JPS593724B2 - Inhomogeneous refractive index lens - Google Patents

Inhomogeneous refractive index lens

Info

Publication number
JPS593724B2
JPS593724B2 JP55122666A JP12266680A JPS593724B2 JP S593724 B2 JPS593724 B2 JP S593724B2 JP 55122666 A JP55122666 A JP 55122666A JP 12266680 A JP12266680 A JP 12266680A JP S593724 B2 JPS593724 B2 JP S593724B2
Authority
JP
Japan
Prior art keywords
refractive index
lens
medium
spherical shell
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55122666A
Other languages
Japanese (ja)
Other versions
JPS5746202A (en
Inventor
啓介 菊地
滝太郎 森川
潤一 島田
健二郎 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55122666A priority Critical patent/JPS593724B2/en
Priority to US06/244,915 priority patent/US4422733A/en
Publication of JPS5746202A publication Critical patent/JPS5746202A/en
Publication of JPS593724B2 publication Critical patent/JPS593724B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient

Description

【発明の詳細な説明】 本発明は不均質屈折率球(半球)の光路に屈折率、膜厚
の異なる屈折媒体をクラッドとして備えた不均質屈折率
レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-uniform refractive index lens having a non-uniform refractive index sphere (hemisphere) provided with refractive media having different refractive indexes and film thicknesses as a cladding in the optical path thereof.

15通常、光ディスクは厚さ約17n麗のプラスチック
などの透明板の一面に情報が記録されており、その読み
出しは他の面からレーザビームを通して記録面へ集光し
て行なうことが多い。
15 Normally, an optical disk has information recorded on one side of a transparent plate made of plastic or the like with a thickness of about 17 nm, and the information is often read out by passing a laser beam from the other side and condensing the light onto the recording surface.

従つて、ここで用いるレンズはそのレンズ面から集光点
までの20距離(全作動距離)が或る程度必要になる。
一方、収差を少なくしたり、位置や焦点を制御するサー
ボ系を簡単にしたり、また装置全体の性能向上を図るた
めにはレンズを出来るたけ小型にしなければならない。
しかし、このことは先の作動距離を25とることと相反
する要求となる。本発明は上述のレンズの小型化と作動
距離をとるという相反する要求を満足せしめた不均質屈
折率レンズを提供しようとするものである。
Therefore, the lens used here requires a certain distance of 20 (total working distance) from the lens surface to the focal point.
On the other hand, in order to reduce aberrations, simplify the servo system that controls position and focus, and improve the performance of the entire device, the lens must be made as small as possible.
However, this is a requirement that conflicts with the above-mentioned setting of the working distance of 25. The present invention aims to provide a non-uniform refractive index lens that satisfies the contradictory demands of miniaturizing the lens and increasing the working distance.

さて、本発明の不均質屈折率レンズの理解のた30めに
先に提案した球レンズ(特願昭55一42348号(特
開昭56−138704号公報)の機能等について先ず
説明する。
Now, in order to understand the inhomogeneous refractive index lens of the present invention, the functions of the previously proposed ball lens (Japanese Patent Application No. 55-142348 (Japanese Patent Application Laid-open No. 56-138704) will be explained first.

まず、第1図aは従来の不均質屈折率球レンズ1を例え
ば空気中におき、一点(レンズの左側)35Poから発
する光をレンズ1により反対側(レンズの右側)PFに
結像させる際には、収差が避けられないことを示すため
のものである。
First, Fig. 1a shows a case where a conventional non-uniform refractive index spherical lens 1 is placed in air, for example, and light emitted from one point (left side of the lens) 35Po is imaged by the lens 1 onto the opposite side (right side of the lens) PF. This is to show that aberrations are unavoidable.

このとき生する収差の大きさを、結像点PFにおける集
束光が光軸となす角θの関数として示したのが第1図b
である。この図で横軸にとつてある横収差Atというの
は、θZOの近軸光線が収束する点PFを横切り光軸に
垂直な面内において、それぞれの角度で集束する光線が
光軸から外れている距離をいう。負の横収差というのは
、近軸光線の集束点よりもレンズに近い側で集束する場
合を表わすものとする。従つて第1図aの拡大した円内
ではこの負の横収差が示されている。一方、第2図aは
、均質屈折率の球殼状媒体2を左側から右側に向けて集
束光が通過する場合には、さきの場合とは逆に正の横収
差Atが生ずるということを模式的に示したものである
Figure 1b shows the magnitude of the aberration that occurs at this time as a function of the angle θ that the focused light at the imaging point PF makes with the optical axis.
It is. The lateral aberration At, which is plotted on the horizontal axis in this figure, is the difference between the rays that converge at each angle deviating from the optical axis in a plane that crosses the point PF where the paraxial rays of θZO converge and is perpendicular to the optical axis. refers to the distance at which Negative lateral aberration refers to the case where paraxial rays are focused on the side closer to the lens than the focal point of the paraxial rays. This negative transverse aberration is therefore shown within the enlarged circle of FIG. 1a. On the other hand, Figure 2a shows that when focused light passes through a spherical shell-shaped medium 2 with a homogeneous refractive index from the left side to the right side, a positive transverse aberration At occurs, contrary to the previous case. It is shown schematically.

破線は、この球状媒体2がないときに集束光がたどるは
ずの光路を示している。第2図bは、生ずる正の横収差
の量を第1図bと同様に集束光が光軸となす角θの関数
として示したものである。尚、均質屈折率球殼状媒体2
が光の進行方向に対して第2図aとは反対の曲面をなし
ている場合、一点から発してこの媒体を通過する光線は
、第2図aを左右逆に見ると想像できるように、外側の
ものほどより外側へ屈折させられる。
The dashed line shows the optical path that the focused light would follow in the absence of this spherical medium 2. FIG. 2b shows the amount of positive transverse aberration produced as a function of the angle .theta. that the focused beam makes with the optical axis, similar to FIG. 1b. In addition, homogeneous refractive index spherical shell medium 2
If has a curved surface opposite to that shown in Figure 2a with respect to the direction of light travel, then the light ray that originates from one point and passes through this medium will be The farther out the object is, the further outward it is refracted.

その結果、この光線束を集束させるときには、外側の光
線ほど媒体2から遠ざかつた所に集束し、同様に第2図
bに示すような正の横収差が生ずることとなる。従つて
夫々逆向きのこれ等媒体2,2を組合わせて用いるなら
ば、正の横収差を倍加させることができる。以上に鑑み
ると、第1図に示した不均質屈折率球レンズ1が集束さ
せようとする光線束に及ぼす効果と、第2図に示した均
質屈折率球殼2がこれに及ぼす効果は、収差に関して負
と正という逆の関係にあることが判かる。
As a result, when this bundle of light rays is focused, the outer light rays are focused farther away from the medium 2, and a positive transverse aberration as shown in FIG. 2b also occurs. Therefore, if these media 2, 2, which are oriented in opposite directions, are used in combination, the positive transverse aberration can be doubled. In view of the above, the effect that the heterogeneous refractive index spherical lens 1 shown in FIG. 1 has on the bundle of rays to be focused and the effect that the homogeneous refractive index spherical shell 2 shown in FIG. 2 has on this are as follows: It can be seen that there is an inverse relationship between negative and positive aberrations.

従つて、これらの2要素を組合わせれば、正負が打ち消
しあつて収差が (補正され、先に提案した球レンズは
この技術思想に基づいてなされたものである。第3図a
に示したのが、先に提案したクラツド付不均質屈折率球
レンズの構成の例である。
Therefore, by combining these two elements, the positive and negative polarities cancel each other out and aberrations are corrected (the ball lens proposed earlier was created based on this technical idea. Figure 3a)
Shown is an example of the configuration of the cladded heterogeneous refractive index spherical lens proposed earlier.

この球レンズは、不均質屈折率球1(以下コアとも呼
4ぶ)の周辺にクラツドとして均質屈折率球殼2を付着
させた形となつており、それぞれの部分の屈折率n(r
)の態様乃至関数の分布型は同図の下方にグラフで示し
ているが数式で表すと次のようになる。) 上式でG2及びG4は夫々、二次係数、四次係数と呼ば
れ、不均質屈折率が球の中心r=Oからr一R。
This spherical lens consists of a heterogeneous refractive index sphere 1 (hereinafter also referred to as a core).
The homogeneous refractive index sphere shell 2 is attached as a cladding around the 4b), and the refractive index n(r
) and the distribution type of the function are shown in the graph at the bottom of the same figure, and expressed numerically as follows. ) In the above equation, G2 and G4 are called the second-order coefficient and the fourth-order coefficient, respectively, and the inhomogeneous refractive index is from the center of the sphere r=O to r-R.

まで、どのように変化しているかを表わす量である。ク
ラツド2の屈折率はNd=一定としているが、これと球
中心部屈折率n(0)の大小は問わない。また、Ndは
必らずしも一定つまり均質でなければならないというわ
けではなく、設計次第で不均質に選ぶことができる。こ
のクラツド付不均質屈折率球レンズの高性能さの一端を
示すための数値例を示したのが第3図bである。
This is a quantity that shows how the change is occurring. The refractive index of the cladding 2 is set to Nd=constant, but the magnitude of this and the refractive index n(0) of the center of the sphere does not matter. Further, Nd does not necessarily have to be constant or homogeneous, but can be selected to be non-uniform depending on the design. FIG. 3b shows a numerical example to demonstrate the high performance of this clad heterogeneous refractive index spherical lens.

この図から判かるように、不均質屈折率球1の半径R。
を例えば1mm1クラツド2の厚さdを0.78mmと
すれば、この図に示した屈折率の値の設定に対し、Sl
nθすなわちレンズの開口数(NA)を0.2にとつて
も、横収差は±0.5μmと光の回折限界以下にまで収
差を補正できる。このことは、従来のいかなる球レンズ
をもつてしても不可能であり、これが可能なところに特
長がある。尚、以下では、横収差の絶対値にあつてθ=
OからSin−1NAに亘つて最大値を単に横収差と呼
ぶ以上、先に提案した球レンズを例に不均質球芯とクラ
ツドの間の収差補償について述べてきたが、本発明の不
均質屈折率レンズも収差補償の原理は全く同様である。
As can be seen from this figure, the radius R of the inhomogeneous refractive index sphere 1.
For example, if the thickness d of the 1 cladding 2 is 0.78 mm, then Sl
Even if nθ, that is, the numerical aperture (NA) of the lens is set to 0.2, the lateral aberration can be corrected to ±0.5 μm, which is below the diffraction limit of light. This is impossible with any conventional ball lens, and the advantage is that it is possible. In addition, below, regarding the absolute value of lateral aberration, θ=
Since the maximum value from O to Sin-1NA is simply referred to as lateral aberration, we have described aberration compensation between the inhomogeneous spherical core and the cladding using the previously proposed ball lens as an example, but the inhomogeneous refraction of the present invention The principle of aberration compensation for the index lens is exactly the same.

しかし、先の球レンズはそのクラツドが光源側、集光点
側とも屈折率、厚さが同じものであつた。この構成では
光源がレンズの近くに置かれているのでNAZO.2の
レンズを考えられるが、光源を十分遠方に置いた、先に
同時に提案している、フーリエ変換レンズではNAZO
.4まで考えられる。光ピツクアツプ用レンズではNA
ZO.4程度のものが必要になるので後者の構成の光学
系が考えられるが、しかし、この場合にレンズ面から集
光点までの距離があまりとれず、数關φのコアのレンズ
では厚さ1mmのデイスクの裏側にまで集光点を到達さ
せることができない難点がある。そこで、本発明の非対
称クラツドを備えたレンズ、すなわち、光源側クラツド
に対し集光側(デイスク側)タラツドの厚さを薄くし、
また屈折率を高くし、若しくはその両方で行う不均質屈
折率球(半球)レンズの提案に至つたのである。さて、
本発明の不均質屈折率レンズの構成を第4図A,bに示
す。
However, in the previous ball lens, the cladding had the same refractive index and thickness on both the light source side and the condensing point side. In this configuration, the light source is placed near the lens, so the NAZO. 2 lenses can be considered, but NAZO is the Fourier transform lens that was proposed at the same time when the light source is placed sufficiently far away.
.. I can think of up to 4. NA for optical pickup lenses
ZO. 4 is required, so an optical system with the latter configuration can be considered, but in this case, the distance from the lens surface to the focal point is not very large, and a lens with a core of several diameters has a thickness of 1 mm. The disadvantage is that the light condensing point cannot reach the back side of the disk. Therefore, the lens with the asymmetric cladding of the present invention, that is, the thickness of the cladding on the condensing side (disk side) is made thinner than the cladding on the light source side.
They also proposed a non-uniform refractive index spherical (hemispherical) lens with a high refractive index or both. Now,
The structure of the inhomogeneous refractive index lens of the present invention is shown in FIGS. 4A and 4B.

図aは透過型、図bは反射型であり、反射面5が対称面
上にあれば解析上全く等価である。図bは薄型ヘツドの
構成にできることから業務用積層デイスクのピツクアツ
プに適している。以下、図aの透過型球レンズを用いて
本発明を説明する。第4図aに示す光学系においてレン
ズのコア1の屈折率分布を、先に提案した球レンズと同
様に^^j−翫′喝−′ノ〜9とする。
Figure a is a transmission type, and Figure b is a reflection type, and if the reflective surface 5 is on the plane of symmetry, they are completely equivalent in terms of analysis. Figure b is suitable for picking up commercial laminated disks because it can be configured as a thin head. Hereinafter, the present invention will be explained using the transmission type ball lens shown in FIG. In the optical system shown in FIG. 4a, the refractive index distribution of the core 1 of the lens is assumed to be ^^j-翫'沉-'ノ~9, similar to the previously proposed ball lens.

ここで、ROはコア半径、n(0)は中心の屈折率G2
,G4は各々2次、4次係数である。
Here, RO is the core radius, n(0) is the central refractive index G2
, G4 are second-order and fourth-order coefficients, respectively.

イオン交換技術などにより分布を付ける場合に丁度2乗
分布になるよう作成するのは困難であるし、またそれが
良いとは限らないので4次分布まで仮定した。?なお、
G2くOの場合が事実上問題になる。すなわち、屈折率
が中心から周辺に向つて減少する場合である。光源側ク
ラツド2、デイスク側クラツド3の屈折率をそれぞれN
,,n2、厚さをそれぞれD,,d2とし、デイスク4
の屈折率、厚さをそれぞれNs,Sとしtらまたデイス
ク4とクラツド3の間の作動間隔をWとし、コア中心か
ら光源(クラツド2の入射直前の波面を球面と仮定しそ
の中心)までの距離をaとし、またb=RO+D2+w
+s/Nsとしtら実施例についての解析結果を示す前
に、本発明の特徴である非対称クラツド、D2くDl,
n2〉N,による作動距離の増加について述べておく。
まずクラツド3の厚さD2が薄い程作動距離がとり易い
ことは第4図C,dの比較でわかる。また第4図eのよ
うにクラツド3の屈折率が高い程コア1からの光はその
境界での屈折で遠くに進み、同じく作動距離を長くする
。その上光源側クラツドが厚く、屈折率が低いことが作
動距離を長くする働きがあるが、ここでは説明を省略す
る。以下では次の数値例について解析した。NA(Si
nOmax)=0.45n(0)=N2=1.6,n,
=Ns=1.5,S/RO=0.44倍率b/a=0.
02、第1表はこれらをまとめて示したものである。収
差解析は先に提案した球レンズの場合と同様光線光学の
方法を用い、出射角θのO−Si『1NAの間にわたつ
て横収差を極小にするようクラツドの厚さなどを決定し
た。
When creating a distribution using ion exchange technology or the like, it is difficult to create an exact square distribution, and it is not necessarily a good idea, so a fourth-order distribution was assumed. ? In addition,
In fact, the case of G2KUO becomes a problem. That is, the refractive index decreases from the center toward the periphery. The refractive index of the light source side cladding 2 and the disk side cladding 3 is N.
,,n2, thicknesses are respectively D,,d2, and disk 4
Let the refractive index and thickness of the disc be Ns and S, respectively, and let the working distance between the disk 4 and the cladding 3 be W, and from the center of the core to the light source (the center of the wavefront just before the incidence of the cladding 2 is assumed to be a spherical surface). Let the distance be a, and b=RO+D2+w
+s/Ns and et al. Before presenting the analysis results for the examples, let us explain the asymmetric cladding, D2, Dl,
Let us discuss the increase in working distance due to n2>N.
First, it can be seen from a comparison of FIGS. 4C and 4D that the thinner the thickness D2 of the cladding 3, the easier it is to maintain the working distance. Further, as shown in FIG. 4e, the higher the refractive index of the cladding 3, the farther the light from the core 1 travels due to refraction at the boundary, which likewise lengthens the working distance. Furthermore, the thick cladding on the light source side and the low refractive index serve to lengthen the working distance, but their explanation will be omitted here. Below, we analyzed the following numerical examples. NA(Si
nOmax)=0.45n(0)=N2=1.6,n,
=Ns=1.5, S/RO=0.44 Magnification b/a=0.
02, Table 1 shows these all together. The aberration analysis used the method of ray optics as in the case of the previously proposed ball lens, and the thickness of the cladding was determined so as to minimize the lateral aberration over the O-Si 1 NA with an output angle θ.

第5図は収差補償が成立しているときの光源側、デイス
ク側クラツドの厚さDl,d2の関係を2次係数G2を
パラメータにして示している(G4=−0.01)。
FIG. 5 shows the relationship between the thicknesses Dl and d2 of the claddings on the light source side and the disk side when aberration compensation is established, using the quadratic coefficient G2 as a parameter (G4=-0.01).

また作動間隔Wの等値線を示している。これより1G2
1が大きい程、デイスク側クラツドは薄くできるが、光
源側クラツドは作動間隔W〉0にしておくためにd1/
ROZl程度以上の厚さが必要である。なお、クラツド
の製作にあたつてはまずデイスク側の厚さを決めて製作
し、それを測定して後に光源側クラツドの厚さを決め製
作することが精度の点で有利であることが第6図A,b
のクラツド厚さ精度と収差の関係を示す曲線かられかる
。第7図はコアの屈折率分布係数G2,G4が与えられ
たとき収差補償に必要なデイスク側クラツドの厚さD2
/ROを示している(D,/RO=1.2としたとき)
It also shows isovalue lines of the actuation interval W. From this 1G2
The larger 1 is, the thinner the disk-side cladding can be.However, the light source-side cladding is made thinner by d1/ in order to keep the operating interval W>0.
A thickness of about ROZl or more is required. When manufacturing the cladding, it is advantageous in terms of accuracy to first determine the thickness of the disk side, measure it, and then determine and manufacture the thickness of the light source side cladding. Figure 6 A, b
It is calculated from the curve showing the relationship between cladding thickness accuracy and aberration. Figure 7 shows the thickness D2 of the disc side cladding required for aberration compensation when the refractive index distribution coefficients G2 and G4 of the core are given.
/RO is shown (when D, /RO=1.2)
.

またそのときの残留横収差、作動間隔W/ROを示して
いる。これより収差を少なくできる分布係数G2,G4
の範囲がわかる。例えば一番内側の(横収差/RO)×
103≦0.2ではR。〒2.5m7!Lのコアのレン
ズで横収差≦0.5μmと回折限界以下の値にでき、非
常に良いレンズとなる。G2の−0.07〜−0.2の
範囲が図示されているが、これはコア中心と周辺の屈折
率差にしてほぼ3、5〜10%で、イオン交換などで製
作可能な範囲である。G4に関しては第7図の(横収差
/RO)XlO3<.0.2の範囲に入れるには、例え
ばG2=−0.15のところで−0.025≦G4≦−
0.01にする必要がある。この値は一見厳しいようで
あるが、実は光学系のパラメータ、例えばクラツドの屈
折率を変えればこの値は上下(図示せず)するので、等
価的に広範囲のコアが使用出来るようになる。本発明の
球状の不均質屈折率レンズは、従来の光ピツクアツプに
用いられている組みレンズに比べて集光性能に遜色ない
ばかりか、小型軽量、量産性などでは優れたものになり
得ると期待される。
The residual lateral aberration and operating distance W/RO at that time are also shown. Distribution coefficients G2 and G4 that can reduce aberrations from this
Understand the range of For example, the innermost (lateral aberration/RO) ×
R when 103≦0.2. 〒2.5m7! A lens with an L core can have a lateral aberration of ≦0.5 μm, which is below the diffraction limit, making it a very good lens. The figure shows a range of G2 of -0.07 to -0.2, but this is a refractive index difference between the core center and the periphery of approximately 3.5 to 10%, which is within the range that can be manufactured by ion exchange etc. be. Regarding G4, (lateral aberration/RO)XlO3<. To fall within the range of 0.2, for example, when G2=-0.15, -0.025≦G4≦-
It is necessary to set it to 0.01. This value may seem severe at first glance, but in reality, this value can be raised or lowered (not shown) by changing the parameters of the optical system, such as the refractive index of the cladding, so that a wide range of cores can equivalently be used. It is expected that the spherical non-uniform refractive index lens of the present invention will not only be comparable in light gathering performance to the assembled lenses used in conventional optical pickups, but will also be superior in terms of size, weight, mass production, etc. be done.

また半球の不均質屈折率レンズは薄型ヘツドにできる特
長があり、厚さ1mmのデイスクの記録面の裏側からの
読みとりでは約8〜10111記録面表からの読みとり
では数M7lLの厚さのヘツドにできる。従つて、民生
用光デイスクはもとよりコンピユータメモリ、放送局用
メモリ、シェークボックスなどの業務用積層光デイスク
のピツクアツプに適したレンズである。また、本発明の
不均質屈折率レンズは先に提案した球レンズと同様、映
像のリレーレンズ、高密度光エネルギ伝送路、多数光源
から多数導光路への高効率結合レンズ、光情報処理用フ
ーリエ変換レンズ、計測用広角レンズ、カメラレンズ、
医療用内視鏡レンズ、レーザ゛メスヘツドなどとしても
幅広い応用が期待される。
In addition, the hemispherical inhomogeneous refractive index lens has the advantage that it can be made into a thin head, and when reading from the back side of the recording surface of a 1 mm thick disk, it is approximately 8 to 10111cm thick.When reading from the front of the recording surface of a disk with a thickness of 1 mm, it can be made into a head with a thickness of several M7lL. can. Therefore, the lens is suitable for picking up not only consumer optical discs but also commercial laminated optical discs such as computer memories, broadcast station memories, and shakeboxes. In addition, the inhomogeneous refractive index lens of the present invention, like the previously proposed ball lens, can be used as a relay lens for images, a high-density optical energy transmission path, a highly efficient coupling lens from multiple light sources to multiple light guide paths, and a Fourier lens for optical information processing. Conversion lenses, wide-angle measurement lenses, camera lenses,
It is expected to have a wide range of applications such as medical endoscope lenses and laser scalpel heads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクラツドのない球レンズの収差を示す概念図、
第2図は均質屈折率球殼による収差を示す概念図、第3
図は基礎となるクラツド付不均質屈折率球レンズの構成
と収差補正効果を示す説明図、第4図A,bは本発明の
不均質屈折率レンズの構成図、同図C,d,eはクラツ
ドの非対称による作動距離の変化を示す概念図、第5図
は収差補償のための光源側、デイスク側クラツドの厚さ
Dl,d2の関係を例示した図、第6図はクラツドの製
作精度と収差の関係を例示した図、第7図はコアの屈折
率分布係数G2,G4に応じた収差補償に必要なデイス
ク側クラツドの厚さD2を示し(光源側デイスクの厚さ
d1は一定)、あわせて残留横収差、作動間隔を示した
図である。 図中、1はコア、2,3はクラツド、4はデイスク、5
は反射面(膜)である。
Figure 1 is a conceptual diagram showing the aberrations of a spherical lens without a cladding.
Figure 2 is a conceptual diagram showing aberrations due to a homogeneous refractive index sphere shell, Figure 3
The figure is an explanatory diagram showing the configuration and aberration correction effect of the basic cladded heterogeneous refractive index spherical lens. Figures 4A and 4b are configuration diagrams of the heterogeneous refractive index lens of the present invention, and Figures C, d, and e is a conceptual diagram showing changes in working distance due to asymmetry of the cladding, Figure 5 is a diagram illustrating the relationship between the thicknesses Dl and d2 of the cladding on the light source side and disk side for aberration compensation, and Figure 6 is the manufacturing accuracy of the cladding. FIG. 7 shows the thickness D2 of the disc-side cladding required for aberration compensation according to the refractive index distribution coefficients G2 and G4 of the core (the thickness d1 of the light source-side disc is constant). , a diagram also showing residual lateral aberration and operating distance. In the figure, 1 is the core, 2 and 3 are the cladding, 4 is the disk, and 5
is a reflective surface (film).

Claims (1)

【特許請求の範囲】 1 屈折率が中心から周辺に向つてほぼ二乗分布で減少
する球対称屈折率分布球1に均質な球殻状媒質を同心に
被せた不均質屈折率レンズにおいて、光路にあたる2周
辺の一方を光源側とし他方を集光側として光源側球殻状
媒質に比較して集光側球殻状媒質の厚さを薄くしあるい
は屈折率を高くし若しくは前記集光側球殻状媒質の厚さ
を薄くしかつ屈折率を高くし作動距離を長くとることを
特徴とする不均質屈折率レンズ。 2 屈折率が中心から周辺に向つてほぼ二乗分布で減少
する球対称屈折率分布球に均質な球殻状媒質を同心に被
せた球体をこの大円を通る平面で切断した半球において
、この平面部を全反射面とし光路にあたる2周辺の一方
を光源側とし他方を集光側として光源側球殻状媒質に比
較して集光側球殻状媒質の厚さを薄くしあるいは屈折率
を高くし若しくは前記集光側球殻状媒質の厚さを薄くし
かつ屈折率を高くし作動距離を長くとることを特徴とす
る不均質屈折率レンズ。 3 不均質屈折率半球の平面に反射膜を備えた特許請求
の範囲第2項に記載の不均質屈折率レンズ。
[Claims] 1. In a heterogeneous refractive index lens in which a homogeneous spherical shell-like medium is concentrically covered with a spherically symmetric refractive index distribution sphere 1 whose refractive index decreases from the center to the periphery in an approximately square law distribution, a lens that corresponds to the optical path 2. One side of the periphery is set as the light source side and the other as the condensing side, and the thickness of the condensing side spherical shell medium is made thinner or the refractive index is made higher than that of the light source side spherical shell medium, or the condensing side spherical shell is A heterogeneous refractive index lens is characterized by having a thin medium, a high refractive index, and a long working distance. 2 In a hemisphere obtained by cutting a sphere with a homogeneous spherical shell-like medium concentrically over a sphere with a spherically symmetric refractive index distribution whose refractive index decreases from the center to the periphery in an approximately square law distribution, this plane The spherical shell-like medium on the light-collecting side is made thinner or has a higher refractive index than the spherical shell-like medium on the light source side, with the part as a total reflection surface and one of the two peripheries corresponding to the optical path as the light source side and the other side as the condensing side. Alternatively, the inhomogeneous refractive index lens is characterized in that the thickness of the condensing side spherical shell medium is reduced, the refractive index is increased, and the working distance is increased. 3. The heterogeneous refractive index lens according to claim 2, comprising a reflective film on the plane of the hemisphere of the heterogeneous refractive index.
JP55122666A 1980-03-31 1980-09-04 Inhomogeneous refractive index lens Expired JPS593724B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55122666A JPS593724B2 (en) 1980-09-04 1980-09-04 Inhomogeneous refractive index lens
US06/244,915 US4422733A (en) 1980-03-31 1981-03-18 Cladded spherical lens having uneven refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55122666A JPS593724B2 (en) 1980-09-04 1980-09-04 Inhomogeneous refractive index lens

Publications (2)

Publication Number Publication Date
JPS5746202A JPS5746202A (en) 1982-03-16
JPS593724B2 true JPS593724B2 (en) 1984-01-25

Family

ID=14841623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55122666A Expired JPS593724B2 (en) 1980-03-31 1980-09-04 Inhomogeneous refractive index lens

Country Status (1)

Country Link
JP (1) JPS593724B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052813A (en) * 1983-09-02 1985-03-26 Canon Inc Formation of light source using distributed index lens and light source device
NL8603010A (en) * 1986-11-27 1988-06-16 Philips Nv OPTICAL SCANNER.
US6712466B2 (en) 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer

Also Published As

Publication number Publication date
JPS5746202A (en) 1982-03-16

Similar Documents

Publication Publication Date Title
US20090285079A1 (en) Objective lens, optical pickup device, and optical recording/reproducing apparatus
JPH087329B2 (en) Optical system for recording and reproducing optical information
JP2002303787A (en) Objective lens, method for correcting its manufacturing error and optical pickup device using the objective lens
JP3608333B2 (en) Optical pickup and method of assembling objective lens for optical pickup
US7042826B2 (en) Optical pick-up apparatus achieving high numerical aperture, optical converging system therefor, and recording and/or reproducing method utilizing them
US20050232121A1 (en) Refracting objective optical system and optical recording/reproducing device using the same
JPH05303766A (en) Optical element for optical disk and optical head using the same
JP3704833B2 (en) Objective lens and recording / reproducing apparatus
JPS61215512A (en) Objective for optical information reader
JP3918331B2 (en) Reflective micro-optical system
JP2004523053A (en) Optical pickup device for high-density optical recording and reproduction
JPH09185836A (en) Optical system for recording and reproducing optical information recording medium
JPS593724B2 (en) Inhomogeneous refractive index lens
JPH0917010A (en) Method and apparatus for formation of double focus
JP3451152B2 (en) Optical system for recording and reproducing optical information recording media
US5015078A (en) Aspherical single lens
JPH0823626B2 (en) Objective lens for optical disc
JP2002156579A (en) Objective lens for optical disk
JPH0140325B2 (en)
JPH0127402B2 (en)
JP2511275B2 (en) Optical system for recording / reproducing optical information media
KR100366154B1 (en) Optical pickup apparatus for read/write heads in high density optical storages
JPH11203711A (en) Optical system having large numerical aperture and optical information recording and reproducing device using same
KR100562338B1 (en) Optical pickup apparatus
JPS59167863A (en) Optical system for optical disc