JPH04143262A - Ceramic coated heat resistant member - Google Patents

Ceramic coated heat resistant member

Info

Publication number
JPH04143262A
JPH04143262A JP26875090A JP26875090A JPH04143262A JP H04143262 A JPH04143262 A JP H04143262A JP 26875090 A JP26875090 A JP 26875090A JP 26875090 A JP26875090 A JP 26875090A JP H04143262 A JPH04143262 A JP H04143262A
Authority
JP
Japan
Prior art keywords
ceramic
filled
heat
voids
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26875090A
Other languages
Japanese (ja)
Other versions
JP2993723B2 (en
Inventor
Hideyuki Arikawa
秀行 有川
Mitsuo Chikazaki
充夫 近崎
Yoshiyuki Kojima
児島 慶亨
Teru Mehata
輝 目幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2268750A priority Critical patent/JP2993723B2/en
Publication of JPH04143262A publication Critical patent/JPH04143262A/en
Application granted granted Critical
Publication of JP2993723B2 publication Critical patent/JP2993723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic coated heat resistant member having thermal shock, corrosion and oxidation resistances and high adhesion by filling a heat resistant substance such as a metal or alloy into the pores in a thermally sprayed ceramic film of molten particles having a laminated structure formed on the surface of a substrate. CONSTITUTION:When a thermally sprayed ceramic film of molten particles having a laminated structure is formed on the surface of a substrate to obtain a heat resistant coated member, the substrate is made of a heat resistant alloy based on Fe, Co or Ni, Cu, a Cu alloy, etc., and a heat resistant substance is filled into the pores in the ceramic film. Ceramic such as SiO2, Al2O3, ZrO2 or a mixture thereof, a metal such as Cu, Ni or Co or an alloy of such metals is suitable for use as the heat resistant substance. The filled substance may be changed over in the thickness direction of the film or the rate of filling may be varied in the thickness direction. A ceramic coated heat resistant member suitable for use as the moving blade of a gas turbine, etc., is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの動翼、静翼、あるいはロケッ
トエンジンの燃焼器等の高温にさらされる部分や部品に
用いられる、溶射セラミックス皮膜を有する耐熱複合部
材に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a thermal sprayed ceramic coating used for parts and parts exposed to high temperatures, such as moving blades and stationary blades of gas turbines, or combustors of rocket engines. The present invention relates to a heat-resistant composite member having the following properties.

〔従来の技術〕[Conventional technology]

ガスタービン、航空・宇宙、核融合炉なとの分野におい
て、耐熱性、遮熱性、耐環境性等に優れた超耐熱材料の
開発が重要な技術的課題としてあげられている。
In the fields of gas turbines, aerospace, and nuclear fusion reactors, the development of super heat-resistant materials with excellent heat resistance, heat shielding properties, environmental resistance, etc. is an important technical issue.

従来、このような超耐熱材料の製造方法の一つとして、
金属や合金の表面にセラミックスをプラズマ溶射法によ
ってコーティングする方法が知られている、代表的な例
として、Ni、 Co、 Feなどをベースとする耐熱
超合金基材の表面に耐食耐酸化性向上、密着性向上、お
よび熱応力緩和を目的とした中間層を介してZrO□・
Y2O3等のセラミックスを溶射する方法が提案されて
おり、特開昭62−156938号公報に記載のように
基材とセラミックスの間に両者の成分比が連続的に変化
する中間層を設けて熱応力を緩和する傾斜機能材料(F
GM)等が知られている。
Conventionally, one of the methods for manufacturing such super heat-resistant materials is
A typical example is the coating of ceramics on the surface of metals and alloys by plasma spraying, which improves corrosion and oxidation resistance on the surface of heat-resistant superalloy substrates based on Ni, Co, Fe, etc. , ZrO□ through an intermediate layer for the purpose of improving adhesion and alleviating thermal stress.
A method of thermal spraying ceramics such as Y2O3 has been proposed, and as described in JP-A-62-156938, an intermediate layer is provided between the base material and the ceramics in which the ratio of the components of the two continuously changes. Functionally graded material (F) that relieves stress
GM) etc. are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術においては、溶射によって形成される表面
のセラミックス層は第1図に示すように基材1上で溶射
偏平粒子2か積層構造を形成し、粒子間に多くの空隙3
を含む多孔質な膜となる。
In the above conventional technology, the surface ceramic layer formed by thermal spraying forms a laminated structure of thermally sprayed flat particles 2 on a base material 1 as shown in FIG. 1, and has many voids 3 between the particles.
It becomes a porous membrane containing.

このため、セラミックス層の強度は燃焼セラミックス等
に比べ空隙3の含有率に応じて低下しており、使用条件
下における温度勾配や、基材・中間層との熱膨張差に起
因する熱応力によってクラックや剥離が発生しやすい。
Therefore, compared to combustion ceramics, the strength of the ceramic layer decreases depending on the content of voids 3, and due to thermal stress caused by the temperature gradient under the usage conditions and the difference in thermal expansion between the base material and the intermediate layer. Cracks and peeling are likely to occur.

また、中間層や、前述したFGMによって熱応力を緩和
した場合であっても、部分的な加熱を受けたり、基材を
冷却して表面と裏面に温度差が生じてセラミックス層に
高温で圧縮応力が作用すると、セラミックス層内の空隙
がつめられてリラクゼーションが生じ、これによって冷
却時に引張応力が誘発されてクラックが発生する。さら
に、この空隙やクラックを通じて高温の雰囲気ガスが侵
入することによって基材や中間層の金属成分が腐食、酸
化して皮膜の剥離・離脱破壊等が生じる可能性があった
In addition, even when thermal stress is alleviated by the intermediate layer or the FGM mentioned above, the ceramic layer may be compressed at high temperatures due to partial heating or cooling of the base material, resulting in a temperature difference between the front and back surfaces. When stress is applied, the voids in the ceramic layer are filled and relaxation occurs, which induces tensile stress and cracks upon cooling. Furthermore, when high-temperature atmospheric gas enters through these voids and cracks, the metal components of the base material and intermediate layer may be corroded or oxidized, resulting in peeling or breakage of the film.

本発明は、前述した従来技術における問題点を解消し、
耐熱衝撃性、耐食性、耐酸化性および基材との密着性が
高い耐熱セラミックス被覆部材を提供することを目的と
している。
The present invention solves the problems in the prior art described above,
The object of the present invention is to provide a heat-resistant ceramic coated member that has high thermal shock resistance, corrosion resistance, oxidation resistance, and adhesion to a base material.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明者らは鋭意研究を重
ねた結果、セラミックス溶融皮膜の空隙にゾル・ゲル含
浸法、電気めっき法等を用いてセラミックス、金属を充
填することにより緻密化を図り、セラミックス溶射膜の
強度、密着性の向上及び耐食耐酸化性を付与することが
可能であることを発見し、本発明を完成するに至った。
In order to achieve the above object, the inventors of the present invention have conducted extensive research and found that the voids in a fused ceramic film can be densified by filling the voids with ceramics or metals using sol-gel impregnation, electroplating, etc. The present inventors have discovered that it is possible to improve the strength and adhesion of ceramic sprayed coatings, and impart corrosion and oxidation resistance to them, leading to the completion of the present invention.

すなわち、耐熱部材の表面に溶融粒子の積層構造を有す
るセラミックス溶射皮膜を設けた耐熱被覆部材において
、粒子間あるいは粒子内の空隙の一部あるいは全てが、
耐熱性物質により充填されていることを特徴とするセラ
ミックス被覆耐熱部材を要旨としている。
That is, in a heat-resistant coating member in which a ceramic sprayed coating having a laminated structure of molten particles is provided on the surface of a heat-resistant member, some or all of the voids between particles or within particles are
The gist is a ceramic-coated heat-resistant member characterized by being filled with a heat-resistant material.

〔作 用〕[For production]

本発明の構成と作用を説明する。 The structure and operation of the present invention will be explained.

本発明における耐熱複合材料の基材としては、例えばC
u、 Ni合金、CO基合金等が用いられる。また、セ
ラミックス溶射層の材質としては、例えばZrO□−M
gO,Zr0z−CaO,Zr0z−Y20s等が適し
ている。
As the base material of the heat-resistant composite material in the present invention, for example, C
U, Ni alloy, CO-based alloy, etc. are used. Further, as the material of the ceramic sprayed layer, for example, ZrO□-M
gO, Zr0z-CaO, Zr0z-Y20s, etc. are suitable.

空隙の充填方法としてセラミックスの充填にはオルト珪
酸塩口エチル溶液(TEOS)や燐酸アルミニウム溶液
(MAP)を溶射皮膜の空隙に真空含浸した後、焼成し
て5s02及びA1.0.を空隙に充填するゾル−ゲル
法を用いる。
To fill the voids with ceramics, ethyl orthosilicate solution (TEOS) or aluminum phosphate solution (MAP) is vacuum impregnated into the voids of the sprayed coating, and then fired to form 5s02 and A1.0. A sol-gel method is used to fill the voids with.

また、金属の充填方法としては、充填すべき金属イオン
を含む電解液中で、溶射層の空隙を通じてのみ電解液が
基材に接するように材料の周囲を例えばシリコンゴム等
の不透水性の絶縁物で被覆した状態で電気めっきを行い
、空隙内を充填する電気めっき法を用いる。
In addition, as a filling method for metal, in an electrolytic solution containing the metal ions to be filled, the material is surrounded by a water-impermeable insulator such as silicone rubber so that the electrolyte contacts the base material only through the gaps in the sprayed layer. An electroplating method is used in which electroplating is performed while the material is covered with a material to fill the voids.

本発明の耐熱セラミックス溶射皮膜では、セラミックス
層内の空隙が他の物質で充填されているため、セラミッ
クス層の強度、ヤング率が向上し、これに伴って耐熱衝
撃性を向上できる。また、充填物質として耐食耐酸化性
に優れた金属、合金あるいはセラミックスを選択するこ
とにより、高温の燃焼ガスがセラミックス層内の空隙を
介して浸透拡散して基材や中間層の金属成分を腐食ある
いは酸化することを防止でき、優れた耐食耐酸化性を発
揮できる。さらに、電気めっき法において基材と同一の
金属を充填物質として選択すれば、充填物質は基材と一
体となって空隙を充填することになり、いわゆるアンカ
ーとして作用し、コーテインク層の密着性か向上する。
In the heat-resistant ceramic spray coating of the present invention, the voids in the ceramic layer are filled with another substance, so the strength and Young's modulus of the ceramic layer are improved, and accordingly, the thermal shock resistance can be improved. In addition, by selecting metals, alloys, or ceramics with excellent corrosion and oxidation resistance as the filler material, high-temperature combustion gas permeates and diffuses through the voids in the ceramic layer, corroding the metal components of the base material and intermediate layer. Alternatively, it can prevent oxidation and exhibit excellent corrosion and oxidation resistance. Furthermore, if the same metal as the base material is selected as the filling material in the electroplating method, the filling material will integrate with the base material and fill the voids, acting as a so-called anchor and improving the adhesion of the coating ink layer. improves.

〔実施例〕〔Example〕

本発明を実施例によって説明するか、これによって本発
明は限定されるものではない。
The invention will be illustrated by examples without the intention being to limit it thereto.

実施例1 第2図に示すように、厚さ3.5mmのNi基合金の基
材l上に結合層として厚さ100μmのCoNlCrA
IY合金層4を介してZrO□−6wt%Y2O3膜5
を厚さ300μmプラズマ溶射法により形成した後、真
空中てTE01 (Tetra Eitxl 0rth
o 5ilicate : 5i(OC2H6)4)溶
液中に浸漬し、セラミックス層内の空隙にTEO3溶液
を含浸させる。しかる後、電気炉内で大気中400°C
に加熱し、加水分解反応によりTE01をSiO□6に
転換する。焼成の際には体積収縮か起きるため空隙を完
全にSiO□6で充填するために、さらに真空中での含
浸−焼成を繰り返す。充填の具合は焼成を終える毎に試
料の重量変化を測定し、重量の増加かほとんどなくなっ
た時点て完了とする。このようにして、セラミックス層
内の空隙をSiO□6で充填した耐熱セラミックス溶射
皮膜を得た。
Example 1 As shown in FIG. 2, CoNlCrA with a thickness of 100 μm was deposited as a bonding layer on a base material l of Ni-based alloy with a thickness of 3.5 mm.
ZrO□-6wt% Y2O3 film 5 through IY alloy layer 4
TE01 (Tetra Eitxl 0rth
o 5ilicate: Immerse in 5i(OC2H6)4) solution to impregnate the voids in the ceramic layer with TEO3 solution. After that, it was heated to 400°C in the atmosphere in an electric furnace.
TE01 is converted to SiO□6 by a hydrolysis reaction. Since volumetric shrinkage occurs during firing, the impregnation and firing process in vacuum is repeated in order to completely fill the voids with SiO□6. The filling condition is determined by measuring the change in weight of the sample every time firing is completed, and the filling is considered complete when the weight increases or almost disappears. In this way, a heat-resistant ceramic spray coating was obtained in which the voids in the ceramic layer were filled with SiO□6.

次に、上記の方法によって得られた空隙をSiO□で充
填したセラミックス溶射皮膜と、比較のため5102に
よる充填処理を施していないセラミックス溶射皮膜につ
いて耐熱衝撃性を評価した。
Next, the thermal shock resistance was evaluated for the ceramic sprayed coating in which the voids obtained by the above method were filled with SiO□ and for comparison, the ceramic sprayed coating that was not filled with 5102.

このとき、試験片は9X9aumとし、試験片の裏面を
銅ホルダーを介して水冷しながら、試料表面中心部を1
0kwキセノンアークランプで部分的に照射加熱し、表
面中心の温度がほぼ一定に達した約5秒後に照射を止め
急冷した。その後試料表面と断面を観察し、クラックの
発生及び界面近傍での剥離の有無を調べた。この結果、
SiO□による充填処理を施していないセラミックス溶
射皮膜では表面中心温度が約700°Cを越えると中心
部にクラック及び剥離の発生が見られたが、充填処理を
施した試料では約1000°Cまでクラック及び剥離の
発生は見られず、著しく耐熱衝撃性を向上できることが
確認できた。
At this time, the test piece was 9 x 9 aum, and while cooling the back side of the test piece with water via a copper holder, the center of the sample surface was
It was partially irradiated and heated with a 0 kW xenon arc lamp, and about 5 seconds after the temperature at the center of the surface reached a constant temperature, the irradiation was stopped and rapidly cooled. Thereafter, the sample surface and cross section were observed to check for the occurrence of cracks and peeling near the interface. As a result,
Ceramic sprayed coatings that were not filled with SiO□ showed cracks and peeling at the center when the temperature at the center of the surface exceeded approximately 700°C, but samples that were filled with SiO No cracks or peeling were observed, and it was confirmed that thermal shock resistance could be significantly improved.

実施例2 第4図に示すように厚さ4順の銅基材1上にlro□−
6wt%Y2O3膜5をプラズマ溶射法によって厚さ3
00μm形成した後、第3図に示すように銅基材1の裏
面に導線8をはんだ付等により取り付け、セラミックス
層5の表面以外の部分をシリコンゴム等の不透水性の絶
縁物7で被覆する。これを、銅イオンを含む水溶液、例
えば硫酸銅電解液10(=浸漬し、真空含浸等によって
セラミックス層5内の空隙内に十分に電解液を浸透させ
た後、銅電極9との間に直流電圧11を印加して電解め
っきを行い空隙中に銅12を析出せしめる。このとき、
電流密度か0.5 mA/ al以下となるように電圧
を制御すると良好な充填結果か得られる。このようにし
て、第4図に示すようにセラミックス層内の空隙の一部
を銅12で充填した耐熱セラミックス溶射皮膜を得た。
Example 2 As shown in FIG. 4, lro□-
A 6 wt% Y2O3 film 5 was formed to a thickness of 3 by plasma spraying.
After forming the ceramic layer 5 with a thickness of 00 μm, as shown in FIG. 3, a conductive wire 8 is attached to the back surface of the copper base material 1 by soldering or the like, and the parts other than the surface of the ceramic layer 5 are covered with a water-impermeable insulator 7 such as silicone rubber. do. This is immersed in an aqueous solution containing copper ions, for example, a copper sulfate electrolyte 10 (= immersed in the electrolyte, and the electrolyte is sufficiently permeated into the voids in the ceramic layer 5 by vacuum impregnation, etc., and then a direct current is applied between it and the copper electrode 9. Electrolytic plating is performed by applying voltage 11 to deposit copper 12 in the voids.At this time,
Good filling results can be obtained by controlling the voltage so that the current density is below 0.5 mA/al. In this way, a heat-resistant ceramic sprayed coating was obtained in which some of the voids in the ceramic layer were filled with copper 12, as shown in FIG.

次に上記の方法によって得られた空隙を銅で充填したセ
ラミックス溶射皮膜と、比較のため銅による充填処理を
施していないセラミックス溶射皮膜について、実施例1
と同様にして耐熱衝撃性の評価を行った。
Next, Example 1 was prepared for a ceramic sprayed coating in which the voids obtained by the above method were filled with copper, and for comparison, a ceramic sprayed coating that was not filled with copper.
Thermal shock resistance was evaluated in the same manner as above.

この結果、銅による充填処理を施していないセラミック
ス溶射皮膜では表面中心部温度か約700°Cを越える
と中心部にクラックの発生及びコーティングの剥離が見
られたが、銅による充填処理を施したセラミックス溶射
皮膜では約800°Cまでクラックの発生及び剥離は見
られず、耐熱衝撃性及び密着性が著しく向上することが
確認できた。
As a result, when the temperature at the center of the surface exceeded approximately 700°C, cracks appeared in the center and the coating peeled off in the ceramic sprayed coating that had not been filled with copper, but with the coating that had been filled with copper. No cracking or peeling was observed in the ceramic sprayed coating up to about 800°C, and it was confirmed that the thermal shock resistance and adhesion were significantly improved.

実施例3 第5図に示すように厚さ3.5順のNi基合金の基材l
上にZr026wt%Y20.膜5を厚さ300.cz
mプラズマ溶射法により形成した後、第3図に示すよう
にNi基合金基材1の裏面に導線8をはんだ付等により
取り付け、セラミックス層′5の表面以外の部分をシリ
コンゴム等の不透水性の絶縁物7で被覆する。これをN
iイオンを含む電解液例えば硫酸ニッケル電解液10に
浸漬し真空含浸等によりセラミックス層内の空隙内に十
分に電解液を浸透させた後、Ni電極9との間に直流電
圧11を印加して電解めっきを行い空隙中にNi13を
析出せしめる。基材から100μm程度の厚さの範囲の
空隙が充填されたところで通電を終え、試料を取り出し
て絶縁版7及び導線8を除去した後、蒸留水中で超音波
洗浄を行いセラミックス層中に残留している電解液を除
去して乾燥する。次に真空中でTEOS溶液中に浸漬し
、セラミックス層内の空隙にTEOS溶液を十分に浸透
させる。然る後、電気炉内で大気中400°Cに加熱し
、加水分解反応によりTEOSを第5図に示すように5
iOt 6に転換する。焼成の際には体積収縮が起こる
ため空隙を完全に5iftで充填するため、さらに真空
中での含浸−焼成を繰り返す。
Example 3 As shown in FIG.
Zr026wt%Y20. The film 5 has a thickness of 300. cz
After forming the ceramic layer by plasma spraying, as shown in FIG. 3, conductive wires 8 are attached to the back surface of the Ni-based alloy base material 1 by soldering, etc., and the parts other than the surface of the ceramic layer '5 are covered with water-impermeable material such as silicone rubber. It is coated with a magnetic insulator 7. This is N
After immersing the ceramic layer in an electrolytic solution containing i ions, such as a nickel sulfate electrolytic solution 10, and allowing the electrolytic solution to sufficiently penetrate into the voids in the ceramic layer by vacuum impregnation or the like, a DC voltage 11 is applied between the ceramic layer and the Ni electrode 9. Electrolytic plating is performed to deposit Ni13 in the voids. When the voids within a thickness range of about 100 μm from the base material were filled, the electricity was turned off, the sample was taken out, the insulating plate 7 and the conductive wire 8 were removed, and then ultrasonic cleaning was performed in distilled water to remove any residue remaining in the ceramic layer. Remove the electrolyte and dry. Next, the ceramic layer is immersed in a TEOS solution in a vacuum to allow the TEOS solution to sufficiently penetrate into the voids within the ceramic layer. After that, it was heated to 400°C in the air in an electric furnace, and TEOS was converted to 5% by hydrolysis reaction as shown in Figure 5.
Convert to iOt6. Since volumetric shrinkage occurs during firing, in order to completely fill the voids with 5 ift, the impregnation and firing process in vacuum is repeated.

焼成を終える毎に試料の重量変化を測定し、重量増加が
ほとんどなくなった時点で完了とする。このようにして
、セラミックス層内の基材制約100μmの範囲の空隙
がNi、表面制約200μmの範囲の空隙がSiO□で
充填されたセラミックス溶射皮膜を得た。
The change in weight of the sample is measured every time firing is completed, and the firing is considered complete when there is almost no increase in weight. In this way, a ceramic sprayed coating was obtained in which the voids within the ceramic layer within the base material constraint range of 100 μm were filled with Ni, and the voids within the surface constraint range of 200 μm were filled with SiO□.

次に、上記の方法によって得られた空隙をNi及びSi
O□で充填したセラミックス溶射皮膜と、比較のため全
く充填処理を施していないセラミックス溶射皮膜、空隙
内をすべてNiで充填したセラミックス溶射皮膜及び空
隙内をすべて5iftで充填したセラミックス溶射皮膜
について実施例1と同様の耐熱衝撃性試験を行った。こ
の結果、第1表に示すように、セラミックス層の基材側
をNi、表面側を5iOzで充填したセラミックス溶射
皮膜では耐熱衝撃性及び基材との密着性が著しく向上す
ることが確認できた。
Next, the voids obtained by the above method were filled with Ni and Si.
Examples of ceramic sprayed coating filled with O□, ceramic sprayed coating without any filling treatment for comparison, ceramic sprayed coating where all the voids were filled with Ni, and ceramic sprayed coating where all the voids were filled with 5ift. The same thermal shock resistance test as in 1 was conducted. As a result, as shown in Table 1, it was confirmed that thermal shock resistance and adhesion to the base material were significantly improved in a ceramic sprayed coating in which the base material side of the ceramic layer was filled with Ni and the surface side was filled with 5iOz. .

(本頁以下余白) また、電気炉により大気中で1000℃に加熱、室温ま
での冷却を繰り返す熱サイクル試験を行い、耐熱疲労性
及び耐酸化性の評価を行った結果、第2表に示すように
セラミックス層の基材側をNi1表面側をSiO2、A
l2O3、ZrO2で充填したセラミックス溶射皮膜で
はクラックや剥離は見られず、また基材の酸化も生じて
おらず、耐熱疲労性及び耐酸化性が向上することが確認
できた。
(Margins below this page) In addition, a thermal cycle test was conducted in which heating to 1000°C in the air in an electric furnace and cooling to room temperature was repeated, and the results of evaluating thermal fatigue resistance and oxidation resistance are shown in Table 2. As shown, the base material side of the ceramic layer is Ni1, the surface side is SiO2, and A
In the ceramic sprayed coating filled with l2O3 and ZrO2, no cracks or peeling were observed, and no oxidation of the base material occurred, and it was confirmed that the thermal fatigue resistance and oxidation resistance were improved.

(本頁以下余白) 実施例4 第6図に示すように、Ni基合金の基材l上に基材側が
CoNlCrAIY合金、表面側かZrOz−6wt%
Y2O3で、その中間に両者の成分比か連続的に変化す
る中間層14を介してZrO□−61vt%Y20.セ
ラミックス層5を形成した後、真空中てTEO3溶液中
に浸漬しセラミックス層内の空隙にTEO3溶液を含浸
させる。
(Margin below this page) Example 4 As shown in Fig. 6, on the base material l of Ni-based alloy, the base material side was CoNlCrAIY alloy, and the surface side was ZrOz-6wt%.
Y2O3, with ZrO□-61vt% Y20. After forming the ceramic layer 5, it is immersed in a TEO3 solution in a vacuum to impregnate the voids within the ceramic layer with the TEO3 solution.

しかる後、電気炉内で大気中400°Cに加熱し、加水
分解反応によりTEOSをSiO□6に転換する。焼成
の際には体積収確か起こるため空隙を完全にSiO□6
で充填するために、さらに真空中での含浸→焼成を繰り
返す。焼成を終える毎に試料の重量変化を測定し、重量
の増加が認められなくなった時点で充填を完了する。こ
のようにして、セラミックス層内の空隙の全てをSiO
□で充填した、セラミックス層と基材の間で連続的に組
成が変化する中間層を有する耐熱セラミックス被覆部材
を得た。
Thereafter, it is heated to 400° C. in the air in an electric furnace, and TEOS is converted to SiO□6 by a hydrolysis reaction. Volume shrinkage occurs during firing, so the voids are completely filled with SiO□6
In order to fill it with water, the process of impregnation and firing in vacuum is repeated. The change in weight of the sample is measured every time firing is completed, and filling is completed when no increase in weight is observed. In this way, all the voids in the ceramic layer are filled with SiO
A heat-resistant ceramic coated member having an intermediate layer filled with □ and whose composition changes continuously between the ceramic layer and the base material was obtained.

次に、上記の方法によって得られたセラミックス層内の
空隙をSiO□で充填した、セラミックス層と基材の間
で連続的に組成が変化する中間層を存する耐熱セラミッ
クス被覆部材と、セラミツクン層内の空隙をSiO□で
充填していないセラミック2層と基材の間で連続的に組
成が変化する中間層4有する耐熱セラミックス被覆部材
について実施伊1と同様にして耐熱衝撃性を評価した。
Next, a heat-resistant ceramic coated member having an intermediate layer whose composition changes continuously between the ceramic layer and the base material, in which the voids in the ceramic layer obtained by the above method are filled with SiO□, and Thermal shock resistance was evaluated in the same manner as in Example 1 for a heat-resistant ceramic coated member having an intermediate layer 4 in which the composition continuously changes between the two ceramic layers whose voids are not filled with SiO□ and the base material.

その結揮空隙をSiO□で充填していない試料では表面
中心温度800°Cを越えるとセラミックス層中心部に
クラックが発生したが、空隙を全て5i02で充填した
し料では表面中心温度1000°Cまでセラミックス層
Pにクラックは発生せず、耐熱衝撃性を向上できること
が確認できた。
In the sample in which the crystallization voids were not filled with SiO□, cracks occurred in the center of the ceramic layer when the center surface temperature exceeded 800°C, but in the sample in which all the voids were filled with 5i02, the center surface temperature was 1000°C. It was confirmed that no cracks occurred in the ceramic layer P up to this point, and that the thermal shock resistance could be improved.

実施例5 第3図に示すように厚さ4順の銅基材l上にZrO□−
6wt%Y2O3膜5をプラズマ溶射法によって、厚さ
300μmに形成した後、銅基材1の裏面に導線8をは
んだ付等により取り付け、セラミックス層5の表面以外
の部分をシリコンゴム等の不透水性の絶縁物7で被覆す
る。これを銅イオンを含む水溶液、例えば硫酸銅電解液
10に浸漬し真空含浸等によってセラミックス層5内の
空隙に十分に電解液を浸透させた後、銅電極9との間に
直流電圧11を印加して電解めっきを行い、第4図に示
すように空隙中に銅12を析出せしめる。このとき、第
7図に示すように電流密度かめっき時間に対して変化し
ていくように電圧を制御した。電流密度が増大すると、
析出速度が増加するが、微細な空孔内では電解液の循環
か悪いため、銅イオンの供給が間に合わなくなり、銅の
析出は電解液の循環が良く、銅イオンの供給か十分行わ
れる比較的大きな空孔で急速に進行することになり、層
内金体では空隙の充填率は低下する。このようにして、
第8図に示すようなセラミックス層内の空隙が銅で充填
され、なおかつ銅の充填率が厚さ方向に変化(基材側て
充填重大、表面側で充填率小)するセラミックス溶射皮
膜を得た。
Example 5 As shown in FIG. 3, ZrO
After forming a 6 wt% Y2O3 film 5 to a thickness of 300 μm by plasma spraying, a conductive wire 8 is attached to the back surface of the copper base material 1 by soldering or the like, and the parts other than the surface of the ceramic layer 5 are covered with water-impermeable material such as silicone rubber. It is coated with a magnetic insulator 7. This is immersed in an aqueous solution containing copper ions, such as a copper sulfate electrolyte 10, and the electrolyte is sufficiently infiltrated into the voids in the ceramic layer 5 by vacuum impregnation or the like, and then a DC voltage 11 is applied between it and the copper electrode 9. Then, electrolytic plating is performed to deposit copper 12 in the voids as shown in FIG. At this time, the voltage was controlled so that the current density varied with the plating time as shown in FIG. As the current density increases,
Although the deposition rate increases, the circulation of the electrolyte within the fine pores is poor, making it impossible to supply copper ions in time. This progresses rapidly in large pores, and the filling rate of the pores decreases in the interlayer gold body. In this way,
A ceramic sprayed coating is obtained in which the voids in the ceramic layer are filled with copper as shown in Figure 8, and the copper filling rate changes in the thickness direction (the filling rate is significant on the base material side, and small on the surface side). Ta.

次に上記の方法によって得られた空隙が銅で充填され、
なおかつ銅の充填率が厚さ方向で変化するセラミックス
溶射皮膜と、比較のため銅による充填処理を施していな
いセラミックス溶射皮膜について、実施例1と同様にし
て耐熱衝撃性の評価を行った。
Then the void obtained by the above method is filled with copper,
In addition, thermal shock resistance was evaluated in the same manner as in Example 1 for a ceramic sprayed coating in which the copper filling rate changes in the thickness direction and for comparison, a ceramic sprayed coating that was not subjected to copper filling treatment.

この結果、空隙が銅で充填され、なおかつ銅の充填率が
厚さ方向で変化するセラミックス溶射皮膜では耐熱衝撃
性及び基材との密着性が著しく向上することが確認でき
た。
As a result, it was confirmed that thermal shock resistance and adhesion to the base material were significantly improved in a ceramic sprayed coating in which the voids were filled with copper and the copper filling rate varied in the thickness direction.

実施例6 第9図に示すようなNi基会合金製ガスタービン用動翼
Aの燃焼ガスに曝される部分の全面(第9図の斜線部)
に、実施例1と同様の方法で本発明による空隙をSiO
□で充填したセラミックス溶射皮膜を形成した。また、
実施例3と同様の方法で本発明による空隙をNi及び5
iOtで充填したセラミックス溶射皮膜を形成した。な
お、セラミックス層の厚さは300.czm、結合層の
CoNlCrAIY合金層は100μmである。
Example 6 The entire surface of the part exposed to combustion gas of a Ni-based alloy gas turbine rotor blade A as shown in FIG. 9 (shaded area in FIG. 9)
Then, the voids according to the present invention were formed using SiO in the same manner as in Example 1.
A ceramic spray coating filled with □ was formed. Also,
The void according to the present invention was prepared using Ni and 5 in the same manner as in Example 3.
A ceramic spray coating filled with iOt was formed. The thickness of the ceramic layer is 300mm. czm, and the CoNlCrAIY alloy layer of the bonding layer is 100 μm.

次にこれらのガスタービン翼Aと、比較のために充填処
理を施していないセラミックス溶射皮膜を形成したガス
タービン翼について、1050°Cの電気炉を用いた大
気中加熱試験、及び1050°Cの電気炉中大気加熱と
炉外での空冷を繰り返す熱サイクル試験を行った。なお
、熱サイクル試験では加熱時間30分、冷却温度は20
0°Cl2O分とした。その結果、大気中加熱試験では
本発明の空隙をSin、で充填したセラミックス皮膜を
形成した翼、及び空隙をNi及び5102で充填したセ
ラミックス皮膜を形成した翼では、約1000h試験後
でもセラミックス皮膜は健全であった。一方、充填処理
を施していないセラミックス皮膜を形成した翼では、約
300hで皮膜のはく離が生じた。また、熱サイクル試
験の結果、本発明の空隙を5iOzで充填したセラミッ
クス皮膜を形成した翼、及び空隙をNi及びSiO2、
Al2O3、ZrO2で充填したセラミックス皮膜を形
成した翼では、tooo回の繰り返し後もセラミックス
皮膜は健全であった。一方、充填処理を施していないセ
ラミックス皮膜を形成した翼では約100回の繰り返し
でセラミックス層にはく離が生じた。このように、本発
明の空隙に充填処理を施したセラミックス皮膜を有する
タービン翼は従来のものに比ベセラミックス皮膜のはく
離等の損傷が生じ難く、セラミックス皮膜の遮熱効果に
よるNi基会合金製基材温度の低減が安定に維持できる
ため、タービン翼の信頼性及び寿命を向上することかで
きる。本発明によるセラミックス皮膜は本実施例で○べ
たタービン翼以外にも、タービン燃焼器、ロケットエン
ジンの燃焼器やノズル等の高熱負荷に曝される機器及び
部材にも適用可能である。
Next, these gas turbine blades A and, for comparison, gas turbine blades with ceramic sprayed coatings that were not subjected to filling treatment were subjected to an atmospheric heating test using an electric furnace at 1050°C, and a heating test at 1050°C. A thermal cycle test was conducted in which air heating in an electric furnace and air cooling outside the furnace were repeated. In addition, in the heat cycle test, the heating time was 30 minutes, and the cooling temperature was 20 minutes.
The temperature was set at 0°Cl2O min. As a result, in the air heating test, it was found that the ceramic film of the present invention was formed with a ceramic film with the voids filled with Sin, and the wing with a ceramic film with the voids filled with Ni and 5102, even after about 1000 hours of testing. It was healthy. On the other hand, in the case of the blade on which the ceramic film was formed and which was not subjected to the filling treatment, the film peeled off after about 300 hours. In addition, as a result of thermal cycle tests, the air gap of the present invention was formed with a ceramic film filled with 5iOz, and the air gap was filled with Ni and SiO2,
In the blades on which the ceramic coatings filled with Al2O3 and ZrO2 were formed, the ceramic coatings remained sound even after being repeated too many times. On the other hand, in the blade on which the ceramic film was formed and which was not subjected to the filling treatment, the ceramic layer peeled off after about 100 repetitions. In this way, the turbine blade of the present invention having a ceramic film with the voids filled is less prone to damage such as peeling of the ceramic film compared to conventional ones, and is made of Ni-based alloy due to the heat shielding effect of the ceramic film. Since the base material temperature can be stably reduced, the reliability and life of the turbine blade can be improved. The ceramic coating according to the present invention can be applied not only to the turbine blades shown in this example, but also to equipment and members exposed to high heat loads, such as turbine combustors, rocket engine combustors, and nozzles.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているから、基
材に対するセラミックス溶射皮膜の耐熱衝撃性、耐食耐
酸化性及び基材との密着性を向上できるので、高温にお
いてもクラックの発生や剥離のない優れた耐熱セラミッ
クス耐熱被覆部材が提供できる。また、本発明による耐
熱セラミックス被覆部材は今後開発が予想される高温ガ
スタービンの動静翼や燃焼器、あるいは高性能ロケット
エンジンの燃焼器用の材料として有望であり、産業1益
とするところ大である。
Since the present invention is constructed as described above, it is possible to improve the thermal shock resistance, corrosion resistance, oxidation resistance, and adhesion of the ceramic sprayed coating to the substrate, thereby preventing cracking and peeling even at high temperatures. It is possible to provide an excellent heat-resistant ceramic heat-resistant coating member that is free of heat-resistant coatings. In addition, the heat-resistant ceramic coated member according to the present invention is promising as a material for moving and stationary blades and combustors of high-temperature gas turbines, which are expected to be developed in the future, and combustors of high-performance rocket engines, and has great potential to be of great benefit to industry. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶射法によって得られるセラミックス被覆耐熱
部材の断面模式図、第2図は空隙の全てを5iOzで充
填したセラミックス被覆の耐熱部材の断面模式図、第3
図は電気めっきによる空隙の充填方法の説明図、第4図
は空隙の一部をCuで充填したセラミックス被覆耐熱部
材の断面模式図、第5図は空隙の基材側をNi1表面側
をSin、で充填したセラミックス被覆耐熱部材の断面
模式図、第6図は空隙の全てをSiO□で充填した、連
続的に組成が変化する中間層を有するセラミックス被覆
耐熱部材の断面模式図、第7図はめっき時間と電流密度
の変化を示すグラフ、第8図は特定の空隙に充填した状
態の断面図であり、第9図は本発明を実施したタービン
翼の斜視図である。 1・・・基材、2・・・溶射粒子、3・・・空隙、4・
・・結合層、5・・・セラミックス層、6・・・空隙に
充填したSiO□、12・・・空隙に充填したCus 
13・・・空隙に充填したNi、 14・・・連続的に
組成が変化する中間層。
Fig. 1 is a schematic cross-sectional view of a ceramic-coated heat-resistant member obtained by thermal spraying, Fig. 2 is a cross-sectional schematic diagram of a ceramic-coated heat-resistant member in which all the voids are filled with 5 iOz, and Fig. 3 is a schematic cross-sectional view of a ceramic-coated heat-resistant member obtained by thermal spraying.
The figure is an explanatory diagram of a method for filling voids by electroplating, FIG. 4 is a schematic cross-sectional view of a ceramic-coated heat-resistant member in which a portion of the void is filled with Cu, and FIG. , FIG. 6 is a schematic cross-sectional view of a ceramic-coated heat-resistant member filled with SiO□, and FIG. 8 is a graph showing changes in plating time and current density, FIG. 8 is a cross-sectional view of a state where a specific gap is filled, and FIG. 9 is a perspective view of a turbine blade in which the present invention is implemented. DESCRIPTION OF SYMBOLS 1...Base material, 2...Thermal spray particles, 3...Void, 4...
... Bonding layer, 5... Ceramic layer, 6... SiO□ filled in the void, 12... Cu filled in the void
13... Ni filled in the void, 14... Intermediate layer whose composition changes continuously.

Claims (7)

【特許請求の範囲】[Claims] 1.耐熱部材の表面に溶融粒子の積層構造を有するセラ
ミックス溶射皮膜を設けた耐熱被覆部材において、前記
溶射皮膜に金属又は合金よりなる耐熱性物質が充填され
ていることを特徴とするセラミックス被覆耐熱部材。
1. A heat-resistant coated member having a ceramic sprayed coating having a laminated structure of molten particles on the surface of the heat-resistant member, wherein the sprayed coating is filled with a heat-resistant substance made of a metal or an alloy.
2.充填物質がSiO_2、Al_2O_3、ZrO_
2、またはこれらの混合物のセラミックスからなる請求
項1記載のセラミックス被覆耐熱部材。
2. The filling material is SiO_2, Al_2O_3, ZrO_
2. The ceramic-coated heat-resistant member according to claim 1, wherein the ceramic-coated heat-resistant member is made of a ceramic of 2 or a mixture thereof.
3.充填物質がCu、Ni、Co等の金属あるいはこれ
らの合金からなる請求項1記載のセラミックス被覆耐熱
部材。
3. 2. The ceramic-coated heat-resistant member according to claim 1, wherein the filling material is made of a metal such as Cu, Ni, or Co, or an alloy thereof.
4.空隙の充填物質あるいは充填率が皮膜の厚さ方向で
変化する請求項1、2または3記載のセラミックス被覆
耐熱部材。
4. The ceramic-coated heat-resistant member according to claim 1, 2 or 3, wherein the filling material or the filling rate of the voids varies in the thickness direction of the coating.
5.基材がFe、CoまたはNiを主成分とする耐熱合
金あるいはCuまたはCu合金である請求項1、2、3
または4記載のセラミックス被覆耐熱部材。
5. Claims 1, 2 and 3, wherein the base material is a heat-resistant alloy containing Fe, Co or Ni as a main component, or Cu or a Cu alloy.
or the ceramic-coated heat-resistant member described in 4.
6.基材側のセラミックス被覆空隙には、金属または合
金よりなる充填物質が充填され、その上部空隙には、非
金属物質が充填される請求項1、4または5記載のセラ
ミックス被覆耐熱部材。
6. 6. The ceramic-coated heat-resistant member according to claim 1, wherein the ceramic-coated void on the base material side is filled with a filler material made of a metal or an alloy, and the upper void is filled with a non-metallic material.
7.非金属物質が酸化物、窒化物、硼化物、炭化物、珪
化物あるいはこれらの混合物である請求項6記載のセラ
ミックス被覆耐熱部材。
7. 7. The ceramic-coated heat-resistant member according to claim 6, wherein the nonmetallic substance is an oxide, nitride, boride, carbide, silicide, or a mixture thereof.
JP2268750A 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member Expired - Lifetime JP2993723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268750A JP2993723B2 (en) 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268750A JP2993723B2 (en) 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member

Publications (2)

Publication Number Publication Date
JPH04143262A true JPH04143262A (en) 1992-05-18
JP2993723B2 JP2993723B2 (en) 1999-12-27

Family

ID=17462819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268750A Expired - Lifetime JP2993723B2 (en) 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member

Country Status (1)

Country Link
JP (1) JP2993723B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279832A (en) * 1992-04-03 1993-10-26 Hitachi Ltd Ceramic coated heat resistant composite member and its production
KR100668947B1 (en) * 2005-06-16 2007-01-12 한국전력공사 Surface treatment method for increasing oxidation resistance of Ni-based superalloy and the parts for a gas turbine employing the same
JP2012057243A (en) * 2010-09-13 2012-03-22 Tocalo Co Ltd Method of forming cermet coating excelling in plasma erosion resistance, and cermet coating cover member
US8460799B2 (en) 2009-06-30 2013-06-11 Hitachi, Ltd. High-temperature resistant component and gas turbine hot part
JP2013185201A (en) * 2012-03-07 2013-09-19 Mazda Motor Corp Thermal insulation coating structure and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569896B2 (en) * 2009-07-14 2014-08-13 国立大学法人富山大学 Method for producing coating on metal surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279832A (en) * 1992-04-03 1993-10-26 Hitachi Ltd Ceramic coated heat resistant composite member and its production
KR100668947B1 (en) * 2005-06-16 2007-01-12 한국전력공사 Surface treatment method for increasing oxidation resistance of Ni-based superalloy and the parts for a gas turbine employing the same
US8460799B2 (en) 2009-06-30 2013-06-11 Hitachi, Ltd. High-temperature resistant component and gas turbine hot part
JP2012057243A (en) * 2010-09-13 2012-03-22 Tocalo Co Ltd Method of forming cermet coating excelling in plasma erosion resistance, and cermet coating cover member
JP2013185201A (en) * 2012-03-07 2013-09-19 Mazda Motor Corp Thermal insulation coating structure and method for producing the same

Also Published As

Publication number Publication date
JP2993723B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US5124006A (en) Method of forming heat engine parts made of a superalloy and having a metallic-ceramic protective coating
JP2008298769A (en) Method for depositing alumina on substrate covered with sic
CN106435443A (en) Preparation method of environmental barrier coating layer
CN107254652A (en) A kind of multilayer thermal barrier coating and preparation method thereof
JPH0251978B2 (en)
CN110643930A (en) Preparation method of composite thermal barrier coating resistant to high temperature CMAS and rainwater corrosion
CN114591102A (en) C/C composite material SiB6-Glass oxidation resistant coating and preparation method thereof
JPH04143262A (en) Ceramic coated heat resistant member
JP2697469B2 (en) Gas turbine blades, vanes and combustor liners and manufacturing method
JPH0563555B2 (en)
Zhao et al. Surface modification of die casting mold steel by a composite technique of hot-dipping and plasma electrolytic oxidation
Zhu et al. Fabrication of Al 2 O 3–Mullite–AlN Multiphase Ceramic Layer on W–Cu Substrates for Power Semiconductor Packaging
CN108677128A (en) A kind of preparation method of anti-oxidant Crack Self thermal barrier coating
CN115198271A (en) High-heat-matching-property thermal barrier coating and preparation method and application thereof
JPH1161438A (en) Heat shielding coating member and its production
JPS60125375A (en) Metal-ceramic joined body and manufacture thereof
CN114032547A (en) Alloy surface composite coating and preparation method thereof
CN111058018A (en) Preparation method of oxidation-resistant coating on surface of TD3 alloy
CN111302834A (en) Microwave magnetron insulating ceramic ring
JP5578801B2 (en) Measuring method of physical properties of coating layer
JPH06228721A (en) Melting resistant metal eroding sealing material and production thereof
CN109020591A (en) A kind of preparation method and tesla's turbine disk of tesla's turbine disk
CN116573953B (en) Carbon/carbon composite material surface grid structure enhanced ablation-resistant coating, preparation method and application
RU2089655C1 (en) Method of application of protective coating
CN115094365A (en) High-temperature acid corrosion resistant insulating coating and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

EXPY Cancellation because of completion of term