JPH0536767B2 - - Google Patents

Info

Publication number
JPH0536767B2
JPH0536767B2 JP58251812A JP25181283A JPH0536767B2 JP H0536767 B2 JPH0536767 B2 JP H0536767B2 JP 58251812 A JP58251812 A JP 58251812A JP 25181283 A JP25181283 A JP 25181283A JP H0536767 B2 JPH0536767 B2 JP H0536767B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
astigmatism
plane
light beam
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58251812A
Other languages
Japanese (ja)
Other versions
JPS59146013A (en
Inventor
Shigeo Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58251812A priority Critical patent/JPS59146013A/en
Publication of JPS59146013A publication Critical patent/JPS59146013A/en
Publication of JPH0536767B2 publication Critical patent/JPH0536767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体接合面内とこれに垂直な面内
とでは発振光束の収束点が異なり非点収差となる
半導体レーザを光源とする例えば光ピツクアツプ
等の光学装置に関し、殊に、前記半導体レーザか
ら導出される光束を屈折等させて光デイスクの読
取面に結像させ、その読取面に記録された情報を
読取るように構成されたオーデイオ、ビデオ等の
光デイスクプレヤの前記光ピツクアツプに適用し
て最適なものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to optical pickups, for example, in which the light source is a semiconductor laser, in which the convergence point of the oscillated light beam differs in the semiconductor junction plane and in the plane perpendicular thereto, causing astigmatism. Regarding optical devices such as, in particular, audio and video devices configured to refract the light beam derived from the semiconductor laser, form an image on the reading surface of an optical disk, and read information recorded on the reading surface. It is most suitable for application to the optical pickup of an optical disk player such as the above.

背景技術とその問題点 例えば、ダブルヘテロ接合半導体レーザの一種
であるゲイン・ガイデイング型の半導体レーザ
は、同種のインデツクス・ガイデイング型の半導
体レーザによく見られる読取面等からの戻り光束
による自己結合効果に起因するノイズレベルの増
加はない。このために、殊に、高いS/N比が要
求されるビデオ光デイスクプレヤの光ピツクアツ
プでの光源として価値を見直されつつある。これ
は、ゲイン・ガイデイング型の半導体レーザが縦
多モード発振のため、インデツクス・ガイデイン
グ型の半導体レーザのような縦単一モード発振の
半導体レーザに比べ、戻り光束による発振が乱さ
れにくいという本質的な性質によるものである。
しかしながら、光学的特性の観点から見ると、第
1図イ,ロに示される如くに、ゲイン・ガイデイ
ング型の半導体レーザ1の発振光束のモードウエ
ストは、半導体接合面(X−Y軸面)内とこれに
垂直な面(X−Z軸面)内とでは異なつている。
すなわち、垂直面(X−Z軸面)内では、鏡面2
に一致するA点であるのに対し、接合面(X−Y
軸面)内では、若干半導体レーザの活性層3つま
り鏡面2より奥の共振器内に入つたB点となる。
したがつて、半導体接合面(X−Y軸面)内とこ
れに垂直な面(X−Z軸面)内とでは発振光束の
収束点が異なり、光学上でいうところの非点収差
(ΔZ)となつている。
Background technology and its problems For example, a gain guiding type semiconductor laser, which is a type of double heterojunction semiconductor laser, has a self-coupling effect due to the return light beam from the reading surface, etc., which is often seen in the same type of index guiding type semiconductor laser. There is no increase in noise level due to For this reason, their value is being reconsidered as a light source for optical pickups, especially for video optical disc players, which require a high S/N ratio. This is because the gain guiding type semiconductor laser oscillates in longitudinal multi-mode, so the oscillation is less likely to be disturbed by the returned light beam compared to a semiconductor laser with longitudinal single mode oscillation such as the index guiding type semiconductor laser. This is due to the nature of
However, from the viewpoint of optical characteristics, as shown in Figure 1 A and B, the mode waist of the oscillated light beam of the gain guiding type semiconductor laser 1 is within the semiconductor junction plane (X-Y axis plane). and in a plane perpendicular to this (X-Z axis plane).
In other words, in the vertical plane (X-Z axis plane), the mirror surface 2
point A, which coincides with the bonding surface (X-Y
In the axial plane), point B is located inside the resonator, which is slightly deeper than the active layer 3 of the semiconductor laser, that is, the mirror surface 2.
Therefore, the convergence point of the oscillation light beam is different between the semiconductor junction surface (X-Y axis plane) and the plane perpendicular thereto (X-Z axis plane), resulting in optical astigmatism (ΔZ ).

もし、この種の半導体レーザを光デイスクプレ
ヤの光ピツクアツプでの光源として使用し、レン
ズ等でもつて屈折等させて光デイスクの読取面に
結像させると、非点収差により読取スポツトが歪
み、偏平な縦長もしくは横長のスポツトとなる。
故に、隣接トラツクにまたがる等に起因して、所
要の光学系のOTF(Optical Transfer Function)
特性が得られなくなるという問題点が生ずる。
If this type of semiconductor laser is used as a light source in the optical pickup of an optical disk player and is refracted by a lens or the like to form an image on the reading surface of the optical disk, the reading spot will be distorted and flattened due to astigmatism. It becomes a vertically long or horizontally long spot.
Therefore, due to straddling adjacent tracks, the OTF (Optical Transfer Function) of the required optical system is
A problem arises in that the characteristics cannot be obtained.

従来は、この問題点を解決すべく次のような手
段がとられていた。その1つは、 (a) 半導体レーザから導出された発散状態の光束
のうち中心付近の狭い角度部分だけを取出して
読取りに使用し、非点収差による波面の乱れを
小さくする手段 である。この手段では、実用上は、どの程度の開
口数のコリメータレンズでもつて対物レンズに光
束が導くかにより、非点収差にもとづく影響が異
なる。このため、前述のように中心付近の狭い角
度部分だけ取出せば、光の利用効率は下がるが、
波面の乱れは小さくなる。したがつて、デイジタ
ルオーデイオ光デイスク(DAD)プレヤの光ピ
ツクアツプのような高いS/N比を要しないもの
であれば、所要のOTF特性が得られる。
Conventionally, the following measures have been taken to solve this problem. One of them is (a) a means of extracting only a narrow angular portion near the center of the diverging light beam derived from the semiconductor laser and using it for reading to reduce wave front disturbance due to astigmatism. In practice, with this means, the influence of astigmatism differs depending on the numerical aperture of the collimator lens to guide the light beam to the objective lens. For this reason, as mentioned above, if only the narrow angle part near the center is extracted, the efficiency of light utilization will decrease;
The disturbance of the wave front becomes smaller. Therefore, the required OTF characteristics can be obtained for devices that do not require a high S/N ratio, such as the optical pickup of a digital audio optical disk (DAD) player.

すなわち、DADプレヤの光ピツクアツプとし
ては、高いS/N比を要しないため所要の光強度
はそれ程必要としない。このため、比較的小さい
例えば0.13NAの開口数のコリメータレンズで足
りるので、例えば非点収差25μmの半導体レーザ
を光源として用いても、波面の乱れはRMS値で
0.056〔λ〕と十分回折限界内にあり、特に支障は
ない。
That is, since a high S/N ratio is not required for the optical pickup of the DAD player, the required light intensity is not so high. For this reason, a relatively small collimator lens with a numerical aperture of, for example, 0.13 NA is sufficient, so even if a semiconductor laser with astigmatism of 25 μm is used as a light source, the wavefront disturbance will be the RMS value.
0.056 [λ], which is well within the diffraction limit, and there is no particular problem.

しかしながら、ビデオ光デイスクプレヤの光ピ
ツクアツプ等のように高いS/N比を必要とする
ものには、この手段によれば半導体レーザから導
出される光束の利用効率が悪いため、レーザ出力
を増加させねばならず、半導体レーザの寿命を短
かくするという欠点を生ずることになる。
However, for applications that require a high S/N ratio, such as the optical pickup of a video optical disk player, this method has poor utilization efficiency of the luminous flux derived from the semiconductor laser, so it is necessary to increase the laser output. This has the disadvantage of shortening the life of the semiconductor laser.

さもなければ、高いS/N比を必要とするビデ
オ光デイスクプレヤの光ピツクアツプ等の光源と
するには、現在の半導体レーザが導出される光束
の発散角から考えて、例えば0.2NA以上の開口数
のコリメータレンズでもつて結像させる必要があ
るからである。しかしこの場合は、25μmの非点
収差による波面の乱れはRMS値で0.13〔λ〕とな
り、OTF特性を著しく劣化させ、所要のOTF特
性が得られなくなつてしまう。
Otherwise, considering the divergence angle of the light beam derived from current semiconductor lasers, an aperture of, for example, 0.2 NA or more is required for use as a light source for an optical pickup of a video optical disc player that requires a high S/N ratio. This is because it is necessary to form an image using several collimator lenses. However, in this case, the wavefront disturbance due to the 25 μm astigmatism has an RMS value of 0.13 [λ], which significantly deteriorates the OTF characteristics and makes it impossible to obtain the required OTF characteristics.

因みに、回折限界内として許容される波面乱れ
のRMS値は、0.07λ(Marechal Criterion)であ
る。逆にこれを満足するために必要なレーザの非
点収差は、コリメータレンズの開口数を0.2NAと
すれば、13μmということになる。なお、現在の
ゲイン・ガイデイング型の半導体レーザの非点収
差を考えると、25μm程度である。したがつて、
ビデオ光デイスクプレヤの光ピツクアツプ等のよ
うな高いS/N比、つまり光強度の強いものが必
要とされる場合には、何らかの非点収差の補正を
要することとなる。
Incidentally, the RMS value of wavefront disturbance allowed within the diffraction limit is 0.07λ (Marechal Criterion). Conversely, the astigmatism of the laser required to satisfy this requirement is 13 μm, assuming that the numerical aperture of the collimator lens is 0.2 NA. Note that, considering the astigmatism of current gain guiding type semiconductor lasers, it is approximately 25 μm. Therefore,
When a high S/N ratio, that is, a strong light intensity is required, such as in an optical pickup of a video optical disc player, some kind of astigmatism correction is required.

別の手段として、 (b) 円筒レンズ等のような方向によりパワー(結
合力)の異なる光学素子でもつて非点収差を補
正する手段 が用いられている。しかしながらこれによる場
合、光学素子のパワーを方向によつて異ならせる
がために、光学素子面つまりレンズ面が球面とな
らずに変形曲面となつてしまう。したがつて、そ
の面形成が極めて困難であるという欠点を生ず
る。また、パワーがありかつパワーが方向によつ
て異なることも相俟つて、光学素子の光軸に対す
る角度位置の他、光軸方向における位置、非点収
差に対するパワーの方向性の位置を調整してやら
ねばならず、光学素子の位置調整が難しいという
欠点をも生ずる。
As another means, (b) means is used to correct astigmatism using an optical element such as a cylindrical lens, which has different power (coupling force) depending on the direction. However, in this case, since the power of the optical element is made different depending on the direction, the optical element surface, that is, the lens surface, becomes a deformed curved surface instead of a spherical surface. Therefore, the disadvantage is that it is extremely difficult to form the surface. In addition, since there is power and the power differs depending on the direction, it is necessary to adjust the angular position of the optical element with respect to the optical axis, the position in the optical axis direction, and the directional position of the power with respect to astigmatism. Moreover, there is a drawback that it is difficult to adjust the position of the optical element.

発明の目的 本発明は、このような実情に鑑みて発明された
ものであつて、その目的とするところは、非点収
差となる半導体レーザを用いて、例え高いS/N
比が要求されて光強度を要するものでも、面形成
が容易で位置調整の簡単な光学素子により、しか
もその光学素子が容易に装置に組み込まれて、所
要のOTF特性がレーザ出力を増加させることな
く得られる光学装置を提供することにある。
Purpose of the Invention The present invention was invented in view of the above-mentioned circumstances, and its purpose is to use a semiconductor laser with astigmatism, even if it has a high S/N.
Even when a high ratio is required and a high light intensity is required, an optical element with easy surface formation and easy position adjustment can be easily incorporated into a device, and the required OTF characteristics can increase the laser output. The objective is to provide an optical device that can be obtained without any problems.

発明の概要 本発明にかかる光学装置は、半導体接合面内と
これに垂直な面内とで発振光束の収束点が異なつ
て非点収差となる半導体レーザを光源とし、前記
半導体レーザにキヤツプが覆い被せられている光
学装置において、前記半導体レーザから導出され
る光束が通過する前記キヤツプの窓は、前記導出
光束の非点収差を補正するためにその法線ベクト
ルが前記半導体レーザの半導体接合面内で光軸に
対して所定角度傾けられた少なくとも1枚の所定
板厚の透明もしくは半透明の平行平面板から構成
され、補正すべき非点収差量をAS、前記平行平
面板の板厚をt′、前記平行平面板の屈折率をN、
前記平行平面板の法線ベクトルの光軸に対する傾
き角をUP′としたとき、式: AS=t′/√N2−sin2UP′〔N2cos2UP′/N2−sin2UP
−1〕 により所望の非点収差補正量が得られ、前記平行
平面板で発生する球欠コマ量をcomaS、前記導出
光束の開口角の1/2をUとしたとき、式: comsS=t′・U2・UP′・(N2−1)/2N3 により十分小さな球欠コマ量が得られるように、
前記平行平面板の板厚t′及び傾き角UP′を夫々設
定したことを特徴とするものである。
Summary of the Invention An optical device according to the present invention uses a semiconductor laser as a light source in which the convergence point of an oscillated light beam differs in a semiconductor junction plane and in a plane perpendicular thereto, resulting in astigmatism, and a cap covers the semiconductor laser. In the optical device covered with the cap, the window of the cap through which the light beam derived from the semiconductor laser passes has a normal vector that is within the semiconductor bonding surface of the semiconductor laser in order to correct astigmatism of the derived light beam. The astigmatism to be corrected is A S , and the thickness of the parallel plane plate is the amount of astigmatism to be corrected. t′, the refractive index of the parallel plane plate is N,
When the inclination angle of the normal vector of the parallel plane plate with respect to the optical axis is U P ′, the formula: A S = t′/√N 2 −sin 2 U P ′ [N 2 cos 2 U P ′/N 2 −sin 2 U P
-1], the desired amount of astigmatism correction is obtained, and when the amount of spherical missing coma generated in the parallel plane plate is coma S and 1/2 of the aperture angle of the derived light beam is U, the formula: coms S = t′・U 2・U P ′・(N 2 −1)/2N 3 In order to obtain a sufficiently small amount of missing pieces,
The invention is characterized in that the plate thickness t' and the inclination angle U P ' of the parallel plane plate are set respectively.

これにより、面形成が容易で位置調整の簡単な
光学素子である平行平面板により、しかもその平
行平面板が半導体レーザのキヤツプの窓に設けら
れることで容易に精度良く装置に組み込まれて、
所要のOTF特性がレーザ出力を増加させること
なく得られる。
As a result, the plane-parallel plate is an optical element whose surface is easy to form and whose position is easily adjusted.Moreover, the plane-parallel plate is provided in the window of the cap of the semiconductor laser, so that it can be easily and accurately incorporated into the device.
The required OTF characteristics can be obtained without increasing the laser power.

実施例 以下本発明を光ピツクアツプに適用した一実施
例につきその絞り光学系のみを取出し図面を参照
しつつ説明する。
Embodiment Hereinafter, an embodiment in which the present invention is applied to an optical pickup will be explained with reference to the drawings, in which only the aperture optical system thereof is taken out.

第2図は半導体レーザの半導体接合面内を光軸
にそつた断面を示し、第3図は半導体レーザの半
導体接合面に垂直な面内を光軸にそつた断面を示
している。なお、図中示されている座標軸は第1
図に合わせてある。
FIG. 2 shows a cross section of the semiconductor laser taken along the optical axis within the semiconductor junction surface, and FIG. 3 shows a cross section taken along the optical axis within the plane perpendicular to the semiconductor junction surface of the semiconductor laser. Note that the coordinate axes shown in the figure are the first
It matches the diagram.

光源である半導体レーザ1は、ダブルヘテロ接
合半導体レーザの一種であるゲイン・ガイデイン
グ型である。この半導体レーザ1は、前述のよう
に、発振光束の収束点が半導体接合面(X−Y軸
面)内では鏡面2より若干奥の共振器内に入り、
これに垂直な面(X−Z軸面)内では鏡面2に一
致し、非点収差となるものである。
The semiconductor laser 1, which is a light source, is a gain guiding type, which is a type of double heterojunction semiconductor laser. As mentioned above, in this semiconductor laser 1, the convergence point of the oscillation light beam enters the resonator slightly deeper than the mirror surface 2 within the semiconductor junction surface (X-Y axis plane).
In a plane perpendicular to this (X-Z axis plane), it coincides with the mirror surface 2, resulting in astigmatism.

この半導体レーザ1から導出される光束の光路
の光軸上には、出射光束が平行な光束となるよう
に屈折させるために、その焦点を半導体レーザ1
の鏡面2に位置させる所要の開口数のコリメータ
レンズ4が設けられている。しかして、半導体レ
ーザ1とコリメータレンズ4との間の発散状態の
光束の光路中で、半導体レーザ1を覆い被せるキ
ヤツプ(CAP)の半導体レーザ1から導出され
る光束が通過する窓Wには、光束透過可能な一枚
の所定板厚tの平行平面ガラス5が設けられてい
る。そして、この平行平面ガラス5は、図示され
る如くにその法線ベクトルが光軸に対して半導体
レーザ1の半導体接合面(X−Y軸面)内で所定
角度UP傾くようにして設けられている。これに
より、半導体レーザ1から導出される光束の非点
収差が補正されている。(なお、板厚tおよび角
度UP等については後述する。)また、コリメータ
レンズ4からの平行光束を受けてビデオ光デイス
ク等の読取面6に結像させるように屈折させるた
めに、読取面6にその焦点を位置させる対物レン
ズ7が光軸上に設けられている。この結像によ
り、読取面6に記録されたものを読取ることとな
る。
On the optical axis of the optical path of the light flux emitted from the semiconductor laser 1, the focal point of the light flux is set on the semiconductor laser 1 in order to refract the emitted light flux into a parallel light flux.
A collimator lens 4 having a required numerical aperture is provided to be positioned on the mirror surface 2 of the lens. Therefore, in the optical path of the divergent light beam between the semiconductor laser 1 and the collimator lens 4, the window W of the cap (CAP) that covers the semiconductor laser 1 through which the light beam led out from the semiconductor laser 1 passes. A parallel plane glass 5 having a predetermined thickness t and capable of transmitting a light beam is provided. As shown in the figure, the parallel plane glass 5 is provided so that its normal vector is inclined at a predetermined angle UP within the semiconductor bonding surface (X-Y axis plane) of the semiconductor laser 1 with respect to the optical axis. ing. Thereby, astigmatism of the light beam derived from the semiconductor laser 1 is corrected. (The plate thickness t, angle U P, etc. will be described later.) In addition, in order to receive the parallel light beam from the collimator lens 4 and refract it so as to form an image on the reading surface 6 of a video optical disk, etc., the reading surface An objective lens 7 whose focal point is located at 6 is provided on the optical axis. This image formation allows what is recorded on the reading surface 6 to be read.

次に、前記平行平面ガラス5でもつて非点収差
を補正する理由を第4図にもとづいて説明する。
Next, the reason why astigmatism is corrected even with the plane-parallel glass 5 will be explained based on FIG. 4.

発散状態の場合も同様であるが、例えば図示す
るように収束状態にある光束の光路(開口数NA
=sinU)中に平行平面ガラス5′(板厚t′、屈折
率N)を光軸に対してUP′傾けて位置させるとす
る。このとき発生する非点隔差量(非点収差)
は、例えばW.J.Smith;Modern Optical
Engineering(M.C.Graw−Hill N.Y.1966)によ
れば、次のようになる。
The same applies to the case of a divergent state, but for example, as shown in the figure, the optical path of a light beam in a convergent state (numerical aperture NA
Assume that a parallel plane glass 5' (thickness t', refractive index N) is positioned at an angle U P ' with respect to the optical axis. The amount of astigmatism that occurs at this time (astigmatism)
For example, WJSmith; Modern Optical
According to MCGraw-Hill NY1966, it is as follows.

As=ls′−lt′=t′/√N2−sin2UP′ 〔N2cos2UP′/(N2−sin2UP′)−1〕 ……(1) なお、lt′は法線・光軸を含む面(子午面)内
での収束点までの距離、ls′はこれに直交する面
(球欠面)での収束点までの距離である。
A s =l s ′−l t ′=t′/√N 2 −sin 2 U P ′ [N 2 cos 2 U P ′/(N 2 −sin 2 U P ′)−1] ……(1) Note that l t ′ is the distance to the convergence point in the plane that includes the normal and optical axis (meridian plane), and l s ′ is the distance to the convergence point in the plane perpendicular to this (the spherical plane). .

一方、球欠コマ量(球欠収差)は comas=t′・U2・UP′・(N2−1)/2N3 ……(2) である。 On the other hand, the amount of spherical coma (spherical aberration) is coma s = t′・U 2UP ′・(N 2 −1)/2N 3 (2).

前記(1)(2)式によれば、所要の開口数、例えば
NA=sinU=0.2において、板厚t′、傾き角UP′を
選定することによつて、半導体レーザ1で生じる
非点収差と同量で反対符号の非点収差を発生さ
せ、かつ、同時に発生するコマ収差を十分低レベ
ルに抑えることは可能であることがわかる。すな
わち任意のUP′≠0に対して非点隔差量(非点収
差)は、 As=ls′−lt′<0 となる。
According to equations (1) and (2) above, the required numerical aperture, e.g.
At NA=sinU=0.2, by selecting the plate thickness t' and the tilt angle U P ', it is possible to generate astigmatism of the same amount and opposite sign as the astigmatism generated in the semiconductor laser 1, and at the same time. It can be seen that it is possible to suppress the generated coma aberration to a sufficiently low level. That is, for any U P ′≠0, the amount of astigmatism (astigmatism) is A s =l s ′−l t ′<0.

したがつて、子午面を半導体レーザ1の半導体
接合面にとれば、半導体レーザ1の非点収差は補
正できる。
Therefore, if the meridian plane is taken as the semiconductor junction surface of the semiconductor laser 1, the astigmatism of the semiconductor laser 1 can be corrected.

例れば、t′=0.1mm、UP′=45°、N=1.5とすれ
ば非点隔差量(非点収差)は、 As=ls′−lt′=−0.025(mm)=−25μm となる。現在のゲイン・ガイデイング型の半導体
レーザ1の非点収差は前述のように25μm程度で
あるので、これにより非点収差が十分補正できる
ことは明らかである。しかもこのとき発生するコ
マ収差は、波面収差のRMS値で約0.02〔λ〕で十
分無視できるものである。
For example, if t' = 0.1 mm, U P ' = 45°, and N = 1.5, the amount of astigmatism (astigmatism) is A s = l s ' - l t ' = -0.025 (mm) = -25μm. Since the astigmatism of the current gain guiding type semiconductor laser 1 is about 25 μm as described above, it is clear that this can sufficiently correct the astigmatism. Moreover, the coma aberration that occurs at this time is approximately 0.02 [λ] in RMS value of wavefront aberration, and can be completely ignored.

なお、非点収差、コマ収差ともに平行平面板ガ
ラス5′の板厚t′に比例し、傾き角UP′に対しては
非点収差はほぼ2乗、コマ収差に比例するがため
に、一定の非点収差を発生するには平行平面ガラ
ス5′の板厚t′を小さく傾き角UP′を大きくして補
正したほうが、同時に発生するコマ収差を低く抑
えることができる。
Note that both astigmatism and coma are proportional to the thickness t' of the plane-parallel plate glass 5', and for the tilt angle U P ', the astigmatism is approximately squared and proportional to the coma aberration, so they are constant. In order to generate the astigmatism, it is better to correct the plate thickness t' of the parallel plane glass 5' by making it smaller and increasing the inclination angle UP ', so that the coma aberration that occurs at the same time can be kept low.

以上により、法線ベクトルを光軸に対して半導
体レーザ1の半導体接合面(X−Y軸面)内で所
定角度UP傾けて設けられた所定板厚tの平行平
面ガラス5でもつて、半導体レーザ1の非点収差
が補正されることがわかる。
As described above, even if the parallel plane glass 5 of a predetermined plate thickness t and provided with the normal vector inclined at a predetermined angle UP within the semiconductor bonding surface (X-Y axis plane) of the semiconductor laser 1 with respect to the optical axis, the semiconductor It can be seen that the astigmatism of the laser 1 is corrected.

したがつて、対物レンズ7により読取面6に結
像される読取スポツトは、平行平面ガラス5によ
る非点収差の補正によりほぼ円形状となり、隣接
トラツクにまたがることはなく所要のOTF特性
が得られる。
Therefore, the reading spot imaged on the reading surface 6 by the objective lens 7 becomes approximately circular due to the correction of astigmatism by the plane-parallel glass 5, and the required OTF characteristics can be obtained without straddling adjacent tracks. .

本実施例では、非点収差の補正を平行平面ガラ
ス5でもつて行なつたが、サフアイヤ等で形成さ
れた平行平面板でもよく、要するに半導体レーザ
1からの光束が透過可能な平行平面板でありさえ
すればよい。
In this embodiment, astigmatism was corrected using the plane-parallel glass 5, but a plane-parallel plate made of sapphire or the like may also be used.In short, it is a plane-parallel plate through which the light beam from the semiconductor laser 1 can pass. All you have to do is

また、本実施例では平行平面ガラス5を一枚と
したが、ある非点収差を補正に要する板厚tがあ
れば非点収差は補正できる。したがつて、この板
厚tを分割して、平行平面ガラス5を2枚、3枚
……として設けてもよい。
Further, in this embodiment, only one parallel plane glass 5 is used, but astigmatism can be corrected if there is a plate thickness t required to correct a certain astigmatism. Therefore, this plate thickness t may be divided to provide two, three, etc. parallel plane glasses 5.

更に、本実施例では、半導体レーザ1をダブル
ヘテロ接合半導体レーザのゲイン・ガイデイング
型としたが、半導体接合面内とこれに垂直な面内
とでは発振光束の収束点が異なり非点収差となる
半導体レーザであれば、本発明を適用できること
はいうまでもない。
Furthermore, in this embodiment, the semiconductor laser 1 is a gain guiding type double heterojunction semiconductor laser, but the convergence point of the oscillation light beam differs between the semiconductor junction plane and the plane perpendicular to this, resulting in astigmatism. It goes without saying that the present invention can be applied to any semiconductor laser.

なお、平行平面ガラス5の法線ベクトルを光軸
に対して45°(=UP)傾けて、半導体レーザ1と反
対側の面に蒸着膜をコーテイングして半導透明鏡
としてビームスプリツタに兼用することも可能で
ある。
In addition, the normal vector of the parallel plane glass 5 is tilted by 45 degrees (= U P ) with respect to the optical axis, and the surface opposite to the semiconductor laser 1 is coated with a vapor-deposited film to be used as a semiconducting transparent mirror and a beam splitter. It is also possible to use both.

応用例 本発明は、距離測定装置、物体運動測定装置、
情報記録装置(光学式オーデイオ、ビデオのデイ
スク原盤製造装置等)、情報伝送装置等に適用す
ることができる。
Application Example The present invention provides a distance measuring device, an object movement measuring device,
It can be applied to information recording devices (optical audio, video disk master manufacturing devices, etc.), information transmission devices, and the like.

発明の効果 本発明は、半導体レーザから導出される光束の
非点収差を補正するために、その法線ベクトルが
半導体レーザの半導体接合面内で光軸に対して所
定角度傾けられた平行平面板を設けた。従つて、
半導体接合面内とこれに垂直な面とで発振光束が
異なつて非点収差となる半導体レーザが光源とし
て用いられ、しかも、高いS/N比が要求されて
大きな光強度が必要とされる場合でも、レーザ出
力を増加させることなく所望のOTF特性を得る
ことができる。
Effects of the Invention The present invention provides a parallel plane plate whose normal vector is tilted at a predetermined angle with respect to the optical axis within the semiconductor junction surface of the semiconductor laser in order to correct astigmatism of a light beam derived from a semiconductor laser. has been established. Therefore,
When a semiconductor laser is used as a light source, which causes astigmatism because the oscillation light flux differs between the semiconductor junction plane and the plane perpendicular to it, and a high S/N ratio is required and a large light intensity is required. However, desired OTF characteristics can be obtained without increasing laser power.

また、平行平面板の非点収差およびコマ収差が
平行平面板の板厚に夫々比例し、平行平面板の傾
き角に対しては非点収差はほゞ2乗に比例しかつ
コマ収差は比例することに着目して、非点収差が
小さくなる所望の非点収差補正量が得られ、十分
小さな球欠コマ量が得られるように、平行平面板
の板厚及び傾き角を夫々設定した。従つて、半導
体レーザによる非点収差を所望の低い値に抑えつ
つ、平行平面板に起因するコマ収差を低い値に抑
えることができる。
Furthermore, astigmatism and coma aberration of a plane-parallel plate are proportional to the thickness of the plane-parallel plate, and astigmatism and coma aberration are proportional to the square of the inclination angle of the plane-parallel plate. Focusing on this, the thickness and inclination angle of the parallel plane plate were respectively set so as to obtain a desired amount of astigmatism correction that reduces astigmatism and to obtain a sufficiently small amount of missing coma. Therefore, while astigmatism due to the semiconductor laser can be suppressed to a desired low value, coma aberration due to the parallel plane plate can be suppressed to a low value.

また、非点収差を補正する光学素子が平行平面
板であるから、その面形成は極めて容易であり、
また、平行平面板の法線ベクトルを光軸に対して
半導体レーザの半導体接合面内で傾ける角度位置
調整を必要とするだけであり、このために、非点
収差補正用光学素子の位置調整が極めて簡単であ
る。
In addition, since the optical element that corrects astigmatism is a parallel plane plate, it is extremely easy to form the surface.
In addition, it is only necessary to adjust the angular position of the normal vector of the parallel plane plate within the semiconductor junction surface of the semiconductor laser with respect to the optical axis, and for this purpose, the position adjustment of the optical element for astigmatism correction is required. It's extremely simple.

また、非点収差補正用光学素子を構成する平行
平面板が半導体レーザに覆い被せられるキヤツプ
の窓を構成するようにした。従つて、平行平面板
を光学装置に組込むための支持部材などを別に設
ける必要がないから、構造が簡単で小型に構成す
ることができ、また、半導体レーザのステム等を
基準として光学装置に正確に組込むことができ
る。
Further, the parallel plane plate constituting the astigmatism correcting optical element constitutes the window of the cap that covers the semiconductor laser. Therefore, since there is no need to separately provide a support member for incorporating the plane parallel plate into the optical device, the structure can be simple and compact, and the optical device can be accurately mounted on the basis of the stem of a semiconductor laser. can be incorporated into

また、半導体レーザに覆い被せられるキヤツプ
の窓を平行平面板から構成するようにした。従つ
て、従来のインデツクス・ガイデイング型の半導
体レーザを組込むように構成した光学装置におい
て、レーザチツプをゲイン・ガイデイング型等の
非点収差を有する半導体レーザに置き換えると共
に、キヤツプの形状を変更するだけの簡単な操作
により本発明を適用することができるから、同一
設計の光学装置で2種類の半導体レーザを使用す
ることができ、このために、設計の負担を生ずる
ことなくかつ組立ラインの変更も必要とせず、こ
の結果、コストアツプを全く生じない。また、半
導体レーザを保護するためにキヤツプ内は不活性
ガス雰囲気に通常保持されるが、キヤツプを半導
体レーザに覆い被せてから不活性ガスをキヤツプ
内に導入するだけで、不活性ガス雰囲気により半
導体レーザを保護し得ると共に、半導体レーザの
非点収差を補正することができ、このために、製
造工程の簡単化を図ることができる。
Furthermore, the window of the cap that covers the semiconductor laser is constructed from a parallel plane plate. Therefore, in an optical device configured to incorporate a conventional index guiding type semiconductor laser, it is easy to replace the laser chip with a gain guiding type semiconductor laser having astigmatism and change the shape of the cap. Since the present invention can be applied through simple operations, two types of semiconductor lasers can be used in an optical device of the same design, without creating a design burden and without requiring changes to the assembly line. As a result, no cost increase occurs. In addition, the inside of the cap is normally kept in an inert gas atmosphere to protect the semiconductor laser, but by simply covering the semiconductor laser with the cap and then introducing an inert gas into the cap, the inert gas atmosphere protects the semiconductor. The laser can be protected and astigmatism of the semiconductor laser can be corrected, thereby simplifying the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ,ロはゲイン・ガイデイング型の半導
体レーザの非点収差を説明する図、第2図は本発
明を適用した一例の光ピツクアツプの絞り光学系
における半導体レーザの半導体接合面内を光軸に
そつた断面図、第3図は第2図の半導体レーザの
半導体接合面に垂直な面内を光軸にそつた断面
図、第4図は平行平面ガラスによる非点収差の補
正を説明する図である。 なお図面に用いられている符号において、1…
…半導体レーザ、5……平行平面ガラス、であ
る。
Figures 1A and 2B are diagrams explaining astigmatism in a gain guiding type semiconductor laser, and Figure 2 shows light passing through the semiconductor junction surface of the semiconductor laser in an aperture optical system of an optical pickup to which the present invention is applied. Figure 3 is a cross-sectional view taken along the optical axis in a plane perpendicular to the semiconductor junction surface of the semiconductor laser in Figure 2. Figure 4 explains the correction of astigmatism using parallel plane glass. This is a diagram. In addition, in the symbols used in the drawings, 1...
. . . semiconductor laser, 5 . . . parallel plane glass.

Claims (1)

【特許請求の範囲】 1 半導体接合面内とこれに垂直な面内とで発振
光束の収束点が異なつて非点収差となる半導体レ
ーザを光源とし、 前記半導体レーザにキヤツプが覆い被せられて
いる光学装置において、 前記半導体レーザから導出される光束が通過す
る前記キヤツプの窓は、前記導出光束の非点収差
を補正するためにその法線ベクトルが前記半導体
レーザの半導体接合面内で光軸に対して所定角度
傾けられた少なくとも1枚の所定板厚の透明もし
くは半透明の平行平面板から構成され、 補正すべき非点収差量をAS、前記平行平面板
の板厚をt′、前記平行平面板の屈折率をN、前記
平行平面板の法線ベクトルの光軸に対する傾き角
をUP′としたとき、式: AS=t′/√N2−sin2UP′〔N2cos2UP′/N2−sin2UP
−1〕 により所望の非点収差補正量が得られ、前記平行
平面板で発生する球欠コマ量をcomaS、前記導出
光束の開口角の1/2をUとしたとき、式: comsS=t′・U2・UP′・(N2−1)/2N3 により十分小さな球欠コマ量が得られるように、
前記平行平面板の板厚t′及び傾き角UP′を夫々設
定したことを特徴とする光学装置。
[Scope of Claims] 1. The light source is a semiconductor laser in which the convergence point of the oscillated light beam is different in the semiconductor junction plane and in the plane perpendicular thereto, resulting in astigmatism, and the semiconductor laser is covered with a cap. In the optical device, the window of the cap through which the light beam derived from the semiconductor laser passes has a normal vector aligned with the optical axis within the semiconductor junction surface of the semiconductor laser in order to correct astigmatism of the derived light beam. It is composed of at least one transparent or translucent parallel plane plate of a predetermined thickness tilted at a predetermined angle with respect to the astigmatism amount A S , the thickness of the parallel plane plate t′, and When the refractive index of the plane-parallel plate is N, and the angle of inclination of the normal vector of the plane-parallel plate with respect to the optical axis is U P ′, the formula: A S = t′/√N 2 −sin 2 U P ′ [N 2 cos 2 U P ′/N 2 −sin 2 U P
-1], the desired amount of astigmatism correction is obtained, and when the amount of spherical missing coma generated in the parallel plane plate is coma S and 1/2 of the aperture angle of the derived light beam is U, the formula: coms S = t′・U 2・U P ′・(N 2 −1)/2N 3 In order to obtain a sufficiently small amount of missing pieces,
An optical device characterized in that a thickness t' and an inclination angle U P ' of the parallel plane plate are set respectively.
JP58251812A 1983-12-23 1983-12-23 Optical device Granted JPS59146013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58251812A JPS59146013A (en) 1983-12-23 1983-12-23 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251812A JPS59146013A (en) 1983-12-23 1983-12-23 Optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57025522A Division JPS58143443A (en) 1982-02-19 1982-02-19 Optical device using semiconductor laser

Publications (2)

Publication Number Publication Date
JPS59146013A JPS59146013A (en) 1984-08-21
JPH0536767B2 true JPH0536767B2 (en) 1993-05-31

Family

ID=17228284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251812A Granted JPS59146013A (en) 1983-12-23 1983-12-23 Optical device

Country Status (1)

Country Link
JP (1) JPS59146013A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251046A (en) * 1985-08-29 1987-03-05 Nec Home Electronics Ltd Optical head for optical recording and reproducing device
JPH0792926B2 (en) * 1986-06-25 1995-10-09 日本電気株式会社 Optical pickup device
JPH0766559B2 (en) * 1986-07-01 1995-07-19 日本電気株式会社 Optical pickup device
DE69327139T2 (en) * 1992-07-10 2000-04-06 Fujitsu Ltd Laser diode module
JPH0661583A (en) * 1992-08-11 1994-03-04 Sony Corp Semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645815B2 (en) * 1975-07-02 1981-10-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645815U (en) * 1979-09-14 1981-04-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645815B2 (en) * 1975-07-02 1981-10-29

Also Published As

Publication number Publication date
JPS59146013A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
EP0226403B1 (en) Optical head apparatus
US4577941A (en) Optical apparatus
US5872760A (en) Optical pickup for correcting an astigmatic difference of light
JPH0536767B2 (en)
JPS6374133A (en) Optical pickup device
JPS6322370B2 (en)
JP2004511875A (en) Optical scanning device
US5835475A (en) Optical device and optical pickup device
JPH056261B2 (en)
US5680256A (en) Lens for reading out optical recording medium
JPH08307006A (en) Semiconductor laser
JPS60241013A (en) Optical pickup
JPS58185047A (en) Optical information reader
US7164624B2 (en) Optical scanning device
JPS63129529A (en) Optical pickup head
US5661607A (en) Lens for reading out optical recording medium
JPS5928123A (en) Optical device
JPH0562238A (en) Optical device and optical pickup device
JPH02195532A (en) Optical head device
JPH0256740A (en) Beam shaping device and optical head device
KR910008500B1 (en) Optical apparatus
JPH04209335A (en) Light emitting member
JPH0138561Y2 (en)
JPS61148641A (en) Optical device
JPS6242341A (en) Optical information processor