JPH056261B2 - - Google Patents

Info

Publication number
JPH056261B2
JPH056261B2 JP57025522A JP2552282A JPH056261B2 JP H056261 B2 JPH056261 B2 JP H056261B2 JP 57025522 A JP57025522 A JP 57025522A JP 2552282 A JP2552282 A JP 2552282A JP H056261 B2 JPH056261 B2 JP H056261B2
Authority
JP
Japan
Prior art keywords
astigmatism
semiconductor laser
plane
parallel plate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57025522A
Other languages
Japanese (ja)
Other versions
JPS58143443A (en
Inventor
Shigeo Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57025522A priority Critical patent/JPS58143443A/en
Priority to CA000419648A priority patent/CA1204199A/en
Priority to DE19833305675 priority patent/DE3305675A1/en
Priority to FR8302694A priority patent/FR2524158B1/en
Priority to GB08304572A priority patent/GB2119114B/en
Priority to KR1019830000668A priority patent/KR910008493B1/en
Publication of JPS58143443A publication Critical patent/JPS58143443A/en
Priority to US06/770,000 priority patent/US4577941A/en
Priority to KR1019910013078A priority patent/KR910008500B1/en
Publication of JPH056261B2 publication Critical patent/JPH056261B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 本発明は、半導体接合面内とこれに垂直な面内
とでは発振光の収束点が異なり非点収差となる半
導体レーザを光源とする半導体レーザを用いた光
学装置に関し、殊に、半導体レーザから導出され
る光束を屈折させて読取面に結像させることによ
り、この読取面に記録されたものを読取るように
構成されているオーデイオ、ビデオ等のデイスク
プレヤの光学的読取装置に用いて最適なものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical device using a semiconductor laser as a light source, in which the convergence point of oscillated light is different in a semiconductor junction plane and in a plane perpendicular to this, resulting in astigmatism. In particular, optical disc players such as audio and video players are configured to read what is recorded on the reading surface by refracting the light beam emitted from the semiconductor laser and forming an image on the reading surface. It is most suitable for use in reading devices.

例えば、ダブルヘテロ接合半導体レーザの一種
であるゲイン・ガイデイング型の半導体レーザ
は、同種のインデツクス・ガイデイング型の半導
体レーザにおいてよく見られる読取面等からの戻
り光による自己結合効果に起因するノイズレベル
の増加はない。このため、殊に、高いS/N比を
要求されるビデオデイスクプレヤの光学的読取装
置の光源として価値を見直されつつある。これ
は、ゲイン・ガイデイング型の半導体レーザが縦
多モード発振のため、インデツクス・ガイデイン
グ型の半導体レーザのような縦単一モード発振の
半導体レーザに比べ、戻り光により発振が乱され
にくいという本質的な性質によるものである。し
かしながら、光学的特性の観点から見ると、第1
図イ、ロに示されるように、ゲイン・ガイデイン
グ型の半導体レーザ1の発振光のモードウエスト
は、半導体の接合面(X−Y軸面)内とこれに垂
直な面(X−Z軸面)内とでは異なつている。す
なわち、垂直面(X−Z軸面)内では、鏡面2に
一致するA点であるのに対し、接合面(X−Y軸
面)内では、若干半導体レーザの活性層3つまり
鏡面2より奥の共振器内に入つたB点となる。し
たがつて、接合面(X−Y軸面)内とこれに垂直
な面(X−Z軸面)内とでは発振光の収束点が異
なり、光学上でいうところの非点収差(ΔZ)と
なつている。
For example, a gain-guiding type semiconductor laser, which is a type of double heterojunction semiconductor laser, has a noise level that is caused by the self-coupling effect caused by the return light from the reading surface, which is often seen in the same type of index-guiding type semiconductor laser. There is no increase. For this reason, their value is being reconsidered as a light source for optical reading devices, especially for video disc players, which require a high S/N ratio. This is because gain guiding type semiconductor lasers emit longitudinal multi-mode oscillations, so compared to semiconductor lasers with longitudinal single mode oscillations such as index guiding type semiconductor lasers, the oscillation is less likely to be disturbed by returned light. This is due to the nature of However, from the perspective of optical properties, the first
As shown in Figures A and B, the mode waist of the oscillated light of the gain guiding type semiconductor laser 1 is within the semiconductor junction plane (X-Y axis plane) and in a plane perpendicular to this (X-Z axis plane). ) is different. That is, in the vertical plane (X-Z axis plane), point A coincides with the mirror surface 2, whereas in the junction plane (X-Y axis plane), it is slightly closer to the active layer 3 of the semiconductor laser, that is, the mirror plane 2. Point B enters the inner resonator. Therefore, the convergence point of the oscillated light is different between the cemented surface (X-Y axis plane) and the plane perpendicular to this (X-Z axis plane), resulting in optical astigmatism (ΔZ). It is becoming.

もし、この種の半導体レーザをビデオデイスク
プレヤの光学的読取装置等の光源として使用し、
レンズ等でもつて屈折させて光デイスクの読取面
に結像させると、非点収差により読取スポツトが
歪み、偏平な縦長もしくは横長のスポツトとな
る。故に、隣接トラツクにまたがる等に起因し
て、所要の光学系のOTF(Optical Transfer
Function)特性が得られなくなるという問題点
が生ずる。
If this type of semiconductor laser is used as a light source for an optical reader of a video disc player,
When the light is refracted by a lens or the like and an image is formed on the reading surface of the optical disk, the reading spot is distorted due to astigmatism and becomes a flat vertically or horizontally long spot. Therefore, due to straddling adjacent tracks, the required optical system OTF (Optical Transfer
A problem arises in that the characteristics (Function) cannot be obtained.

従来は、この問題点を解決すべく次のような手
段がとられていた。その1つは、 (a) 半導体レーザから導出された発散状態の光束
のうち中心付近の狭い角度部分だけを取出して
読取りに使用し、非点収差による波面の乱れを
小さくする手段 である。この手段では、実用上は、どの程度の開
口数のコリメータレンズでもつて対物レンズに光
束を導くかにより、非点収差にもとづく影響が異
なる。このため、前記のように中心付近の狭い角
度部分だけ取出せば、光の利用効率は下がるが、
波面の乱れは小さくなる。したがつて、デイジタ
ルオーデイオデイスク(DAD)プレヤの光学的
読取装置のような高いS/N比を要しないもので
あれば、所要のOTF特性が得られる。
Conventionally, the following measures have been taken to solve this problem. One of them is (a) a means of extracting only a narrow angular portion near the center of the diverging light beam derived from the semiconductor laser and using it for reading to reduce wave front disturbance due to astigmatism. In practice, with this means, the influence of astigmatism differs depending on the numerical aperture of the collimator lens used to guide the light beam to the objective lens. For this reason, if only the narrow angle part near the center is extracted as mentioned above, the efficiency of light utilization will decrease;
The disturbance of the wave front becomes smaller. Therefore, the required OTF characteristics can be obtained if the device does not require a high S/N ratio, such as an optical reading device for a digital audio disc (DAD) player.

すなわち、DADプレヤの光学的読取装置とし
ては、高いS/N比を要しないため所要の光強度
はそれ程必要としない。このため、比較的小さい
例えば0.13NAの開口数のコリメータレンズで足
りるので、例え非点収差25μmの半導体レーザを
光源として用いても、波面の乱れはRMS値で
0.056〔λ〕と十分回折限界内にあり、特に支障は
ない。
That is, as an optical reading device for a DAD player, it does not require a high S/N ratio, and therefore does not require much light intensity. Therefore, a relatively small collimator lens with a numerical aperture of, for example, 0.13 NA is sufficient, so even if a semiconductor laser with astigmatism of 25 μm is used as a light source, the wavefront disturbance will be determined by the RMS value.
It is 0.056 [λ], which is well within the diffraction limit, and there is no particular problem.

しかしながら、ビデオデイスクプレヤの光学的
読取装置等のように高いS/N比を必要とするも
のには、この手段によれば半導体レーザから導出
される光の利用効率が悪いため、レーザ出力を増
加させねばならず、半導体レーザ寿命を短かくす
るという欠点を生ずることになる。
However, for devices that require a high S/N ratio, such as an optical reading device for a video disc player, this method has poor utilization efficiency of the light derived from the semiconductor laser, so the laser output must be increased. This has the disadvantage of shortening the life of the semiconductor laser.

さもなければ、高いS/N比を必要とするビデ
オデイスクプレヤの光学的読取装置等の光源とす
るには、現在の半導体レーザが導出される光束の
発散角から考えて、例えば0.2NA以上の開口数の
コリメータレンズでもつて結像させる必要がある
からである。しかしこの場合は、25μmの非点収
差による波面の乱れはRMS値で0.13〔λ〕とな
り、OTF特性を著しく劣化させ、所要のOTF特
性が得られなくなつてしまう。
Otherwise, in order to use it as a light source for an optical reader of a video disc player, etc., which requires a high S/N ratio, considering the divergence angle of the light beam derived from current semiconductor lasers, it is necessary to This is because it is necessary to form an image even with a collimator lens having a numerical aperture. However, in this case, the wavefront disturbance due to the 25 μm astigmatism has an RMS value of 0.13 [λ], which significantly deteriorates the OTF characteristics and makes it impossible to obtain the required OTF characteristics.

因みに、回折限界内として許容される波面乱れ
のRMS値は、0.07λ(Marechal Criterion)であ
る。逆にこれを満足するために必要なレーザの非
点収差は、コリメータレンズの開口数を0.2NAと
すれば、13μmということになる。なお、現在の
ゲイン・ガイデイング型の半導体レーザの非点収
差を考えると、25μm程度である。したがつて、
ビデオデイスクプレヤの光学的読取装置等のよう
な高いS/N比、つまり光強度の強いものが必要
とされる場合には、何らかの非点収差の補正を要
することとなる。
Incidentally, the RMS value of wavefront disturbance allowed within the diffraction limit is 0.07λ (Marechal Criterion). Conversely, the astigmatism of the laser required to satisfy this requirement is 13 μm, assuming that the numerical aperture of the collimator lens is 0.2 NA. Note that, considering the astigmatism of current gain guiding type semiconductor lasers, the astigmatism is about 25 μm. Therefore,
When a high S/N ratio, that is, a high light intensity is required, such as in an optical reading device for a video disc player, some kind of astigmatism must be corrected.

別の手段として、 (b) 円筒レンズ等のような方向によりパワー(結
合力)の異なる光学素子でもつて非点収差を補
正する手段 が用いらている。しかしながらこれによる場合、
光学素子のパワーを方向によつて異ならせるがた
め、光学素子面つまりレンズ面が球面とならずに
変形曲面となつてしまう。したがつて、その面形
成が極めて困難であるという欠点を有する。ま
た、パワーーがありかつパワーが方向によつて異
なることも相俟つて、光学素子の光軸に対する角
度位置の他、光軸方向における位置、非点収差に
対するパワーの方向性の位置を調整してやらねば
ならず、光学素子の位置調整が難しいという欠点
をも有する。
As another means, (b) means is used to correct astigmatism using an optical element such as a cylindrical lens, which has different power (coupling force) depending on the direction. However, in this case,
Since the power of the optical element is made to vary depending on the direction, the optical element surface, that is, the lens surface, becomes a deformed curved surface instead of a spherical surface. Therefore, it has the disadvantage that it is extremely difficult to form the surface. In addition, since there is power and the power differs depending on the direction, it is necessary to adjust the angular position of the optical element with respect to the optical axis, the position in the optical axis direction, and the directional position of the power with respect to astigmatism. However, it also has the disadvantage that it is difficult to adjust the position of the optical element.

実開昭56−45815号公報には、半導体レーザか
ら射出された光束中に平行平面板を配置して射出
光の非点収差を補正することが開示されている。
Japanese Utility Model Application Publication No. 56-45815 discloses that a plane-parallel plate is arranged in the light beam emitted from a semiconductor laser to correct astigmatism of the emitted light.

ところが、このような平行平面板を用いて非点
収差を補正すると、平行平面板を挿入したことに
よりコマ収差が発生してしまう。
However, when astigmatism is corrected using such a plane-parallel plate, comatic aberration occurs due to the insertion of the plane-parallel plate.

本発明はこの問題にかんがみ、コマ収差の発生
を抑えながら半導体レーザ光源の非点収差を補正
することを目的とする。
In view of this problem, it is an object of the present invention to correct astigmatism of a semiconductor laser light source while suppressing the occurrence of coma aberration.

本発明は、半導体接合面内とこれに垂直な面内
とで発振光の収束点が異なり非点収差となる半導
体レーザを光源とし、前記半導体レーザから導出
される光束中に、所定板厚の透明または半透明の
平行平板を少なくとも1枚設け、その法線ベクト
ルを光軸に対して前記半導体レーザの半導体接合
面内で所定角度傾けて、前記導出光束の非点収差
を補正するようにした半導体レーザを用いた光学
装置であつて、補正すべき非点収差量をAs、前
記平行平板の板厚をt′、前記平行平板の屈折率を
N、前記平行平板の法線ベクトルの光軸に対する
傾き角をUp′としたとき、式 により所望の非点収差補正量が得られ、かつ前記
導出光束の開口角の1/2をUとしたときに、前記
平行平板で発生する球欠コマ量 comas=t′・U2・Up′・(N2−1)/2N3 が十分小さな値となるように、前記平行平板の板
厚t′及び傾き角Up′を夫々設定したことを特徴と
する半導体レーザを用いた光学装置に係るもので
ある。
The present invention uses a semiconductor laser as a light source, in which the convergence point of the oscillated light differs in the semiconductor junction plane and in the plane perpendicular thereto and causes astigmatism. At least one transparent or semi-transparent parallel flat plate is provided, and its normal vector is tilted at a predetermined angle within the semiconductor junction surface of the semiconductor laser with respect to the optical axis to correct astigmatism of the derived light beam. An optical device using a semiconductor laser, in which the amount of astigmatism to be corrected is A s , the thickness of the parallel plate is t′, the refractive index of the parallel plate is N, and light with a normal vector of the parallel plate When the inclination angle with respect to the axis is U p ′, the formula When the desired amount of astigmatism correction is obtained, and when U is 1/2 of the aperture angle of the derived light beam, the amount of spherical missing coma generated in the parallel plate coma s = t′・U 2・U An optical system using a semiconductor laser, characterized in that the thickness t' and the inclination angle U p ' of the parallel plate are respectively set so that p '·(N 2 -1)/2N 3 becomes a sufficiently small value. It is related to the device.

この構成により、コマ収差を十分低レベルに抑
えて非点収差を補正している。
This configuration suppresses coma aberration to a sufficiently low level and corrects astigmatism.

以下本発明を半導体レーザを用いた光学的読取
装置に適用した一実施例につきその絞り光学系の
みを取出し図面を参照しつつ説明する。
Hereinafter, an embodiment in which the present invention is applied to an optical reading device using a semiconductor laser will be explained with reference to the drawings, with only the aperture optical system thereof being taken out.

第2図は半導体レーザの接合面内を光軸にそつ
た断面を示し、第3図は半導体レーザの接合面に
垂直な面内を光軸にそつた断面を示している。な
お、図中示されている座標軸は第1図に合わせて
ある。
FIG. 2 shows a cross section of the semiconductor laser along the optical axis within the bonded surface, and FIG. 3 shows a cross section of the semiconductor laser along the optical axis within a plane perpendicular to the bonded surface. Note that the coordinate axes shown in the figure are aligned with those in FIG.

光源である半導体レーザ1は、ダブルヘテロ接
合半導体レーザの一種であるゲイン・ガイデイン
グ型である。この半導体レーザ1は、前述のよう
に、発振光の収束点が接合面(X−Y軸面)内で
は鏡面2より若干奥の共振器内に入り、これに垂
直な面(X−Z軸面)内では鏡面2に一致し、非
点収差となるものである。そして、この半導体レ
ーザ1から導出される光束の光路の光軸上に、出
射光が平光な光束となるように屈曲させるため、
その焦点を半導体レーザ1の鏡面2に位置させる
所要の開口数のコリメータレンズ4が設けられて
いる。更に、半導体レーザ1とコリメータレンズ
4との間の発散状態にある光束の光路中には、そ
の法線ベクトルを光軸に対して半導体レーザ1の
接合面(X−Y軸面)内で所定角度Up傾けて光
束透過可能な一枚の所定板厚tの平行平面ガラス
5が設けられている。これにより、半導体レーザ
1から導出される光束の非点収差が補正されてい
る。(なお、板厚tおよび角度Up等については後
述する。)また、コリメータレンズ4からの平行
光束を受けてビデオ光デイスク等の読取面6に結
像させるように屈折させるため、読取面6にその
焦点を位置させる対物レンズ7が光軸上に設けら
れている。この結像により、読取面6に記録され
たものを読取ることになる。
The semiconductor laser 1, which is a light source, is a gain guiding type, which is a type of double heterojunction semiconductor laser. As mentioned above, in this semiconductor laser 1, the convergence point of the oscillation light enters the resonator slightly deeper than the mirror surface 2 in the junction plane (X-Y axis plane), and the convergence point in the plane perpendicular to this (X-Z axis plane) 2) coincides with the mirror surface 2, resulting in astigmatism. Then, in order to bend the emitted light onto the optical axis of the optical path of the light flux derived from this semiconductor laser 1 so that it becomes a flat light flux,
A collimator lens 4 having a required numerical aperture is provided to locate its focal point on the mirror surface 2 of the semiconductor laser 1. Furthermore, in the optical path of the light beam in a diverging state between the semiconductor laser 1 and the collimator lens 4, the normal vector thereof is set within the junction plane (X-Y axis plane) of the semiconductor laser 1 with respect to the optical axis. A piece of parallel plane glass 5 having a predetermined thickness t is provided which can be tilted at an angle Up to transmit a light beam. Thereby, astigmatism of the light beam derived from the semiconductor laser 1 is corrected. (The plate thickness t, angle U p, etc. will be described later.) In addition, in order to receive the parallel light beam from the collimator lens 4 and refract it so as to form an image on the reading surface 6 of a video optical disk, etc., the reading surface 6 An objective lens 7 whose focal point is located on the optical axis is provided on the optical axis. This image formation allows what is recorded on the reading surface 6 to be read.

次に、前記平行平面ガラス5でもつて非点収差
を補正する理由を第4図にもとづいて説明する。
Next, the reason why astigmatism is corrected even with the plane-parallel glass 5 will be explained based on FIG. 4.

図示するように、例えば収束状態にある光束の
光路(開口数NA=sinU)中に平行平面ガラス
5′(板厚t′、屈折率N)を光軸に対してUp′傾け
て位置させている。このとき発生する非点隔差量
(非点収差)は、例えばW.J.Smith;Modern
Optical Engineering(M.C.Graw−Hill N.
Y.1966)によれば、次のようになる。
As shown in the figure, for example, a parallel plane glass 5' (thickness t', refractive index N) is positioned at an angle U p ' with respect to the optical axis in the optical path of a converged light beam (numerical aperture NA=sinU). ing. The amount of astigmatism (astigmatism) that occurs at this time is, for example, WJSmith; Modern
Optical Engineering (MCGraw-Hill N.
According to Y.1966), it is as follows.

なお、lt′は法線・光軸を含む面(子午面)内での
収束点までの距離、ls′はこれに直交する面(球
欠面)での収束点までの距離である。
Note that lt' is the distance to the convergence point in the plane (meridian plane) including the normal line and optical axis, and ls' is the distance to the convergence point in the plane perpendicular to this (the spherical plane).

一方、球欠コマ量(球欠収差)は comas=t′・U2・Up′・(N2−1)/2N3 …(2) である。 On the other hand, the amount of spherical coma (spherical aberration) is coma s = t′・U 2・U p ′・(N 2 −1)/2N 3 (2).

前記(1)(2)式にもとづいて、所要の開口数、例え
ばNA=sinU=0.2において、板厚t′、傾き角Up
を選定することにより、半導体レーザ1で生じる
非点収差と同量で反対符号の非点収差を発生さ
せ、かつ、同時に発生するコマ収差を十分低レベ
ルに抑えることは可能であることがわかる。すな
わち任意のUp′≠0に対して非点隔差量(非点収
差)は、 As=ls′−lt′<0 となる。
Based on equations (1) and (2) above, at the required numerical aperture, for example NA=sinU=0.2, the plate thickness t′ and the inclination angle U p
It can be seen that by selecting , it is possible to generate astigmatism of the same amount and opposite sign as the astigmatism generated in the semiconductor laser 1, and to suppress coma aberration that occurs at the same time to a sufficiently low level. That is, for any U p ′≠0, the amount of astigmatism (astigmatism) is A s =l s ′−l t ′<0.

したがつて、子午面を半導体レーザ1の接合面
にとれば、半導体レーザ1の非点収差を補正でき
る。
Therefore, if the meridian plane is taken as the junction surface of the semiconductor laser 1, the astigmatism of the semiconductor laser 1 can be corrected.

例えば、t′=0.1mm、Up′=45゜、N=1.5とすれ
ば非点隔差量(非点収差)は、 As=ls′−lt′=−0.025(mm)=−25μm となる。前述のように現在のゲイン・ガイデイン
グ型の半導体レーザ1の非点収差は25μm程度で
あるので、これにより非点収差が十分補正できる
ことは明らかである。しかもこのとき発生するコ
マ収差は、波面収差のRMS値で約0.02〔λ〕で十
分無視できるものである。
For example, if t' = 0.1 mm, U p ' = 45°, and N = 1.5, the amount of astigmatism (astigmatism) is A s = l s ' - l t ' = -0.025 (mm) = - It becomes 25μm. As mentioned above, the astigmatism of the current gain guiding type semiconductor laser 1 is about 25 μm, so it is clear that the astigmatism can be sufficiently corrected. Moreover, the coma aberration that occurs at this time is approximately 0.02 [λ] in RMS value of wavefront aberration, and can be completely ignored.

なお、非点収差、コマ収差ともに平行平面板ガ
ラス5′の板厚t′に比例し、傾斜角Up′に対しては
非点収差はほぼ2乗、コマ収差は比例するため、
一定の非点収差を発生するには平行平面ガラス
5′の板厚t′を小さく傾斜角Up′を大きく補正した
ほうが、同時に発生するコマ収差を低く抑えるこ
とができる。
Note that both astigmatism and coma are proportional to the thickness t' of the plane-parallel plate glass 5', and astigmatism is approximately squared and coma is proportional to the inclination angle U p '.
In order to generate a certain level of astigmatism, it is better to reduce the plate thickness t' of the plane-parallel glass 5' and to greatly correct the inclination angle U p ', thereby simultaneously suppressing the coma aberration that occurs.

以上により、法線ベクトルを光軸に対して半導
体レーザ1の接合面(X−Y軸面)内で所定角度
Up傾けて設けられた所定板厚tの平行平面ガラ
ス5でもつて、半導体レーザ1の非点収差が補正
されることがわかる。
As described above, the normal vector is set at a predetermined angle within the junction plane (X-Y axis plane) of the semiconductor laser 1 with respect to the optical axis.
It can be seen that the astigmatism of the semiconductor laser 1 can be corrected even with the parallel plane glass 5 having a predetermined thickness t and provided at an angle U p .

したがつて、対物レンズ7により読取面6に結
像される読取スポツトは、平行平面ガラス5によ
る非点収差の補正によりほぼ円形状となり、隣接
トラツクにまたがることはなく所要のOTF特性
が得られる。
Therefore, the reading spot imaged on the reading surface 6 by the objective lens 7 becomes approximately circular due to the correction of astigmatism by the plane-parallel glass 5, and the required OTF characteristics can be obtained without straddling adjacent tracks. .

本実施例では、非点収差の補正を平行平面ガラ
ス5でもつて行なつたが、サフアイヤ等で形成さ
れた平行平面板でもよく、要するに半導体レーザ
1からの光束が透過可能な平行平面板でありさえ
すればよい。
In this embodiment, astigmatism was corrected using the plane-parallel glass 5, but a plane-parallel plate made of sapphire or the like may also be used.In short, it is a plane-parallel plate through which the light beam from the semiconductor laser 1 can pass. All you have to do is

また、平行平面ガラス5を発散状態の光束の光
路中に設けたが、前述の非点収差の補正理由から
明らかなように収束状態の光束の光路中、例えば
対物レンズ7と読取面6との間に設けてもよい。
Furthermore, although the parallel plane glass 5 is provided in the optical path of the divergent light beam, as is clear from the above-mentioned reason for astigmatism correction, the parallel plane glass 5 is provided in the optical path of the convergent light beam, for example between the objective lens 7 and the reading surface 6. It may be provided in between.

また、本実施例では平行平面ガラス5を一枚と
したが、ある非点収差を補正に要する板厚tがあ
れば非点収差は補正できる。したがつて、この板
厚tを分割して、平行平面ガラス5を2枚、3枚
……として設けてもよい。
Further, in this embodiment, only one parallel plane glass 5 is used, but astigmatism can be corrected if there is a plate thickness t required to correct a certain astigmatism. Therefore, this plate thickness t may be divided to provide two, three, etc. parallel plane glasses 5.

更に、本実施例では、半導体レーザ1をダブル
ヘテロ接合半導体レーザのゲイン・ガイデイング
型としたが、接合面内とこれに垂直な面内とでは
発振光の収束点が異なり非点収差となる半導体レ
ーザであれば、本発明を適用できることはいうま
でもない。
Furthermore, in this embodiment, the semiconductor laser 1 is a gain guiding type double heterojunction semiconductor laser, but the convergence point of the oscillated light is different in the junction plane and in the plane perpendicular to the junction plane, which causes astigmatism. It goes without saying that the present invention can be applied to any laser.

なお、平行平面ガラス5の法線ベクトルを光軸
に対して45゜(=Up)傾けて、半導体レーザ1と反
対側の面に蒸着膜をコーテイングして、半透明鏡
としてビームスプリツタに兼用することも可能で
ある。また、半導体レーザキヤツプ窓として兼用
することも可能である。
Incidentally, the normal vector of the parallel plane glass 5 is tilted by 45 degrees (= U p ) with respect to the optical axis, and the surface opposite to the semiconductor laser 1 is coated with a vapor-deposited film, so that it can be used as a semi-transparent mirror and used as a beam splitter. It is also possible to use both. It can also be used as a semiconductor laser cap window.

また本発明は、半導体レーザを用いた距離測定
装置、物体運動測定装置、情報記録装置(光学式
オーデイオ、ビデオのデイスク原盤製造装置等)、
情報伝送装置等に適用することができる。
The present invention also provides a distance measuring device using a semiconductor laser, an object movement measuring device, an information recording device (optical audio, video disk master manufacturing device, etc.),
It can be applied to information transmission devices, etc.

本発明は上述のように、半導体レーザ光源の非
点収差を補正するために、レーザ光束中に平行平
板を配置したときに、非点収差の補正量が平行平
板の板厚及び傾き角の2つのパラメータで定まる
ことに着目し、平行平板で発生するコマ収差が十
分小さくなるように平行平板の板厚及び傾き角を
設定したものである。即ち、非点収差、コマ収差
ともに平行平板の板厚に比例し、傾き角に対して
は非点収差はほぼ2乗、コマ収差は比例するた
め、所望の非点収差を平行平板で発生するには、
板厚を小さく傾き角を大きく設定すれば、平行平
板で発生するコマ収差を低く抑えることができ
る。
As described above, in order to correct the astigmatism of a semiconductor laser light source, when a parallel plate is placed in the laser beam, the amount of correction of the astigmatism is equal to the thickness of the parallel plate and the inclination angle. The thickness and inclination angle of the parallel plate are set so that the comatic aberration generated in the parallel plate is sufficiently small. In other words, both astigmatism and coma are proportional to the thickness of the parallel plate, and since astigmatism is approximately squared and coma is proportional to the tilt angle, the desired astigmatism is generated in the parallel plate. for,
By setting the plate thickness to be small and the tilt angle to be large, coma aberration occurring in the parallel plate can be suppressed to a low level.

よつて本発明によると、半導体レーザ光源の非
点収差を補正するために平行平板を光束中に配置
したとき、平行平板に起因するコマ収差の劣化が
少なく、従つて比較的安価で簡単な光源及び光学
素子を用いて高精度の光学装置を構成することが
できる。
Therefore, according to the present invention, when a parallel plate is placed in a light beam to correct astigmatism of a semiconductor laser light source, there is little deterioration of coma aberration caused by the parallel plate, and therefore the light source is relatively inexpensive and simple. A highly accurate optical device can be constructed using the optical element and the optical element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロはゲイン・ガイデイング型の半導
体レーザの非点収差を説明する図、第2図はこの
発明を適用した一例の半導体レーザを用いた光学
的読取装置の絞り光学系における半導体レーザの
接合面内を光軸にそつた断面図、第3図は第2図
の半導体レーザの接合面に垂直な面内を光軸にそ
つた断面図、第4図は平行平面ガラスによる非点
収差の補正を説明する図である。 なお図面に用いられている符号において、1…
…半導体レーザ、5……平行平面ガラス、であ
る。
Figures 1A and 1B are diagrams explaining astigmatism of a gain guiding type semiconductor laser, and Figure 2 shows a semiconductor laser in an aperture optical system of an optical reading device using a semiconductor laser as an example of the present invention. Figure 3 is a cross-sectional view taken along the optical axis within the junction plane of the semiconductor laser in Figure 2, Figure 4 is a cross-sectional view taken along the optical axis within a plane perpendicular to the junction plane of the semiconductor laser in Figure 2, and Figure 4 is an astigmatic cross-sectional view of the semiconductor laser in Figure 2 taken along the optical axis. It is a figure explaining correction of aberration. In addition, in the symbols used in the drawings, 1...
. . . semiconductor laser, 5 . . . parallel plane glass.

Claims (1)

【特許請求の範囲】 1 半導体接合面内とこれに垂直な面内とで発振
光の収束点が異なり非点収差となる半導体レーザ
を光源とし、前記半導体レーザから導出される光
束中に、所定板厚の透明または半透明の平行平板
を少なくとも1枚設け、その法線ベクトルを光軸
に対して前記半導体レーザの半導体接合面内で所
定角度傾けて、前記導出光束の非点収差を補正す
るようにした半導体レーザを用いた光学装置であ
つて、 補正すべき非点収差量をAs、前記平行平板の
板厚をt′、前記平行平板の屈折率をN、前記平行
平板の法線ベクトルの光軸に対する傾き角を
Up′としたとき、式 により所望の非点収差補正量が得られ、かつ前記
導出光束の開口角の1/2をUとしたときに、前記
平行平板で発生する球欠コマ量 comas=t′・U2・Up′・(N2−1)/2N3 が十分小さな値となるように、前記平行平板の板
厚t′及び傾き角Up′を夫々設定したことを特徴と
する半導体レーザを用いた光学装置。
[Scope of Claims] 1. A light source is a semiconductor laser in which the convergence point of the oscillated light differs in the semiconductor junction plane and in the plane perpendicular thereto and causes astigmatism. At least one thick transparent or semi-transparent parallel flat plate is provided, and its normal vector is tilted at a predetermined angle within the semiconductor bonded surface of the semiconductor laser with respect to the optical axis to correct astigmatism of the derived light beam. In this optical device using a semiconductor laser, the amount of astigmatism to be corrected is A s , the thickness of the parallel plate is t′, the refractive index of the parallel plate is N, and the normal line of the parallel plate is The angle of inclination of the vector with respect to the optical axis is
When U p ′, the expression When the desired amount of astigmatism correction is obtained, and when U is 1/2 of the aperture angle of the derived light beam, the amount of spherical missing coma generated in the parallel plate coma s = t′・U 2・U An optical system using a semiconductor laser, characterized in that the thickness t' and the inclination angle U p ' of the parallel plate are respectively set so that p '·(N 2 -1)/2N 3 becomes a sufficiently small value. Device.
JP57025522A 1982-02-19 1982-02-19 Optical device using semiconductor laser Granted JPS58143443A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP57025522A JPS58143443A (en) 1982-02-19 1982-02-19 Optical device using semiconductor laser
CA000419648A CA1204199A (en) 1982-02-19 1983-01-18 Optical apparatus
DE19833305675 DE3305675A1 (en) 1982-02-19 1983-02-18 OPTICAL DEVICE WITH A SEMICONDUCTOR LASER
FR8302694A FR2524158B1 (en) 1982-02-19 1983-02-18 DEVICE FOR CORRECTING THE ASTIGMATISM OF AN OPTICAL APPARATUS USING AS A LIGHT SOURCE A SEMICONDUCTOR LASER
GB08304572A GB2119114B (en) 1982-02-19 1983-02-18 Optical apparatus
KR1019830000668A KR910008493B1 (en) 1982-02-19 1983-02-18 Optical apparatus using laser dioad
US06/770,000 US4577941A (en) 1982-02-19 1985-08-26 Optical apparatus
KR1019910013078A KR910008500B1 (en) 1982-02-19 1991-07-30 Optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025522A JPS58143443A (en) 1982-02-19 1982-02-19 Optical device using semiconductor laser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58251812A Division JPS59146013A (en) 1983-12-23 1983-12-23 Optical device

Publications (2)

Publication Number Publication Date
JPS58143443A JPS58143443A (en) 1983-08-26
JPH056261B2 true JPH056261B2 (en) 1993-01-26

Family

ID=12168382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025522A Granted JPS58143443A (en) 1982-02-19 1982-02-19 Optical device using semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58143443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100352115C (en) * 2003-06-02 2007-11-28 罗姆股份有限公司 Mold type semiconductor laser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165837A (en) * 1985-01-16 1986-07-26 Matsushita Electric Ind Co Ltd Laser light emitter
JP2012098601A (en) * 2010-11-04 2012-05-24 Sumitomo Electric Ind Ltd Polarization synthesis-and-separation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645815B2 (en) * 1975-07-02 1981-10-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645815U (en) * 1979-09-14 1981-04-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645815B2 (en) * 1975-07-02 1981-10-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100352115C (en) * 2003-06-02 2007-11-28 罗姆股份有限公司 Mold type semiconductor laser

Also Published As

Publication number Publication date
JPS58143443A (en) 1983-08-26

Similar Documents

Publication Publication Date Title
KR910008493B1 (en) Optical apparatus using laser dioad
JPH0648543B2 (en) Optical head device
US5872760A (en) Optical pickup for correcting an astigmatic difference of light
US6088170A (en) Optical system for shaping light beams and an optical pickup employing the same
JP2002208159A (en) Light beam irradiating optical system and optical pickup
US6339577B1 (en) Optical disk system, optical head device, and beam reshaping device
JPH05303766A (en) Optical element for optical disk and optical head using the same
US6627869B2 (en) Beam shaper, and semiconductor laser source device and optical head using the beam shaper
JPH056261B2 (en)
JPH0536767B2 (en)
KR19980066783A (en) An optical system for beam shaping and an optical pickup employing the optical system
US4556296A (en) Objective lens for use with information storage disks
JPH0718983B2 (en) Optical collimator device
US5680256A (en) Lens for reading out optical recording medium
JPH09259458A (en) Optical device, and optical pickup device using the same
JPS5928123A (en) Optical device
KR910008500B1 (en) Optical apparatus
JPS58185047A (en) Optical information reader
JP4121213B2 (en) Coupling lens and optical pickup
JPS5962815A (en) Distributed refractive index lens
JPS63129529A (en) Optical pickup head
JPH0127402B2 (en)
JPH02195532A (en) Optical head device
JPS593724B2 (en) Inhomogeneous refractive index lens
JP2004071071A (en) Optical pickup device