JPS59146013A - Optical device - Google Patents
Optical deviceInfo
- Publication number
- JPS59146013A JPS59146013A JP58251812A JP25181283A JPS59146013A JP S59146013 A JPS59146013 A JP S59146013A JP 58251812 A JP58251812 A JP 58251812A JP 25181283 A JP25181283 A JP 25181283A JP S59146013 A JPS59146013 A JP S59146013A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- astigmatism
- semiconductor
- plane
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0009—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
- G02B19/0014—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
- G02B19/0047—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
- G02B19/0052—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体接合面内とこれに垂直な面内とでは発
振光束の収束点が異なり非点収差となる半導体レーザを
光源とする例えば光ピツクアップ等の光学装置に関し、
殊に、前記半導体レーザから導出される光束を屈折等さ
せて光ディスクの読取面に結像させ、その読取面に記録
された情報を読取るように構成されたオーディオ、ビデ
オ等の光ディスクプレヤの前記光ピツクアップに適用し
て最適なものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to optical pickups, for example, in which the light source is a semiconductor laser, which has astigmatism due to the difference in the convergence point of the oscillated light beam within the semiconductor junction plane and in the plane perpendicular thereto. Regarding optical devices such as
In particular, the light beam of an optical disc player for audio, video, etc. is configured to refract the light beam derived from the semiconductor laser, form an image on the reading surface of the optical disc, and read information recorded on the reading surface. It is most suitable for use in pickups.
背景技術とその問題点
例えば、ダブルへテロ接合半導体レーザの一種であるゲ
イン・ガイディング型の半導体レーザは、同種のインデ
ックス・ガイディング型の半導体レーザによく見られる
読取面等からの戻り光束による自己結合効果に起因する
ノイズレベルの増加はない。このために、殊に、高いS
lN比が要求されるビデオ光ディスクブレヤの光ピツク
アップでの光源として価値を見直されつつある。これは
、ゲイン−ガイディング型の半導体レーザが縦多モード
発振のため、インデックス・ガイディング型の半導体レ
ーザのような縦単一モード発振の半導体レーザに比べ、
戻り光束による発振が乱されにくいという本質的な性質
によるものである。しかしながら、光学的特性の観点か
ら見ると、第1図(イ)、(ロ)に示される如くに、ゲ
イン・ガイディング型の半導体レーザ(1)の発振光束
のモードウェストは、半)、)体接合面(X −Y Q
1+面)内とこれに垂直なmi(X −Z M面)内と
では異なっている。すなわぢ、飛直面(X −Z ’j
ai1面)内では、鏡面(2)に一致するA点であるの
に対し、接合面(: X −Y @面)内では、若干半
導体1/−ザの活性層(3)つまり鏡面(2)より奥の
共振器内に入ったB点となる。l、だが・つて、半導体
レーザ(X−Y軸面)内とこれに飛直な面(X−Z軸面
)内とでは発振光束の収束点が胃、なり、光学上でいう
表ころの非点1F差(ΔZ)となっている。BACKGROUND TECHNOLOGY AND PROBLEMS For example, a gain guiding type semiconductor laser, which is a type of double heterojunction semiconductor laser, uses the return light beam from the reading surface, etc., which is often seen in the same type of index guiding type semiconductor laser. There is no increase in noise level due to self-coupling effects. For this reason, especially high S
Its value is being reconsidered as a light source for the optical pickup of video optical disk players, which require a high IN ratio. This is because gain-guiding type semiconductor lasers oscillate in longitudinal multi-mode, compared to semiconductor lasers with longitudinal single mode oscillation such as index-guiding type semiconductor lasers.
This is due to the essential property that the oscillation due to the returned light beam is not easily disturbed. However, from the viewpoint of optical characteristics, as shown in Figures 1 (a) and (b), the mode waist of the oscillation light flux of the gain guiding type semiconductor laser (1) is half), Body joint surface (X - Y Q
1+ plane) and in mi (X-ZM plane) perpendicular to this plane. In other words, the flight plane (X −Z 'j
In the ai1 plane), point A coincides with the mirror surface (2), whereas in the junction plane (: ) becomes point B, which is deeper inside the resonator. However, in the semiconductor laser (X-Y axis plane) and in the plane perpendicular to this (X-Z axis plane), the convergence point of the oscillation light beam is the stomach, which is what is called the front center in optical terms. The astigmatic 1F difference (ΔZ) is obtained.
もし、このliの半導体ti・−ザを光ディスクブレヤ
の)1−ピンクアップでの)′(,源として使用し、レ
ンズ等でもって屈折等させて光ディスクの読取部に結像
させるさ、非点収差により読取スポットが歪み、偏平な
縦、F蚤もしくけ横長のスポットとなる。If this li semiconductor ti-the is used as a source of the optical disc brake in )1-pink-up)'(,), it will be refracted with a lens etc. and an image will be formed on the reading section of the optical disc. The reading spot is distorted due to point aberration, resulting in a flat vertical spot and a horizontally long spot.
故に、隣接トラックにまたがる等に起因して、所要の光
学系のOT F (0,ptieal Transfe
r Function )特性が得られなくなるという
間9a点が生ずる。Therefore, due to straddling adjacent tracks, etc., the required optical system OT F (0, ptial Transfer
Point 9a occurs during which the characteristic (r Function ) is no longer obtained.
従来は、この問題点を解決すべく次のような手段がとら
れていた。その1つは、
(、) 半導体レーザから導出された発散状聾の)Y
二車のうち中心付近の狭い角変部分だけを取出して読取
りに使用し、非点収差による波面の乱れを小さくする手
段
である。この手段では、実用トは、どの稈度の開口数の
コリメータレンズでもって対′物しンズ(こ光束を導く
かにより、非点収差にもとづく影響が異なる。このため
、前述のように中心付近の狭い角度部分だけ取出せば、
光の利用効率は下がるが、波面の乱れは小さくなる。し
たがって、ディジタルオーディオ光ディスク(D A
I) )ブレヤの光ビックアンプのような高いSlN比
を要しないものであれば、所要のOT F % +!:
がイ1)られる。Conventionally, the following measures have been taken to solve this problem. One of them is (,)Y of divergent deafness derived from semiconductor laser.
This is a means of extracting only the narrow angularly changing part near the center of the two wheels and using it for reading, thereby reducing the disturbance of the wavefront due to astigmatism. With this method, the practical problem is that the influence of astigmatism differs depending on the collimator lens of which culmosity and numerical aperture is used to guide the objective lens (this luminous flux). If you take out only the narrow angle part of
Although the efficiency of light use decreases, the disturbance of the wavefront becomes smaller. Therefore, digital audio optical disc (DA
I)) If it does not require a high SIN ratio like Breyer's optical big amplifier, the required OT F% +! :
1) is done.
すなわち、DADプレヤのガ;ピックアンプとしては、
高いS/N比を聾し7ないため所要の)“自強度はそれ
程必要吉しない。このため、比イxイ灼小さい例えば0
.13NAの開11数のコリメータレンズで足りるので
、例え非点収差25μノア1の半導体レーザを光源とし
て用いても、波面の乱れはRMS値で0.056[:λ
〕と十分回折限界内にあり、特に支障はない。In other words, as a pick amp for a DAD player,
The self-strength (required in order to avoid hearing a high S/N ratio) is not so necessary.For this reason, the ratio is very small, for example 0
.. Since a 13 NA collimator lens with an aperture of 11 is sufficient, even if a semiconductor laser with an astigmatism of 25 μNor 1 is used as a light source, the wavefront disturbance will be 0.056 [:λ] in RMS value.
] is well within the diffraction limit and there is no particular problem.
しかしながら、ビデオ光ディスクプレヤの光ピツクアッ
プ等のように高いS/N比を必要とするものには、この
手段によれば半導体レーザから導出される光束の利用効
率が悪いため、レーザ出力を19加させねばならず、半
導体レーザの寿命を短かくするさいう欠点を生ずること
になる。However, for applications that require a high S/N ratio, such as the optical pickup of a video optical disk player, this method has poor utilization efficiency of the luminous flux derived from the semiconductor laser, so the laser output must be increased by 19%. This results in the drawback of shortening the life of the semiconductor laser.
さもなければ、高いS/N比を必要とするビデオ有光デ
ィスクブレヤの光ピンクアンプ等の光源2二するには、
現在の半導体レーザが導出される光束の発散角から考え
て、例えば0.2 N A以上の開[]数のコリメータ
レンズでもって結像させる必要があるからである。しか
しこの場合は、25μmの非点収差による波面の乱れは
RMS値で0.13〔λ〕 となり、0TFe性を著し
く劣化させ、所要のOTF特性が得らイ1なくな−って
しまう。Otherwise, in order to use a light source such as an optical pink amplifier for a video optical disk player that requires a high S/N ratio,
This is because, considering the divergence angle of the light beam emitted from current semiconductor lasers, it is necessary to form an image using a collimator lens with an open number of, for example, 0.2 NA or more. However, in this case, the wavefront disturbance due to the astigmatism of 25 μm has an RMS value of 0.13 [λ], which significantly deteriorates the 0TFe property and makes it impossible to obtain the required OTF characteristic.
因みに、回折限界内々して許容される波面乱れのRM
S値は、0.07λ(Marecbal Cr1ter
ion )である。逆にこれを満足するために必要なレ
ーづ“の非点収差は、コリメータレンズの開口数を0.
2NAとずれは ’I、 3 p mということになる
。なお、現在のゲイン嗜ガイディング型の半導体し、−
()”の非点収差を考えると、25 ti ry+程度
である。したがって、ビデオ光ディスクプレヤの光ピツ
クアップ等のような高いS/N比、つまり光強度の強い
ものが必要とされる場合には、何らかの非点収差の補正
を斐することとなる。Incidentally, the RM of wavefront disturbance allowed within the diffraction limit
The S value is 0.07λ (Marecbal Cr1ter
ion). Conversely, the lens astigmatism required to satisfy this requirement is determined by setting the numerical aperture of the collimator lens to 0.
The deviation from 2NA is 'I, 3 pm. It should be noted that the current gain-based guiding type semiconductors are -
Considering the astigmatism of "()", it is about 25 ti ry+. Therefore, when a high S/N ratio, that is, a strong light intensity is required, such as in an optical pickup of a video optical disk player, , some kind of astigmatism must be corrected.
別の手段として、
(b) 円筒レンズ等のような方向により、+ワー(
結合力)の異なる光学素子でもって非点収差を補正する
手段
が用いられている。しかしながらこれによる場合、光学
素子のパワーを方向によって異ならせるがために、光学
素子面つまりレンズ面が球面とならずに変形曲面となっ
てしまう。したがって、その面形成が極めて困難である
という欠点を生ずる。また、パワーがありかつパワーが
方向によって異なることも相俟って、光学素子の光軸に
対する角度位置のf(11、光軸方向における位f66
、非点収差に対するパワーの方向性の位置を訓1駐して
やらねばならず、光学を子の位置調整が帷しいという欠
点をも生ずる。Alternatively, (b) the +war (
Means for correcting astigmatism using optical elements having different coupling powers is used. However, in this case, since the power of the optical element is made to vary depending on the direction, the optical element surface, that is, the lens surface, becomes a deformed curved surface instead of a spherical surface. Therefore, the disadvantage is that it is extremely difficult to form the surface. In addition, since there is power and the power differs depending on the direction, the angular position f(11) of the optical element with respect to the optical axis, and the position f66 in the optical axis direction
However, the position of the directionality of the power with respect to astigmatism must be carefully determined, and there is also the disadvantage that it is difficult to adjust the position of the optical system.
発明の目的
本発明は、このよ・うな実情に鑑みで発明されたもので
あって、その目的とするところは、非点収差々なる半導
1体レーザを用いて、例え高いS/N1(二が要求され
て光強度を要するものでも、面形成がr1易で位置調整
の簡単な光学翠(により、しかもその光学素子が容易に
装置に側み込まねて、所要のOT F trp5yがレ
ーザ出力を増加させることなく得られる光学装置を+7
供することにある。Purpose of the Invention The present invention was invented in view of the above-mentioned circumstances, and its purpose is to use a single semiconductor laser with various astigmatisms, even if it has a high S/N1 ( Even in cases where optical elements are required and require high light intensity, the optical element is easy to form and the position can be easily adjusted. Optical device that can be obtained without increasing output by +7
It is about providing.
発明の概要
本発明にかかる光学装置は、冒頭にh己したものに13
いて、前記半導体レーザを覆い被せるキャップの前記半
導体レーザから導出される光束が通過する窓(こ、所定
板厚の透明もシ、<は半透明の平行平面板をその法線ベ
タ1ルが光軸に対して前記半導1体レーザの半導体ヂ合
面内で所定角度傾くようにして少なくとも1枚設け、前
記導出光束の非点収差を補正するように構成したことを
特徴とするものである。Summary of the Invention The optical device according to the present invention is the same as that described at the beginning.
A window of a cap that covers the semiconductor laser through which the light flux derived from the semiconductor laser passes (this is a transparent plate of a predetermined thickness; At least one light beam is provided so as to be inclined at a predetermined angle within the semiconductor joint plane of the semiconductor integrated laser with respect to the axis, and is configured to correct astigmatism of the guided light beam. .
これにより、面形成が容易で位置調整の簡、中な光学素
子である平行平面板により、しかもその平行平面板が半
導体レーザのキャンプの窓に設けられることで容易に精
度良く装置に組み込まれて、所要のOTF特性がレーザ
出力を増加させることなく得られる。This makes surface formation easy, position adjustment easy, and the plane-parallel plate that is the central optical element, and since the plane-parallel plate is provided in the window of the semiconductor laser camp, it can be easily incorporated into the device with high precision. , the required OTF characteristics are obtained without increasing the laser power.
実施例
以下本発明を光ビックアンプに適用した一実施例につき
その絞り光学系のみを取出し図面を参照しつつ説明する
。EXAMPLE Hereinafter, an example in which the present invention is applied to an optical big amplifier will be explained with reference to the drawings, with only the aperture optical system thereof being taken out.
第2図は半導体レーザの半導体接合面内を光軸にそった
断面を示し、第3図は半導体レーザの半導体接合面に垂
直な面内を光軸にそった断面を示している。なお、図中
示されている座標軸は第1図に合わぜである。FIG. 2 shows a cross section of the semiconductor laser along the optical axis within the semiconductor junction surface, and FIG. 3 shows a cross section of the semiconductor laser along the optical axis within a plane perpendicular to the semiconductor junction surface. Note that the coordinate axes shown in the figure are the same as those in FIG.
光源である半導体レーザ(1)は、ダブルへテロ接合半
導体レーザの一種であるゲイン・ガイディング到である
。この半導体レーザ(1)は、前述のよ゛うに、発振光
束の収束点が半導体接合面(X−Y軸面)内ではQ面(
2)より若干奥の共振器内に入り、これに垂直な而(x
−z !lh面)内では鏡面(2)に一致し、非点収
差となるものである。The semiconductor laser (1) that is the light source is a gain guiding type of double heterojunction semiconductor laser. As mentioned above, in this semiconductor laser (1), the convergence point of the oscillation light beam is in the Q plane (
2) Enter the resonator a little further back and perpendicular to it (x
-z! (lh plane), it coincides with the mirror surface (2) and causes astigmatism.
この半導体レーザ(1)から導出される光束の光路の光
軸上をとは、出射光束が平行な光束となるように屈折さ
せるため正こ、その焦点を半導体レーザ(1)の鏡面(
2)に位置させる所要の開口数のコリメータレンズ(4
)が設けられている。しかして、半導体レーザ(1)と
コリメータレンズ(4)との間の発散状態の光束の光路
中で、半導体レーザ(1)を覆い被せるギャップ(CA
P )の半導体レーザ(1)から導出される光束が通過
する窓■には、光束透過可能な一枚の所定板厚tの平行
平面ガラス(5)が設けられている。そして、この平行
平面ガラス(5)(ま、図示される如くにその法線ベク
トルが光軸に対して半導体レーザ(1)の半導体接合面
(X−Y軸面)内で所定角[Up傾<ようにして設けら
れている。これにより、半導体レーザ(1)から導出さ
れる光束の非点収差が補正されている。(なお、板ff
tおよび角度Ul等に゛ついては後述す′る。)また、
コリメータレンズ(4)からの平行光束を受けてビデオ
光ディスク等の読取面(6)に結像させるようlこ屈折
させるためtこ、読取面(6)にその焦点を位置させる
対物レンズ(力が光軸上に設けられている。この結像に
より、読取面(6)に記録されたものを読取ることとな
る。On the optical axis of the optical path of the light flux emitted from this semiconductor laser (1), in order to refract the emitted light flux so that it becomes a parallel light flux, the focus is set on the mirror surface of the semiconductor laser (1).
2) with the required numerical aperture (4).
) is provided. Therefore, in the optical path of the divergent light beam between the semiconductor laser (1) and the collimator lens (4), there is a gap (CA) that covers the semiconductor laser (1).
A parallel plane glass (5) having a predetermined thickness t and capable of transmitting the light beam is provided in the window (2) through which the light beam derived from the semiconductor laser (1) of P) passes. Then, this parallel plane glass (5) (as shown in the figure, its normal vector is at a predetermined angle [Up tilt) within the semiconductor junction surface (X-Y axis plane) of the semiconductor laser (1) with respect to the optical axis. <.This corrects the astigmatism of the luminous flux derived from the semiconductor laser (1). (Note that the plate ff
t, angle Ul, etc. will be described later. )Also,
In order to receive the parallel light beam from the collimator lens (4) and refract it so as to form an image on the reading surface (6) of a video optical disc, etc., an objective lens (with a force It is provided on the optical axis.By this image formation, what is recorded on the reading surface (6) is read.
次に、前記平行平面ガラス(5)でもって非点収差を補
正する理由を第4図にもとづいて説明する。Next, the reason why astigmatism is corrected using the plane-parallel glass (5) will be explained based on FIG. 4.
発散状態の場合も同様であるが、例えば図示するように
収束状態にある光束の光路(開口数NA=sinU )
中に平行平面ガラス(5Y(板+yt’、屈折率N)を
光ff11+に対してUp′傾けて位置させるとする。The same applies to the case of the divergent state, but for example, as shown in the figure, the optical path of the light beam in the convergent state (numerical aperture NA = sinU)
Assume that a parallel plane glass (5Y (plate +yt', refractive index N) is positioned inside with a tilt Up' with respect to the light ff11+.
このとき発生する非点隔差へ(非点収差)は、例えばW
、J、Sm1th ; Modern 0ptical
F’:ngineering (M、C。The astigmatism difference (astigmatism) that occurs at this time is, for example, W
, J, Sm1th ; Modern 0ptical
F': ngineering (M, C.
GraW−川11 N、Y、 1966 ) iコよ
れば、ン人ノヨウicなる。GraW-Kawa 11 N, Y, 1966) According to Iko, Njin no Yoo IC becomes.
なお、lt′は涜神・光軸を含む面(子午面)内での収
束点までのPfW 闇、ら′はこれに直交する面(球欠
面)での収束点までの距離である。Note that lt' is the PfW darkness to the convergence point in the plane (meridian plane) including the sacrilege/optical axis, and r' is the distance to the convergence point in the plane orthogonal to this (the spherical plane).
一方、球欠コマ猪−(球欠収差)は である。On the other hand, the spherical aberration is It is.
前記(1)(2)式によれば、所要の開口数、例えばN
A =sinU = 0.2において、板厚t′、傾き
角Up′を選定することによって、半導体レーザfl)
で生じる非点収差と回付で反対符号の非点収差を発生さ
せ、かつ、同時に発生するコマ収差を十分低レベルに抑
えることは可能であることがわかる。すなわち任意のU
、′〜Dに対して非点隔差量(非点収差)は、
A、 : i、’ −1t’ < rlとなる。According to equations (1) and (2) above, the required numerical aperture, for example N
By selecting the plate thickness t' and the inclination angle Up' at A = sinU = 0.2, the semiconductor laser fl)
It can be seen that it is possible to generate astigmatism of the opposite sign to the astigmatism caused by rotation, and to suppress the coma aberration that occurs at the same time to a sufficiently low level. That is, any U
, ' to D, the astigmatism difference amount (astigmatism) is A, : i, '-1t'< rl.
したがって、子午面を半導体レーザ(1)の半導体接合
面にとれば、半導体レーザ(1)の非点収差は補正でき
る。Therefore, if the meridian plane is taken as the semiconductor junction surface of the semiconductor laser (1), the astigmatism of the semiconductor laser (1) can be corrected.
例えば、t’=o、i閂、Up’ = 45°、N=1
.5とすれば非点隔差量(非点収差)は、
As:ls′−lt′=−0,025(ml)−m−2
5μmとなる。現在のゲイン・ガイディング型の半導体
レーザ(1)の非点収差は前述のように25μ〃1程度
であるので、これにより非壱、収差ツ)樗十分補正でき
ることは明らかである。しかもこのとき発生するコマ収
差は、波面1区差の1?、 M S値で約11.02(
λ〕で十分無視できるものである。For example, t'=o, i bar, Up'=45°, N=1
.. 5, the amount of astigmatism (astigmatism) is As:ls'-lt'=-0,025(ml)-m-2
It becomes 5 μm. Since the astigmatism of the current gain-guiding type semiconductor laser (1) is about 25 μm as described above, it is clear that the astigmatism and aberration can be sufficiently corrected. Moreover, the comatic aberration that occurs at this time is 1? , MS value is approximately 11.02 (
λ] can be sufficiently ignored.
なお、非点収差、コマ収差ともシこ平行平面板ガラス(
5)′の板厚t′に比例し、傾き角U、’に対しては非
点収差はほぼ2乗、コマ収差は比例するがために、一定
の非点収差を発生する17″は平行平面ガラス(!5Y
の板、壓t′を小さく傾き角LT、/を大きくして補正
したほうが、同時に発生するコマ収差を低く抑えること
ができる。Note that both astigmatism and coma aberration are caused by parallel flat plate glass (
5) Since the astigmatism is proportional to the plate thickness t', and the astigmatism is approximately square for the inclination angle U,', and the coma is proportional to the plate thickness t', 17", which produces a constant astigmatism, is Flat glass (!5Y
It is possible to suppress the coma aberration that occurs at the same time by making corrections by making the plate t' smaller and increasing the tilt angle LT, /.
以上により、法線ベクトルを光軸に対して半導体レーザ
(1)の半導体レーザ(X−Y軸面)内で所定角度Up
傾けて設けられた所定板Vy、tの丁行平面ガラス(5
)でもって、半導体レーザ(1)の非点収差が補正さね
、イ1こ吉がわかる。As a result of the above, the normal vector is increased at a predetermined angle within the semiconductor laser (X-Y axis plane) of the semiconductor laser (1) with respect to the optical axis.
A predetermined plate Vy, t of tilted plane glass (5
), it can be seen that the astigmatism of the semiconductor laser (1) is corrected.
したがって、対物レンズ(7)屹より読取面(6)に結
(Qjさ才する読取スポットは、平行平面ガラス(5)
による非点収差の補正によりほぼ円形状となり、隣接ト
ラックにまたがるこさはなく所要のOTF/%性が得ら
れる。Therefore, the reading spot that is focused on the reading surface (6) from the objective lens (7) is the parallel plane glass (5).
Astigmatism is corrected by , so that the shape becomes almost circular, and the required OTF/% is obtained without extending over adjacent tracks.
本実施例では、非点収差の補正を平行平面ガラス(!”
i)でもって行なったが、サファイヤ等で形成され、フ
ニ平行乎面板でもよく、要するに半導体レーザ(1)か
らの光束が透過可能な平行平面板でありさえずればよい
。In this example, astigmatism is corrected using a parallel plane glass (!”
i), but it may be made of sapphire or the like and may be a flat parallel plate, as long as it is a flat parallel plate through which the light beam from the semiconductor laser (1) can pass.
また、本実施例では平行了面ガラス(5)を一枚吉した
が、ある非点収差を補正に要する板厚tがあれば非点収
差は補正できる。したがって、この板厚tを分割して、
平行平面ガラス(5)を2枚、3枚・・・・ 古して
設けてもよい。Further, in this embodiment, a single piece of parallel glass (5) is used, but astigmatism can be corrected if there is a plate thickness t required to correct a certain astigmatism. Therefore, dividing this plate thickness t,
Two or three parallel plane glasses (5) may be used.
更に、本実施例では、半導体レーザ(1)をダブルへテ
ロ接合半導体レーザのゲイン會ガイディンク型Jニジた
が、半導体接合面内とこれに垂直な面内とでは発擾光束
の収束点が鞘なり非点収差となる半導体レーザであれば
、本発明を適用できることはいうまでもない。Furthermore, in this embodiment, the semiconductor laser (1) is a double heterojunction semiconductor laser of the gain guide type Jniji, but the convergence point of the emitted light beam is different in the semiconductor junction plane and in the plane perpendicular to this. It goes without saying that the present invention can be applied to any semiconductor laser that exhibits astigmatism.
なお、平行平面ガラス(5)の法線ベクトルを光軸に対
して45°(=Up)傾けて、半導体レーザ(1)と反
対側の面に蒸着膜をコーティングして半鳩違明鏡として
ビームスプリンタに兼用するこ吉も可能である。In addition, the normal vector of the parallel plane glass (5) is tilted 45 degrees (=Up) with respect to the optical axis, and the surface opposite to the semiconductor laser (1) is coated with a vapor-deposited film, so that the beam beam can be used as a half-dove mirror. It is also possible to use Kokichi as a printer.
応用例
本発明は、距離測定装置、物体運動測定装置、情報記録
装置(光学式オーディオ、ビデオのディスク原盤製造装
置等)、情報伝送装置等ζこ適用するこ吉ができる。Application Examples The present invention can be applied to distance measuring devices, object movement measuring devices, information recording devices (optical audio and video disk master manufacturing devices, etc.), information transmission devices, etc.
発明の効果 本発明は、次の利点を有するものである。Effect of the invention The present invention has the following advantages.
平行平面板をその法線ベクトルが光軸に対して半導体レ
ーザの半導体接合面内で所定角度傾くようにして設ける
ことにより、非点収差となる半導体レーザを用いて、例
え高いS/N比が要求されて光強度を要するものでも、
所要のOTF特性がレーザ出力を増加させることなく得
られる。By providing the parallel plane plate so that its normal vector is inclined at a predetermined angle within the semiconductor junction surface of the semiconductor laser with respect to the optical axis, even if a semiconductor laser with astigmatism is used, a high S/N ratio can be achieved. Even if it is required and requires light intensity,
The required OTF characteristics are obtained without increasing the laser power.
そして、非点収差を補正する光学素子が平行平面板であ
るためをと、その面形成は極めて容易ζこできる。また
、パワー(結合力)を有さないために、前記の如くその
法線ベクトルを光軸lこ対して半導体レーザの半導体接
合面内で傾けて位置させる角度位置調整のみでたり、簡
単に位置調整ができる。Since the optical element for correcting astigmatism is a plane-parallel plate, its surface can be formed extremely easily. In addition, since it has no power (coupling force), it is possible to adjust the angular position by tilting the normal vector to the optical axis l within the semiconductor junction surface of the semiconductor laser, as described above, or to easily position it. Can be adjusted.
しかも、平行平面板が半導体レーザのギャップの窓に設
けられることで特に装置に支持部等を設けることなく容
易に、また半導体レーザのステム等を基準とするこ吉で
正確に装置に絹み込むことができる。Moreover, since the parallel plane plate is provided in the gap window of the semiconductor laser, it can be easily and accurately inserted into the device without the need to provide a support part or the like to the device. be able to.
第1図(イ)(ロ)はゲイン・ガイディング型の半導体
レーザの非点収差を説明する図、第2図は本発明を適用
した一例の光ピツクアップの絞り光学系における半導体
レーザの半導体接合面内を光軸にそ−っだ断面図、第6
図は第2図の半導体レーザの半導体レーザに垂直な面内
を光軸にそった断面図、第4図は平行平面ガラスによる
非点収差の補正を説明する図である。
なお図面に用いられている符号において、(1)
・ ・半導体し・−ザ
(5)・・ 平行平面ガラス
である。
代 理 人 士 屋 勝常 包
芳 男
杉浦俊y(
t i”
りt’i /! f’、:4Figures 1 (a) and (b) are diagrams explaining astigmatism of a gain guiding type semiconductor laser, and Figure 2 is a semiconductor junction of a semiconductor laser in an aperture optical system of an optical pickup to which the present invention is applied. Cross-sectional view in the plane along the optical axis, No. 6
This figure is a cross-sectional view of the semiconductor laser shown in FIG. 2 taken along the optical axis in a plane perpendicular to the semiconductor laser, and FIG. 4 is a diagram illustrating correction of astigmatism using parallel plane glass. In addition, in the symbols used in the drawings, (1)
・ ・Semiconductor・-The (5)・・Parallel plane glass. Agent Katsutsune
Yoshio Sugiura Shuny (t i"rit'i /! f', :4
Claims (1)
束点が異なり非点収差となる半導体レーザを光源とする
光学装置において、前記半導体レーザを覆い被せるキャ
ンプの前記半導体レーザから導出される光束が通過する
窓に、所定板厚の透明もしくは半透明の平行平面板をそ
の法腺ベクトルが光軸に対して前記半導体レーザの半導
体接合面内で所定角度傾くようにして少なくとも1枚設
け、前記導出光束の非点収差を補正するように構成した
ことを特徴とする光学装置。In an optical device using a semiconductor laser as a light source, the convergence point of the oscillated light beam differs between the semiconductor junction plane and the plane perpendicular to it, resulting in astigmatism. At least one transparent or semi-transparent parallel plane plate having a predetermined thickness is provided in the window through which the light beam passes, so that its normal vector is inclined at a predetermined angle within the semiconductor bonding surface of the semiconductor laser with respect to the optical axis; An optical device configured to correct astigmatism of the derived light beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58251812A JPS59146013A (en) | 1983-12-23 | 1983-12-23 | Optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58251812A JPS59146013A (en) | 1983-12-23 | 1983-12-23 | Optical device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57025522A Division JPS58143443A (en) | 1982-02-19 | 1982-02-19 | Optical device using semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59146013A true JPS59146013A (en) | 1984-08-21 |
JPH0536767B2 JPH0536767B2 (en) | 1993-05-31 |
Family
ID=17228284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58251812A Granted JPS59146013A (en) | 1983-12-23 | 1983-12-23 | Optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59146013A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251046A (en) * | 1985-08-29 | 1987-03-05 | Nec Home Electronics Ltd | Optical head for optical recording and reproducing device |
JPS637528A (en) * | 1986-06-25 | 1988-01-13 | Nec Corp | Optical pickup device |
JPS6310338A (en) * | 1986-07-01 | 1988-01-16 | Nec Corp | Optical pickup device |
US5495492A (en) * | 1992-08-11 | 1996-02-27 | Sony Corporation | Semiconductor laser having an active layer with a fan-shaped stripe with curved end surfaces |
US5633761A (en) * | 1992-07-10 | 1997-05-27 | Fujitsu Limited | Laser diode module |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645815U (en) * | 1979-09-14 | 1981-04-24 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS527518A (en) * | 1975-07-02 | 1977-01-20 | Kyoei Sangyo Kk | Transfer apparatus |
-
1983
- 1983-12-23 JP JP58251812A patent/JPS59146013A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645815U (en) * | 1979-09-14 | 1981-04-24 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6251046A (en) * | 1985-08-29 | 1987-03-05 | Nec Home Electronics Ltd | Optical head for optical recording and reproducing device |
JPS637528A (en) * | 1986-06-25 | 1988-01-13 | Nec Corp | Optical pickup device |
JPS6310338A (en) * | 1986-07-01 | 1988-01-16 | Nec Corp | Optical pickup device |
US5633761A (en) * | 1992-07-10 | 1997-05-27 | Fujitsu Limited | Laser diode module |
US5659432A (en) * | 1992-07-10 | 1997-08-19 | Fujitsu Limited | Laser diode module |
US5689378A (en) * | 1992-07-10 | 1997-11-18 | Fujitsu Limited | Laser diode module |
US5495492A (en) * | 1992-08-11 | 1996-02-27 | Sony Corporation | Semiconductor laser having an active layer with a fan-shaped stripe with curved end surfaces |
Also Published As
Publication number | Publication date |
---|---|
JPH0536767B2 (en) | 1993-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4577941A (en) | Optical apparatus | |
JPH0648543B2 (en) | Optical head device | |
JP2002303787A (en) | Objective lens, method for correcting its manufacturing error and optical pickup device using the objective lens | |
US5872760A (en) | Optical pickup for correcting an astigmatic difference of light | |
US6088170A (en) | Optical system for shaping light beams and an optical pickup employing the same | |
US6339577B1 (en) | Optical disk system, optical head device, and beam reshaping device | |
JP2002208159A (en) | Light beam irradiating optical system and optical pickup | |
JPS59146013A (en) | Optical device | |
US4805992A (en) | Astigmatism generator | |
JPH056261B2 (en) | ||
US7079456B2 (en) | Optical recording head capable of correcting spherical aberration | |
JPS58185047A (en) | Optical information reader | |
JPH0356901A (en) | Grating lens system | |
JPH01179235A (en) | Information erasing device for optical information recorder | |
JPS5928123A (en) | Optical device | |
JPH02257115A (en) | Optical system for recording and reproducing of optical information medium | |
JPH0954247A (en) | Read-out lens for optical recording medium | |
KR910008500B1 (en) | Optical apparatus | |
JPH0256740A (en) | Beam shaping device and optical head device | |
JPS61148641A (en) | Optical device | |
JPH02195532A (en) | Optical head device | |
JPS6139240A (en) | Focus detector | |
JPH04209335A (en) | Light emitting member | |
JP3254284B2 (en) | Optical pickup | |
JPH0138561Y2 (en) |