer and/or phase separation applications
US8465825B1 (en) 2009-05-29 2013-06-18 Hrl Laboratories, Llc Micro-truss based composite friction-and-wear apparatus and methods of manufacturing the same
US8155496B1 (en) * 2009-06-01 2012-04-10 Hrl Laboratories, Llc Composite truss armor
US8702822B2 (en) * 2009-08-28 2014-04-22 Regents Of The University Of Minnesota Method and apparatus for producing a fuel from a biomass or bio-oil
US8794298B2 (en) 2009-12-30 2014-08-05 Rolls-Royce Corporation Systems and methods for filtering molten metal
WO2011114080A1 (en) * 2010-03-19 2011-09-22 Foseco International Limited Method for the production of a refractory filter
US9539773B2 (en) 2011-12-06 2017-01-10 Hrl Laboratories, Llc Net-shape structure with micro-truss core
US9017806B2 (en) 2012-03-23 2015-04-28 Hrl Laboratories, Llc High airflow micro-truss structural apparatus
EP2888529B1 (en) 2012-08-24 2020-09-30 Solaronics S.A. Method to manufacture a gas fired radiant emitter
US10035174B2 (en) 2015-02-09 2018-07-31 United Technologies Corporation Open-cell reticulated foam
US10744426B2 (en) 2015-12-31 2020-08-18 Crystaphase Products, Inc. Structured elements and methods of use
US10054140B2 (en) 2016-02-12 2018-08-21 Crystaphase Products, Inc. Use of treating elements to facilitate flow in vessels
WO2018029606A1 (en) 2016-08-09 2018-02-15 King Abdullah University Of Science And Technology On-board conversion of saturated hydrocarbons to unsaturated hydrocarbons
SG11202004098PA (en) * 2017-11-16 2020-06-29 Pontic Technology Llc Fluid decontamination apparatus
PL3815767T3 (en) 2019-10-31 2023-11-20 Foseco International Limited Refractory filter
CA3162061A1 (en) 2019-12-20 2021-06-24 John N. Glover Resaturation of gas into a liquid feedstream
MX2023002750A (en) 2020-09-09 2023-04-03 Crystaphase Products Inc Process vessel entry zones.
CN115010512B (en) * 2022-06-07 2023-10-27 济南圣泉倍进陶瓷过滤器有限公司 Foam ceramic filter and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB802686A (en) * 1955-03-31 1958-10-08 Bettinger Corp Improvements in or relating to honeycomb structures
US3112184A (en) * 1958-09-08 1963-11-26 Corning Glass Works Method of making ceramic articles
GB916784A (en) * 1960-05-04 1963-01-30 Gen Electric Co Ltd Improvements in or relating to the manufacture of porous ceramic materials
US3090094A (en) * 1961-02-21 1963-05-21 Gen Motors Corp Method of making porous ceramic articles
US3272686A (en) * 1962-03-23 1966-09-13 Corning Glass Works Structural ceramic bodies and method of making same
US3778336A (en) * 1965-09-17 1973-12-11 Scott Paper Co Heat resistant and oxidation resistant structures
US3616841A (en) * 1967-10-30 1971-11-02 Energy Research And Generation Method of making an inorganic reticulated foam structure
US3946039A (en) * 1967-10-30 1976-03-23 Energy Research & Generation, Inc. Reticulated foam structure
US3632385A (en) * 1970-03-17 1972-01-04 Atomic Energy Commission Carbon composite structures and method for making same
US3799796A (en) * 1970-10-06 1974-03-26 Matthey Bishop Inc Preparation of structures with a coating of al2o3/sio2 fibers bonded to al2o3 for use as catalyst substrates
US3949137A (en) * 1974-09-20 1976-04-06 Akrongold Harold S Gel-impregnated sponge
JPS5913887B2 (en) * 1979-10-30 1984-04-02 株式会社ブリヂストン Filter material for molten metal

Also Published As

Publication number Publication date
JPS60235778A (en) 1985-11-22
US4568595A (en) 1986-02-04

Similar Documents

Publication Publication Date Title
JPH0549633B2 (en)
US7011803B2 (en) Honeycomb structure and method for its manufacture
US4276331A (en) Metal-ceramic composite and method for making same
EP1550494B1 (en) Honeycomb structure
US4059712A (en) Metal-ceramic composite and method for making same
KR100516537B1 (en) HONEYCOMB STRUCTURE CONTAINING Si AND METHOD FOR MANUFACTURE THEREOF
PL205752B1 (en) Honeycomb filter
US4810677A (en) Heat-insulating lining for a gas turbine
GB2149771A (en) Ceramic structure
CN106630978A (en) Surface-toughened aluminum oxide fiber rigid heat-insulating tile multi-layered composite material, coating composition, preparation method and application of composite material
JPH0260630B2 (en)
US4376374A (en) Metal-ceramic composite and method for making same
JP4473438B2 (en) Cordierite honeycomb structure and manufacturing method thereof
JP2010527897A (en) Cordierite fiber substrate and method for forming the same
KR20190050766A (en) A roller for a roller furnace having at least one coating on its surface
CN1331560C (en) Low temperature sintering reticular silicon carbide ceramic filtering device with high fire resisting level and its preparation method
CA2083019A1 (en) Ceramic material
CA2012235A1 (en) Transfer tube with insitu heater
KR20110114542A (en) Filtration structure having inlet and outlet surfaces with a different plugging material
JP2005144250A (en) Honeycomb structure body
JPH0798707B2 (en) Porous refractory molding for firing functional parts
JPH0152354B2 (en)
CA1098435A (en) Metal-ceramic composite and method for making same
CN101839642B (en) Fire-clay crucible capable of reacting thermal stress and being suitable for melting alloy with high activity
JPH04302992A (en) Refractory material for burning ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term