JP2993723B2 - Manufacturing method of ceramic coated heat resistant member - Google Patents

Manufacturing method of ceramic coated heat resistant member

Info

Publication number
JP2993723B2
JP2993723B2 JP2268750A JP26875090A JP2993723B2 JP 2993723 B2 JP2993723 B2 JP 2993723B2 JP 2268750 A JP2268750 A JP 2268750A JP 26875090 A JP26875090 A JP 26875090A JP 2993723 B2 JP2993723 B2 JP 2993723B2
Authority
JP
Japan
Prior art keywords
ceramic
heat
film
voids
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2268750A
Other languages
Japanese (ja)
Other versions
JPH04143262A (en
Inventor
秀行 有川
充夫 近崎
慶亨 児島
輝 目幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2268750A priority Critical patent/JP2993723B2/en
Publication of JPH04143262A publication Critical patent/JPH04143262A/en
Application granted granted Critical
Publication of JP2993723B2 publication Critical patent/JP2993723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの動翼、静翼、あるいはロケ
ットエンジンの燃焼器等の高温にさらされる部分や部品
に用いられる、溶射セラミックス皮膜を有する耐熱複合
部材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sprayed ceramic film used for a part or a part to be exposed to a high temperature such as a moving blade or a stationary blade of a gas turbine or a combustor of a rocket engine. The present invention relates to a method for producing a heat-resistant composite member having the same.

〔従来の技術〕[Conventional technology]

ガスタービン、航空・宇宙、核融合炉などの分野にお
いて、耐熱性、遮蔽性、耐環境性等に優れた超耐熱材料
の開発が重要な技術的課題としてあげられている。
In the fields of gas turbines, aerospace, nuclear fusion reactors, and the like, the development of ultra heat-resistant materials having excellent heat resistance, shielding properties, environmental resistance, and the like has been cited as an important technical issue.

従来、このような超耐熱材料の製造方法の一つとし
て、金属や合金の表面にセラミックスをプラズマ溶射法
によってコーティングする方法が知られている。代表的
な例として、Ni、Co、Feなどをベースとする耐熱超合金
基材の表面に耐食耐酸化性向上、密着性向上、および熱
応力緩和を目的とした中間層を介してZrO2・Y2O3等のセ
ラミックスを溶射する方法が提案されており、特開昭62
−156938号公報に記載のように基材とセラミックスの間
に両者の成分比が連続的に変化する中間層を設けて熱応
力を緩和する傾斜機能材料(FGM)等が知られている。
Conventionally, as one method of manufacturing such a super heat-resistant material, a method of coating ceramics on the surface of a metal or an alloy by a plasma spraying method is known. As a typical example, a ZrO 2 layer is formed on the surface of a heat-resistant superalloy base material based on Ni, Co, Fe, etc. via an intermediate layer for the purpose of improving corrosion resistance, oxidation resistance, adhesion, and thermal stress relaxation. A method of spraying ceramics such as Y 2 O 3 has been proposed.
As described in JP-A-156938, there is known a functionally graded material (FGM) for reducing thermal stress by providing an intermediate layer between the base material and the ceramic in which the component ratio of the both changes continuously.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術においては、溶射によって形成される表
面のセラミックス層は第1図に示すように基材1上で溶
射偏平粒子2が積層構造を形成し、粒子間に多くの空隙
3を含む多孔質な膜となる。このため、セラミックス層
の強度は燃焼セラミックス等に比べ空隙3の含有率に応
じて低下しており、使用条件下における温度勾配や、基
材・中間層との熱膨張差に起因する熱応力によってクラ
ックや剥離が発生しやすい。
In the above prior art, the ceramic layer on the surface formed by thermal spraying has a porous structure in which sprayed flat particles 2 form a laminated structure on a substrate 1 as shown in FIG. Film. For this reason, the strength of the ceramic layer is reduced in accordance with the content of the voids 3 as compared with the combustion ceramics and the like, and the thermal stress caused by a temperature gradient under use conditions and a thermal expansion difference between the base material and the intermediate layer. Cracks and peeling are likely to occur.

また、中間層や、前述したFGMによって熱応力を緩和
した場合であっても、部分的な加熱を受けたり、基材を
冷却して表面と裏面に温度差が生じてセラミックス層に
高温で圧縮応力が作用すると、セラミックス層内の空隙
がつめられてリラクゼーションが生じ、これによって冷
却時に引張応力が誘発されてクラックが発生する。さら
に、この空隙やクラックを通じて高温の雰囲気ガスが侵
入することによって基材や中間層の金属成分が腐食、酸
化して皮膜の剥離・離脱破壊等が生じる可能性があっ
た。
Also, even when the thermal stress is relaxed by the intermediate layer or the FGM described above, the ceramic layer is compressed at a high temperature by receiving partial heating or cooling the base material, creating a temperature difference between the front and back surfaces. When the stress acts, the voids in the ceramic layer are filled and relaxation occurs, thereby inducing a tensile stress at the time of cooling to cause cracks. Furthermore, when a high-temperature atmospheric gas invades through the voids and cracks, the metal components of the base material and the intermediate layer may be corroded and oxidized to cause peeling and detachment of the film.

本発明は、前述した従来技術における問題点を解消
し、耐熱衝撃性、耐食性、耐酸化性および基材との密着
性が高い耐熱セラミックス被覆部材を提供することを目
的としている。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a heat-resistant ceramic coated member having high thermal shock resistance, corrosion resistance, oxidation resistance and adhesion to a substrate.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明者らは鋭意研究を
重ねた結果、セラミックス溶融皮膜の空隙にゾル・ゲル
含浸法、電気めっき法等を用いてセラミックス、金属を
充填することにより緻密化を図り、セラミックス溶射膜
の強度、密着性の向上及び耐食耐酸化性を付与すること
が可能であることを発見し、本発明を完成するに至っ
た。
In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, densification has been achieved by filling ceramics and metal using a sol-gel impregnation method, an electroplating method, etc. The present inventors have discovered that it is possible to improve the strength and adhesion of a ceramic sprayed film and to impart corrosion and oxidation resistance, and have completed the present invention.

すなわち、耐熱部材の表面に溶融粒子の積層構造を有
するセラミックス溶射皮膜を設けた耐熱被覆部材におい
て、粒子間あるいは粒子内の空隙の一部あるいは全て
が、セラミックス、金属により充填されていることを特
徴とするセラミックス被覆耐熱部材の製造方法を要旨と
している。
That is, in the heat-resistant coated member provided with the ceramic sprayed coating having the laminated structure of the molten particles on the surface of the heat-resistant member, a part or all of the voids between the particles or in the particles are filled with the ceramic or the metal. The gist of the present invention is a method for producing a ceramic-coated heat-resistant member.

〔作 用〕(Operation)

本発明の構成と作用を説明する。 The configuration and operation of the present invention will be described.

本発明における耐熱複合材料の基材としては、例えば
Cu、Ni合金、Co基合金等が用いられる。また、セラミッ
クス溶射層の材質としては、例えばZrO2−MgO,ZrO2−Ca
O,ZrO2−Y2O3等が適している。
As the substrate of the heat-resistant composite material in the present invention, for example,
Cu, Ni alloy, Co-based alloy or the like is used. The material of the ceramic thermal sprayed layer, for example, ZrO 2 -MgO, ZrO 2 -Ca
O, ZrO 2 -Y 2 O 3 and the like are suitable.

空隙の充填方法としてセラミックスの充填にはオルト
珪酸塩四エチル溶液(TEOS)や燐酸アルミニウム溶液
(MAP)を溶射皮膜の空隙に真空含浸した後、焼成してS
iO2及びAl2O3を空隙に充填するゾル−ゲル法を用いる。
As a method of filling the voids, ceramics are filled with tetraethyl orthosilicate (TEOS) or aluminum phosphate solution (MAP) by vacuum impregnation into the voids of the sprayed coating, and then fired.
sol filling iO 2 and Al 2 O 3 in the gap - using gel method.

また、金属の充填方法としては、充填すべき金属イオ
ンを含む電解液中で、溶射層の空隙を通じてのみ電解液
が基材に接するように材料の周囲を例えばシリコンゴム
等の不透水性の絶縁物で被覆した状態で電気めっきを行
い、空隙内を充填する電気めっき法を用いる。
In addition, as a method for filling a metal, in an electrolyte containing metal ions to be filled, a water-impervious insulating material such as silicon rubber is provided around the material so that the electrolyte contacts the base material only through the gaps of the sprayed layer. An electroplating method is used in which electroplating is performed in a state of being covered with an object, and the space is filled.

本発明により製造された耐熱セラミックス溶射皮膜で
は、セラミックス層内の空隙が他の物質で充填されてい
るため、セラミックス層の強度、ヤング率が向上し、こ
れに伴って耐熱衝撃性を向上できる。また、充填物質と
して耐食耐酸化性に優れた金属、合金あるいはセラミッ
クスを選択することにより、高温の燃焼ガスがセラミッ
クス層内の空隙を介して浸透拡散して基材や中間層の金
属成分を腐食あるいは酸化することを防止でき、優れた
耐食耐酸化性を発揮できる。さらに、電気めっき法にお
いて基材と同一の金属を充填物質として選択すれば、充
填物質は基材と一体となって空隙を充填することにな
り、いわゆるアンカーとして作用し、コーティング層の
密着性が向上する。
In the heat-resistant ceramic sprayed coating produced according to the present invention, since the voids in the ceramic layer are filled with other substances, the strength and Young's modulus of the ceramic layer are improved, and the thermal shock resistance can be improved accordingly. In addition, by selecting a metal, alloy, or ceramic with excellent corrosion resistance and oxidation resistance as the filling material, the high-temperature combustion gas permeates and diffuses through the voids in the ceramic layer to corrode the metal components of the base material and the intermediate layer. Alternatively, oxidation can be prevented, and excellent corrosion resistance and oxidation resistance can be exhibited. Furthermore, if the same metal as the base material is selected as the filling material in the electroplating method, the filling material will fill the voids integrally with the base material, acting as a so-called anchor, and the adhesion of the coating layer will be reduced. improves.

〔実施例〕〔Example〕

本発明を実施例によって説明するが、これによって本
発明は限定されるものではない。
The present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1 第2図に示すように、厚さ3.5mmのNi基合金の基材1
上に結合層として厚さ100μmのCoNiCrAlY合金層4を介
してZrO2−6wt%Y2O3膜からなるセラミックス層5を厚
さ300μmプラズマ溶射法により形成した後、真空中でT
EOS(Tetra Eitxl Ortho Silicate:Si(OC2H5)溶
液中に浸漬し、セラミックス層内の空隙にTEOS溶液を含
浸させる。しかる後、電気炉内で大気中400℃に加熱
し、加水分解反応によりTEOSをSiO26に転換する。焼成
の際には体積収縮が起きるため空隙を完全にSiO26で充
填するために、さらに真空中での含浸→焼成を繰り返
す。充填の具合は焼成を終える毎に試料の重量変化を測
定し、重量の増加がほとんどなくなった時点で完了とす
る。このようにして、セラミックス層内の空隙をSiO26
で充填した耐熱セラミックス溶射皮膜を得た。
Example 1 As shown in FIG. 2, a Ni-based alloy substrate 1 having a thickness of 3.5 mm
A ceramic layer 5 made of a ZrO 2 -6 wt% Y 2 O 3 film is formed thereon as a bonding layer via a CoNiCrAlY alloy layer 4 having a thickness of 100 μm by plasma spraying with a thickness of 300 μm, and then T
It is immersed in an EOS (Tetra Eitxl Ortho Silicate: Si (OC 2 H 5 ) 4 ) solution to impregnate the voids in the ceramic layer with the TEOS solution. Thereafter, it heated to 400 ° C. in air in an electric furnace to convert the TEOS to SiO 2 6 by hydrolysis reaction. Complete void because volume shrinkage happens during the firing in order to fill in SiO 2 6, further repeating the impregnation → sintering in vacuum. Each time the firing is completed, the change in the weight of the sample is measured, and the filling is completed when the increase in the weight hardly occurs. In this manner, SiO 2 6 voids in the ceramic layer
To obtain a sprayed heat-resistant ceramic film.

次に、上記の方法によって得られた空隙をSiO2で充填
したセラミックス溶射皮膜と、比較のためSiO2による充
填処理を施していないセラミックス溶射皮膜について耐
熱衝撃性を評価した。
Next, the thermal shock resistance of the ceramic sprayed coating in which the voids obtained by the above method were filled with SiO 2 and the ceramic sprayed coating not filled with SiO 2 were evaluated for comparison.

このとき、試験片は9×9mmとし、試験片の裏面を銅
ホルダーを介して水冷しながら、試料表面中心部を10kw
キセノンアークランプで部分的に照射加熱し、表面中心
の温度がほぼ一定に達した約5秒後に照射を止め急冷し
た。その後試料表面と断面を観察し、クラックの発生及
び界面近傍での剥離の有無を調べた。この結果、SiO2
よる充填処理を施していないセラミックス溶射皮膜では
表面中心温度が約700℃を越えると中心部にクラック及
び剥離の発生が見られたが、充填処理を施した試料では
約1000℃までクラック及び剥離の発生は見られず、著し
く耐熱衝撃性を向上できることが確認できた。
At this time, the test piece was 9 × 9 mm and the center of the sample surface was 10 kw while the back surface of the test piece was water-cooled via a copper holder.
The irradiation was partially heated by a xenon arc lamp, and the irradiation was stopped and quenched approximately 5 seconds after the temperature at the center of the surface reached almost constant. Thereafter, the sample surface and cross section were observed, and the occurrence of cracks and the presence or absence of peeling near the interface were examined. As a result, cracks and peeling were observed in the center of the surface of the ceramic sprayed coating that had not been filled with SiO 2 when the surface center temperature exceeded about 700 ° C. No cracking or peeling was observed until this point, and it was confirmed that the thermal shock resistance could be significantly improved.

実施例2 第4図に示すように厚さ4mmの銅基材1上にZrO2−6wt
%Y2O3膜からなるセラミックス層5をプラズマ溶射法に
よって厚さ300μm形成した後、第3図に示すように銅
基材1の裏面に導線8をはんだ付等により取り付け、セ
ラミックス層5の表面以外の部分をシリコンゴム等の不
透水性の絶縁物7で被覆する。これを、銅イオンを含む
水溶液、例えば硫酸銅電解液10に浸漬し、真空含浸等に
よってセラミックス層5内の空隙内に十分に電解液を浸
透させた後、銅電極9との間に直流電圧11を印加して電
解めっきを行い空隙中に銅12を析出せしめる。このと
き、電流密度が0.5mA/cm2以下となるように電圧を制御
すると良好な充填結果が得られる。このようにして、第
4図に示すようにセラミックス層内の空隙の一部を銅12
で充填した耐熱セラミックス溶射皮膜を得た。
Example 2 As shown in FIG. 4, ZrO 2 -6 wt.
After forming a ceramic layer 5 made of a% Y 2 O 3 film by plasma spraying to a thickness of 300 μm, a conducting wire 8 is attached to the back surface of the copper base 1 by soldering or the like as shown in FIG. A portion other than the surface is covered with an impermeable insulator 7 such as silicon rubber. This is immersed in an aqueous solution containing copper ions, for example, a copper sulfate electrolyte 10, and the electrolyte is sufficiently penetrated into the gaps in the ceramic layer 5 by vacuum impregnation or the like. 11 is applied to perform electrolytic plating to precipitate copper 12 in the void. At this time, if the voltage is controlled so that the current density is 0.5 mA / cm 2 or less, a good filling result can be obtained. In this way, as shown in FIG.
To obtain a sprayed heat-resistant ceramic film.

次に上記の方法によって得られた空隙を銅で充填した
セラミックス溶射皮膜と、比較のため銅による充填処理
を施していないセラミックス溶射皮膜について、実施例
1と同様にして耐熱衝撃性の評価を行った。
Next, thermal shock resistance was evaluated in the same manner as in Example 1 for the ceramic sprayed film in which the voids obtained by the above method were filled with copper and the ceramic sprayed film not filled with copper for comparison. Was.

この結果、銅による充填処理を施していないセラミッ
クス溶射皮膜では表面中心部温度が約700℃を越えると
中心部にクラックの発生及びコーティングの剥離が見ら
れたが、銅による充填処理を施したセラミックス溶射皮
膜では約800℃までクラックの発生及び剥離は見られ
ず、耐熱衝撃性及び密着性が著しく向上することが確認
できた。
As a result, cracks and peeling of the coating were observed at the center of the surface of the ceramic sprayed coating that had not been filled with copper when the surface temperature exceeded about 700 ° C. No cracking or peeling was observed up to about 800 ° C in the thermal spray coating, confirming that the thermal shock resistance and adhesion were significantly improved.

実施例3 第5図に示すように厚さ3.5mmのNi基合金の基材1上
にZrO2−6wt%Y2O3膜からなるセラミックス層5を厚さ3
00μmプラズマ溶射法により形成した後、第3図に示す
ようにNi基合金基材1の裏面に導線8をはんだ付等によ
り取り付け、セラミックス層5の表面以外の部分をシリ
コンゴム等の不透水性の絶縁物7で被覆する。これをNi
イオンを含む電解液例えば硫酸ニッケル電解液10に浸漬
し真空含浸等によりセラミックス層内の空隙内に十分に
電解液を浸透させた後、Ni電極9との間に直流電圧11を
印加して電解めっきを行い空隙中にNi13を析出せしめ
る。基材100μm程度の厚さの範囲の空隙が充填された
ところで通電を終え、試料を取り出して絶縁物7及び導
線8を除去した後、蒸留水中で超音波洗浄を行いセラミ
ックス層中に残留している電解液を除去して乾燥する。
次に真空中でTEOS溶液中に浸漬し、セラミックス層内の
空隙にTEOS溶液を十分に浸透させる。然る後、電気炉内
で大気中400℃に加熱し、加水分解反応によりTEOSを第
5図に示すようにSiO26に転換する。焼成の際には体積
収縮が起こるため空隙を完全にSiO2で充填するため、さ
らに真空中での含浸−焼成を繰り返す。焼成を終える毎
に試料の重量変化を測定し、重量増加がほとんどなくな
った時点で完了とする。このようにして、セラミックス
層内の基材側約100μmの範囲の空隙がNi、表面側約200
μmの範囲の空隙がSiO2で充填されたセラミックス溶射
皮膜を得た。
Example 3 As shown in FIG. 5, a ceramic layer 5 composed of a ZrO 2 -6 wt% Y 2 O 3 film was formed on a Ni-based alloy substrate 1 having a thickness of 3.5 mm to a thickness of 3 mm.
After being formed by the 00 μm plasma spraying method, as shown in FIG. 3, a conductive wire 8 is attached to the back surface of the Ni-based alloy base material 1 by soldering or the like, and a portion other than the surface of the ceramic layer 5 is impermeable to silicon rubber or the like. Covered with an insulator 7. This is Ni
After immersing in an electrolytic solution containing ions, for example, a nickel sulfate electrolytic solution 10 and sufficiently penetrating the electrolytic solution into the voids in the ceramics layer by vacuum impregnation or the like, a DC voltage 11 is applied between the Ni electrode 9 and the electrolytic solution. Plating is performed to precipitate Ni13 in the voids. The energization was terminated when the gap having a thickness of about 100 μm was filled in the base material, the sample was taken out, the insulator 7 and the conductor 8 were removed, and then ultrasonic cleaning was performed in distilled water to remain in the ceramics layer. Remove the remaining electrolyte and dry.
Next, it is immersed in a TEOS solution in a vacuum, and the TEOS solution is sufficiently penetrated into the voids in the ceramic layer. Thereafter, heated to 400 ° C. in air in an electric furnace and converted into SiO 2 6 as shown in FIG. 5 the TEOS hydrolysis reactions. During firing, volume contraction occurs, so that the voids are completely filled with SiO 2 , so that impregnation and firing in vacuum are repeated. Each time the firing is completed, the change in weight of the sample is measured. In this way, the gap in the ceramic layer in the range of about 100 μm on the substrate side is Ni, and the gap on the surface side is about 200 μm.
A ceramic sprayed coating in which voids in the range of μm were filled with SiO 2 was obtained.

次に、上記の方法によって得られた空隙をNi及びSiO2
で充填したセラミックス溶射皮膜と、比較のため全く充
填処理を施していないセラミックス溶射皮膜、空隙内を
すべてNiで充填したセラミックス溶射皮膜及び空隙内を
すべてSiO2で充填したセラミックス溶射皮膜について実
施例1と同様の耐熱衝撃性試験を行った。この結果、第
1表に示すように、セラミックス層の基材側をNi、表面
側をSiO2で充填したセラミックス溶射皮膜では耐熱衝撃
性及び基材との密着性が著しく向上することが確認でき
た。
Next, the voids obtained by the above methods Ni and SiO 2
Example 1 shows a ceramic sprayed coating filled with, a ceramic sprayed coating without any filling treatment for comparison, a ceramic sprayed coating with all voids filled with Ni, and a ceramic sprayed coating with all voids filled with SiO 2. The same thermal shock resistance test as described above was performed. As a result, as shown in Table 1, it was confirmed that the thermal spray resistance and the adhesion to the substrate were significantly improved in the ceramic sprayed coating in which the substrate side of the ceramic layer was filled with Ni and the surface side was filled with SiO 2. Was.

また、電気炉により大気中で1000℃に加熱、室温まで
の冷却を繰り返す熱サイクル試験を行い、耐熱疲労性及
び耐酸化性の評価を行った結果、第2表に示すようにセ
ラミックス層の基材側をNi、表面側をSiO2で充填したセ
ラミックス溶射皮膜ではクラックや剥離は見られず、ま
た基材の酸化も生じておらず、耐熱疲労性及び耐酸化性
が向上することが確認できた。
In addition, a heat cycle test in which heating to 1000 ° C in air and cooling to room temperature were repeated in an electric furnace, and the thermal fatigue resistance and oxidation resistance were evaluated. No cracking or peeling was observed in the ceramic sprayed coating filled with Ni on the material side and SiO 2 on the surface side, and no oxidation of the substrate occurred, confirming that the thermal fatigue resistance and oxidation resistance were improved. Was.

実施例4 第6図に示すように、Ni基合金の基材1上に基材側が
CoNiCrAlY合金層,表面側がZrO2−6wt%Y2O3で、その中
間に両者の成分比が連続的に変化する中間層14を介して
ZrO2−6wt%Y2O3セラミックス層5を形成した後、真空
中でTEOS溶液中に浸漬しセラミックス層内の空隙にTEOS
溶液を含浸させる。しかる後、電気炉内で大気中400℃
に加熱し、加水分解反応によりTEOSをSiO26に転換す
る。焼成の際には体積収縮が起こるため空隙を完全にSi
O26で充填するために、さらに真空中での含浸→焼成を
繰り返す。焼成を終える毎に試料の重量変化を測定し、
重量の増加が認められなくなった時点で充填を完了す
る。このようにして、セラミックス層内の空隙の全てを
SiO2で充填した、セラミックス層と基材の間で連続的に
組成が変化する中間層を有する耐熱セラミックス被覆部
材を得た。
Example 4 As shown in FIG. 6, the base material side
CoNiCrAlY alloy layer, the surface side of which is ZrO 2 -6wt% Y 2 O 3 , with an intermediate layer 14 between which the composition ratio of both changes continuously
After the ZrO 2 -6 wt% Y 2 O 3 ceramic layer 5 is formed, it is immersed in a TEOS solution in a vacuum and TEOS is inserted into the voids in the ceramic layer.
Impregnate the solution. Then, in an electric furnace at 400 ℃ in air
Heated to, to convert the TEOS to SiO 2 6 by hydrolysis reaction. Since the volume shrinks during firing, the voids are completely
To fill in the O 2 6, further repeating the impregnation → sintering in vacuum. Each time the firing is completed, the weight change of the sample is measured,
The filling is completed when no increase in weight is observed. In this way, all the voids in the ceramic layer
A heat-resistant ceramic-coated member having an intermediate layer filled with SiO 2 and having a continuously changing composition between the ceramic layer and the substrate was obtained.

次に、上記の方法によって得られたセラミックス層内
の空隙をSiO2で充填した、セラミックス層と基材の間で
連続的に組成が変化する中間層を有する耐熱セラミック
ス被覆部材と、セラミックス層内の空隙をSiO2で充填し
ていないセラミックス層と基材の間で連続的に組成が変
化する中間層を有する耐熱セラミックス被覆部材につい
て実施例1と同様にして耐熱衝撃性を評価した。その結
果、空隙をSiO2で充填していない試料では表面中心温度
800℃を越えるとセラミックス層中心部にクラックが発
生したが、空隙を全てSiO2で充填した試料では表面中心
温度1000℃までセラミックス層内にクラックは発生せ
ず、耐熱衝撃性を向上できることが確認できた。
Next, a heat-resistant ceramic-coated member having an intermediate layer in which the voids in the ceramic layer obtained by the above method are filled with SiO 2 and whose composition continuously changes between the ceramic layer and the base material, The thermal shock resistance was evaluated in the same manner as in Example 1 for a heat-resistant ceramic-coated member having an intermediate layer in which the composition continuously changed between the ceramic layer in which the voids were not filled with SiO 2 and the substrate. As a result, the surface center temperature in samples that do not fill the void with SiO 2
When the temperature exceeded 800 ° C, cracks occurred in the center of the ceramic layer.However, it was confirmed that cracks did not occur in the ceramic layer until the surface center temperature reached 1000 ° C in the sample in which all voids were filled with SiO 2 , and the thermal shock resistance could be improved. did it.

実施例5 第3図に示すように厚さ4mmの銅基材1上にZrO2−6wt
%Y2O3膜からなるセラミックス層5をプラズマ溶射法に
よって、厚さ300μmに形成した後、銅基材1の裏面に
導線8をはんだ付等により取り付け、セラミックス層5
の表面以外の部分をシリコンゴム等の不透水性の絶縁物
7で被覆する。これを銅イオンを含む電解液、例えば硫
酸銅電解液10に浸漬し真空含浸等によってセラミックス
層5内の空隙に十分に電解液を浸透させた後、銅電極9
との間に直流電圧11を印加して電解めっきを行い、第4
図に示すように空隙中に銅12を析出せしめる。このと
き、第7図に示すように電流密度がめっき時間に対して
変化していくように電圧を制御した。電流密度が増大す
ると、析出速度が増加するが、微細な空孔内では電解液
の循環が悪いため、銅イオンの供給が間に合わなくな
り、銅の析出は電解液の循環が良く、銅イオンの供給が
十分行われる比較的大きな空孔で急速に進行することに
なり、層内全体では空隙の空隙の充填率は低下する。こ
のようにして、第8図に示すようなセラミックス層内の
空隙が銅で充填され、なおかつ銅の充填率が厚さ方向に
変化(基材側で充填率大、表面側で充填率小)するセラ
ミックス溶射皮膜を得た。
Example 5 As shown in FIG. 3, ZrO 2 -6 wt.
% Y 2 O 3 ceramic layer 5 is formed to a thickness of 300 μm by a plasma spraying method, and then conducting wire 8 is attached to the back surface of copper base 1 by soldering or the like.
Is covered with an impermeable insulator 7 such as silicon rubber. This is immersed in an electrolytic solution containing copper ions, for example, a copper sulfate electrolytic solution 10, and the electrolytic solution is sufficiently penetrated into the voids in the ceramic layer 5 by vacuum impregnation or the like.
And a DC voltage 11 is applied between the electrodes to perform electrolytic plating.
As shown in the figure, copper 12 is precipitated in the void. At this time, the voltage was controlled so that the current density changed with respect to the plating time as shown in FIG. As the current density increases, the deposition rate increases, but the circulation of the electrolyte in the fine pores is poor, so the supply of copper ions cannot be made in time. Progresses rapidly in the relatively large pores in which the pores are sufficiently filled, and the filling rate of the voids in the entire space in the layer decreases. In this way, the voids in the ceramic layer as shown in FIG. 8 are filled with copper, and the filling rate of copper changes in the thickness direction (the filling rate is large on the base material side, and small on the surface side). A ceramic sprayed coating was obtained.

次に上記の方法によって得られた空隙が銅で充填さ
れ、なおかつ銅の充填率が厚さ方向で変化するセラミッ
クス溶射皮膜と、比較のため銅による充填処理を施して
いないセラミックス溶射皮膜について、実施例1と同様
にして耐熱衝撃性の評価を行った。
Next, the ceramic sprayed coating in which the voids obtained by the above method are filled with copper, and the copper filling rate changes in the thickness direction, and the ceramic sprayed coating not subjected to the filling treatment with copper for comparison were performed. The thermal shock resistance was evaluated in the same manner as in Example 1.

この結果、空隙が銅で充填され、なおかつ銅の充填率
が厚さ方向で変化するセラミックス溶射皮膜では耐熱衝
撃性及び基材との密着性が著しく向上することが確認で
きた。
As a result, it was confirmed that the thermal spray resistance and the adhesion to the substrate were significantly improved in the ceramic sprayed coating in which the voids were filled with copper and the filling rate of copper changed in the thickness direction.

実施例6 第9図に示すようなNi基合金製のガスタービン用動翼
Aの燃焼ガスに曝される部分の全面(第9図の斜線部)
に、実施例1と同様の方法で本発明による空隙をSiO2
充填したセラミックス溶射皮膜を形成した。また、実施
例3と同様の方法で本発明による空隙をNi及びSiO2で充
填したセラミックス溶射皮膜を形成した。なお、セラミ
ックス層の厚さは300μm、結合層のCoNiCrAlY合金層は
100μmである。
Embodiment 6 The entire surface of a portion of a gas turbine rotor blade A made of a Ni-based alloy exposed to combustion gas as shown in FIG. 9 (hatched portion in FIG. 9).
Then, in the same manner as in Example 1, a ceramic sprayed coating in which the voids according to the present invention were filled with SiO 2 was formed. Further, in the same manner as in Example 3, a ceramic sprayed coating in which voids according to the present invention were filled with Ni and SiO 2 was formed. The thickness of the ceramic layer is 300 μm, and the CoNiCrAlY alloy layer of the bonding layer is
100 μm.

次にこれらのガスタービン翼Aと、比較のために充填
処理を施していないセラミックス溶射皮膜を形成したガ
スタービン翼について、1050℃の電気炉を用いた大気中
加熱試験、及び1050℃の電気炉中大気加熱と炉外での空
冷を繰り返す熱サイクル試験を行った。なお、熱サイク
ル試験では加熱時間30分、冷却温度は200℃、20分とし
た。その結果、大気中加熱試験では本発明による空隙を
SiO2で充填したセラミックス皮膜を形成した翼、及び空
隙をNi及びSiO2で充填したセラミックス皮膜を形成した
翼では、約1000h試験後でもセラミックス皮膜は健全で
あった。一方、充填処理を施していないセラミックス皮
膜を形成した翼では、約300hで皮膜のはく離が生じた。
また、熱サイクル試験の結果、本発明による空隙をSiO2
で充填したセラミックス皮膜を形成した翼、及び空隙を
Ni及びSiO2で充填したセラミックス皮膜を形成した翼で
は、1000回の繰り返し後もセラミックス皮膜は健全であ
った。一方、充填処理を施していないセラミックス皮膜
を形成した翼では約100回の繰り返しでセラミックス層
にはく離が生じた。このように、本発明による空隙に充
填処理を施したセラミックス皮膜を有するタービン翼は
従来のものに比べセラミックス皮膜のはく離等の損傷が
生じ難く、セラミックス皮膜の遮熱効果によるNi基合金
製の基材温度の低減が安定に維持できるため、タービン
翼の信頼性及び寿命を向上することができる。本発明に
よるセラミックス皮膜は本実施例で述べたタービン翼以
外にも、タービン燃焼器、ロケットエンジンの燃焼器や
ノズル等の高熱負荷に曝される機器及び部材にも適用可
能である。
Next, for these gas turbine blades A and for comparison, gas turbine blades on which a ceramic sprayed coating not subjected to filling treatment was formed, an air heating test using an electric furnace at 1050 ° C. and an electric furnace at 1050 ° C. A thermal cycle test in which heating in the middle atmosphere and air cooling outside the furnace were repeated was performed. In the heat cycle test, the heating time was 30 minutes, and the cooling temperature was 200 ° C. for 20 minutes. As a result, the air gap according to the present invention
The blades formed with the ceramic coating filled with SiO 2 and the blades formed with the ceramic coating filled with Ni and SiO 2 in the voids were sound after the test for about 1000 hours. On the other hand, in the blade with the ceramic film that was not filled, the film peeled off in about 300 hours.
As a result of the thermal cycle test, a gap according to the invention SiO 2
The wings with the ceramic film filled with
In the blade with the ceramic film filled with Ni and SiO 2 , the ceramic film was sound after 1000 repetitions. On the other hand, in the blade with the ceramic film that was not filled, the ceramic layer peeled off after about 100 repetitions. As described above, the turbine blade having the ceramic film in which the gap is filled according to the present invention is less susceptible to damage such as peeling of the ceramic film as compared with the conventional turbine blade. Since the reduction of the material temperature can be stably maintained, the reliability and the life of the turbine blade can be improved. The ceramic coating according to the present invention can be applied not only to the turbine blades described in the present embodiment but also to devices and members exposed to a high heat load, such as a turbine combustor, a combustor of a rocket engine and a nozzle.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、基材に対する
セラミックス溶射皮膜の耐熱衝撃性、耐食耐酸化性及び
基材との密着性を向上できるので、高温においてもクラ
ックの発生や剥離のない優れた耐熱セラミックス耐熱被
覆部材が提供できる。また、本発明による耐熱セラミッ
クス被覆部材は今後開発が予想される高温ガスタービン
の動静翼や燃焼器、あるいは高性能ロケットエンジンの
燃焼器用の材料として有望であり、産業上益とするとこ
ろ大である。
As described above, according to the present invention, since the thermal shock resistance, corrosion resistance and oxidation resistance of the ceramic sprayed film with respect to the base material and the adhesion with the base material can be improved, there is no cracking or peeling even at high temperatures. A heat-resistant ceramic heat-resistant covering member can be provided. Further, the heat-resistant ceramic-coated member according to the present invention is promising as a material for a moving and stationary blade or a combustor of a high-temperature gas turbine, which is expected to be developed in the future, or a combustor of a high-performance rocket engine. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は溶射法によって得られるセラミックス被覆耐熱
部材の断面模式図、第2図は空隙の全てをSiO2で充填し
たセラミックス被覆の耐熱部材の断面模式図、第3図は
電気めっきによる空隙の充填方法の説明図、第4図は空
隙の一部をCuで充填したセラミックス被覆耐熱部材の断
面模式図、第5図は空隙の基材側をNi、表面側をSiO2
充填したセラミックス被覆耐熱部材の断面模式図、第6
図は空隙の全てをSiO2で充填した、連続的に組成が変化
する中間層を有するセラミックス被覆耐熱部材の断面模
式図、第7図はめっき時間と電流密度の変化を示すグラ
フ、第8図は特定の空隙に充填した状態の断面図であ
り、第9図は本発明を実施したタービン翼の斜視図であ
る。 1……基材、2……溶射粒子、3……空隙、4……結合
層、5……セラミックス層、6……空隙に充填したSi
O2、12……空隙に充填したCu、13……空隙に充填したN
i、14……連続的に組成が変化する中間層。
FIG. 1 is a schematic cross-sectional view of a ceramic-coated heat-resistant member obtained by thermal spraying, FIG. 2 is a schematic cross-sectional view of a ceramic-coated heat-resistant member in which all voids are filled with SiO 2 , and FIG. illustration of the filling process, Figure 4 is cross-sectional schematic view of a ceramic-coated heat-resistant member a portion of the voids were filled with Cu, FIG. 5 is a ceramic coating filled with the base material side of the gap Ni, the surface of SiO 2 Cross-sectional schematic view of heat-resistant member, sixth
The figure is a schematic cross-sectional view of a ceramic-coated heat-resistant member having an intermediate layer having a continuously changing composition in which all voids are filled with SiO 2 , FIG. 7 is a graph showing a change in plating time and current density, and FIG. FIG. 9 is a cross-sectional view showing a state where a specific space is filled, and FIG. 9 is a perspective view of a turbine blade embodying the present invention. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Sprayed particles 3 ... Void 4 ... Binding layer 5 ... Ceramic layer 6 ... Si filled in the void
O 2 , 12… Cu filled in voids, 13… N filled in voids
i, 14 ... An intermediate layer whose composition changes continuously.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 目幡 輝 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (58)調査した分野(Int.Cl.6,DB名) C23C 4/04 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akira Mehata 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) C23C 4/04

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】耐熱基材の表面に溶融粒子による積層構造
のセラミックス溶射皮膜を設けるセラミックス被覆耐熱
部材の製造方法において、前記基材表面に前記溶射皮膜
を形成した後に、金属イオンを含む電解液中で通電によ
り前記皮膜内の空隙に金属を充填することを特徴とする
セラミックス被覆耐熱部材の製造方法。
1. A method for manufacturing a ceramic-coated heat-resistant member having a laminated ceramic sprayed coating of molten particles on a surface of a heat-resistant substrate, wherein an electrolytic solution containing metal ions is formed after the sprayed coating is formed on the surface of the substrate. A method for producing a ceramic-coated heat-resistant member, characterized in that voids in the film are filled with a metal by energization in the inside.
【請求項2】充填物質がCu、Ni、Co等の金属あるいはこ
れらの合金からなる請求項1記載のセラミックス被覆耐
熱部材の製造方法。
2. The method according to claim 1, wherein the filler is made of a metal such as Cu, Ni, Co, or an alloy thereof.
【請求項3】通電の電流密度を変化させて、空隙の充填
物質の充填率を皮膜の厚さ方向で変化させる請求項1記
載のセラミックス被覆耐熱部材の製造方法。
3. The method of manufacturing a ceramic-coated heat-resistant member according to claim 1, wherein the filling rate of the filling material in the voids is changed in the thickness direction of the film by changing the current density of the current.
【請求項4】基材がFe、CoまたはNiを主成分とする耐熱
合金あるいはCuまたはCu合金である請求項1記載のセラ
ミックス被覆耐熱部材の製造方法。
4. The method for producing a ceramic-coated heat-resistant member according to claim 1, wherein the substrate is a heat-resistant alloy containing Fe, Co or Ni as a main component, or Cu or a Cu alloy.
【請求項5】耐熱基材の表面に溶融粒子による積層構造
のセラミックス溶射皮膜を設けるセラミックス被覆耐熱
部材の製造方法において、前記基材表面に前記溶射皮膜
を形成した後に、金属塩溶液を前記皮膜内に含浸させ、
しかる後に焼成を行い、前記含浸及び焼成を繰り返して
前記皮膜内の空隙に前記金属塩より形成されたセラミッ
クスを充填することを特徴とするセラミックス被覆耐熱
部材の製造方法。
5. A method for manufacturing a ceramic-coated heat-resistant member having a laminated ceramic sprayed film made of molten particles on a surface of a heat-resistant substrate, wherein the metal salt solution is applied to the film after forming the thermal sprayed film on the surface of the substrate. Impregnated inside,
A method for producing a ceramic-coated heat-resistant member, characterized in that firing is performed thereafter, and the impregnation and firing are repeated to fill voids in the coating with ceramic formed from the metal salt.
【請求項6】充填物質がSiO2、Al2O3、ZrO2またはこれ
らの混合物のセラミックスからなる請求項5記載のセラ
ミックス被覆耐熱部材の製造方法。
6. The method for producing a ceramic-coated heat-resistant member according to claim 5, wherein the filling material is made of ceramics of SiO 2 , Al 2 O 3 , ZrO 2 or a mixture thereof.
【請求項7】耐熱基材の表面に溶融粒子による積層構造
のセラミックス溶射皮膜を設けるセラミックス被覆耐熱
部材の製造方法において、前記基材表面に前記溶射皮膜
を形成した後に、金属イオンを含む電解液中で通電によ
り前記皮膜内の空隙に金属を充填し、次いで金属塩溶液
を前記皮膜内に含浸させ、しかる後に焼成を行い、前記
含浸及び焼成を繰り返して前記皮膜内の空隙に前記金属
塩より形成されたセラミックスを充填することを特徴と
するセラミックス被覆耐熱部材の製造方法。
7. A method for producing a ceramic-coated heat-resistant member having a laminated ceramic sprayed film made of molten particles on a surface of a heat-resistant base material, wherein the sprayed film is formed on the surface of the base material, and then an electrolytic solution containing metal ions is formed. Filling the gaps in the film with a metal by passing current therein, then impregnating the film with a metal salt solution, and then performing firing, repeating the impregnation and firing to fill the voids in the film with the metal salt. A method for producing a ceramic-coated heat-resistant member, characterized by filling the formed ceramic.
【請求項8】セラミックス充填物質が金属酸化物、金属
窒化物、硼化物、金属炭化物、珪化物あるいはこれらの
混合物である請求項7記載のセラミックス被覆耐熱部材
の製造方法。
8. The method according to claim 7, wherein the ceramic filler is a metal oxide, a metal nitride, a boride, a metal carbide, a silicide, or a mixture thereof.
JP2268750A 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member Expired - Lifetime JP2993723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268750A JP2993723B2 (en) 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268750A JP2993723B2 (en) 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member

Publications (2)

Publication Number Publication Date
JPH04143262A JPH04143262A (en) 1992-05-18
JP2993723B2 true JP2993723B2 (en) 1999-12-27

Family

ID=17462819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268750A Expired - Lifetime JP2993723B2 (en) 1990-10-05 1990-10-05 Manufacturing method of ceramic coated heat resistant member

Country Status (1)

Country Link
JP (1) JP2993723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021220A (en) * 2009-07-14 2011-02-03 Toyama Univ Method of generating film on metal surface

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697469B2 (en) * 1992-04-03 1998-01-14 株式会社日立製作所 Gas turbine blades, vanes and combustor liners and manufacturing method
KR100668947B1 (en) * 2005-06-16 2007-01-12 한국전력공사 Surface treatment method for increasing oxidation resistance of Ni-based superalloy and the parts for a gas turbine employing the same
JP5075880B2 (en) 2009-06-30 2012-11-21 株式会社日立製作所 Heat-resistant parts and high-temperature parts for gas turbines
JP5629898B2 (en) * 2010-09-13 2014-11-26 トーカロ株式会社 Method for forming cermet film excellent in plasma erosion resistance and cermet film coated member
JP6065388B2 (en) * 2012-03-07 2017-01-25 マツダ株式会社 Thermal insulation film structure and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021220A (en) * 2009-07-14 2011-02-03 Toyama Univ Method of generating film on metal surface

Also Published As

Publication number Publication date
JPH04143262A (en) 1992-05-18

Similar Documents

Publication Publication Date Title
US5057379A (en) Heat engine parts made of alloy and having a metallic-ceramic protective coating and method of forming said coating
JP2827333B2 (en) Manufacturing method of heat-resistant insulating coil
CN102169912A (en) Mo/Ag laminated metal matrix composite for solar cell interconnected sheet and preparation process thereof
RU2741491C2 (en) Part with applied thermal barrier for gas turbine engine and method of its production
JP2993723B2 (en) Manufacturing method of ceramic coated heat resistant member
CN114591102A (en) C/C composite material SiB6-Glass oxidation resistant coating and preparation method thereof
JP5080749B2 (en) Current collecting member for fuel cell, cell stack, and fuel cell
JP2697469B2 (en) Gas turbine blades, vanes and combustor liners and manufacturing method
WO1991010239A1 (en) Method of manufacturing inorganic insulator
CN114032547B (en) Alloy surface composite coating and preparation method thereof
US20010031375A1 (en) High porosity three-dimensional structures in chromium based alloys
JP5629898B2 (en) Method for forming cermet film excellent in plasma erosion resistance and cermet film coated member
CN111058018A (en) Preparation method of oxidation-resistant coating on surface of TD3 alloy
US3627650A (en) Method for producing a chromium-tungsten coating on tungsten for protection against oxidation at elevated temperatures
JPH05151829A (en) Coating film member made of mineral material
RU217419U1 (en) Heat-resistant winding wire for power plants
RU2089655C1 (en) Method of application of protective coating
KR100256426B1 (en) Heat treatment for ni-spray coating material
JP2760982B2 (en) Surface treatment method for structural member of molten carbonate fuel cell
JP2875158B2 (en) Method for producing electrically insulating alumina sprayed coating
JP2624434B2 (en) Glass-metal composite material and method for producing the same
CN116397293A (en) Method for depositing composite coating on surface of titanium-aluminum alloy
JPS6232275B2 (en)
JPH07282645A (en) Heat resistant insulated wire and its manufacture
JPS621817B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 11

EXPY Cancellation because of completion of term