JPH0536729A - Compound semiconductor device and its manufacture - Google Patents

Compound semiconductor device and its manufacture

Info

Publication number
JPH0536729A
JPH0536729A JP3193125A JP19312591A JPH0536729A JP H0536729 A JPH0536729 A JP H0536729A JP 3193125 A JP3193125 A JP 3193125A JP 19312591 A JP19312591 A JP 19312591A JP H0536729 A JPH0536729 A JP H0536729A
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
insulating
insulating film
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3193125A
Other languages
Japanese (ja)
Inventor
Hiroyuki Masato
宏幸 正戸
Toshinobu Matsuno
年伸 松野
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3193125A priority Critical patent/JPH0536729A/en
Publication of JPH0536729A publication Critical patent/JPH0536729A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor integrated circuit which is excellent in property of electrically isolating elements and is free of electrode wiring disconnection, so as to reduce the mutual interference effect between each element constituting the semiconductor integrated circuit and the leak current between respective elements. CONSTITUTION:This device comprises a semiinsulating compound semiconductor substrate 1, a compound semiconductor high-resistance layer 5 grown at low temperature of approximately 200 deg.C, an insulating film 2, a compound semiconductor high-resistance deposition layer 4 formed on the insulating film and an active layer 6 whereon compound semiconductor elements are made. An active layer 6, whereon a plurality of compound semiconductor elements are made, is formed on a semiinsulating compound semiconductor substrate 1. The semiinsulating compound semiconductor substrate 1 and the active layer 6 are electrically separated by the compound semiconductor high-resistance layer 5 grown at low temperature. Between the active layers 6, each element is electrically separated completely by the insulating film 2 and the compound semiconductor high-resistance deposition layer 4 formed on the insulating film 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体装置およ
びその製造方法に関するものであり、集積回路を構成す
る各素子間を電気的に完全に分離する事により、各素子
間の相互干渉効果や素子間のリーク電流を著しく低減す
る事ができるため、高密度に集積化した回路においても
安定に動作する化合物半導体集積回路を提供するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor device and a method of manufacturing the same, and by electrically completely separating each element constituting an integrated circuit, mutual interference effect between each element and (EN) A compound semiconductor integrated circuit capable of operating stably even in a high-density integrated circuit because a leak current between elements can be significantly reduced.

【0002】[0002]

【従来の技術】半導体集積回路においては、集積回路を
構成する各々の素子を電気的に分離しなければならな
い。GaAsを用いた集積回路では主としてショットキ
障壁ゲート電界効果トランジスタ(MESFET)が用
いられているが、各素子間を電気的に分離する方法とし
て、各素子を半絶縁性GaAs基板の上に選択的に形成
されたn型島領域に分離して形成して半絶縁性GaAs
基板の絶縁性そのものを利用して素子間分離が行われて
いる。
2. Description of the Related Art In a semiconductor integrated circuit, each element forming the integrated circuit must be electrically isolated. Schottky barrier gate field effect transistors (MESFETs) are mainly used in integrated circuits using GaAs. However, as a method for electrically separating elements, each element is selectively placed on a semi-insulating GaAs substrate. Semi-insulating GaAs formed separately in the formed n-type island region
Isolation between elements is performed by utilizing the insulating property of the substrate.

【0003】しかし、この方法では各素子が電気的に完
全に分離されていないため、各素子間でサイドゲート効
果と呼ばれるリーク電流が発生し回路の各素子を独立に
動作させる事が困難であった。
However, according to this method, since each element is not completely electrically separated, a leak current called a side gate effect is generated between each element and it is difficult to operate each element of the circuit independently. It was

【0004】このような効果を抑制する有効な方法とし
て、半絶縁性GaAs基板上に素子形成をしない領域、
すなわち素子間分離を行いたい領域にSiO2、Ga2
3などの絶縁膜を形成し、前記半絶縁性GaAs基板上
に分子線エピタキシー法により結晶成長し素子間分離を
行う方法が提案されている。図17〜図19に素子間分
離を行う際の工程断面図を示す。半絶縁性GaAs基板
1上の素子間分離を行いたい領域に、膜厚50〜100
Å程度のSiO2膜2を堆積する(図17)。このSi
2膜が堆積した半絶縁性化合物半導体基板全面に分子
線エピタキシー法を用いて600℃前後の成長温度で結
晶成長を行う(図18)。このときGaAs基板上に成
長した膜は良好なエピタキシャル成長膜(活性層)6に
なるのに対して、SiO2膜上に堆積した膜4は結晶性
の極めて悪い高抵抗堆積層となる。次に、MESFET
のソース電極7およびドレイン電極9のオーミック電極
と、ショットキーゲート電極8を形成して集積回路の各
MESFETがそれぞれ分離されて形成される(図1
9)。
As an effective method for suppressing such an effect, a region where no element is formed on the semi-insulating GaAs substrate,
That is, SiO 2 and Ga 2 O are formed in the region where element isolation is desired.
A method has been proposed in which an insulating film such as 3 is formed, and crystals are grown on the semi-insulating GaAs substrate by a molecular beam epitaxy method to separate elements. 17 to 19 are process cross-sectional views when performing element isolation. A film thickness of 50 to 100 is formed in a region on the semi-insulating GaAs substrate 1 where element isolation is desired.
A SiO 2 film 2 of about Å is deposited (FIG. 17). This Si
Crystal growth is performed on the entire surface of the semi-insulating compound semiconductor substrate on which the O 2 film is deposited, using a molecular beam epitaxy method at a growth temperature of around 600 ° C. (FIG. 18). At this time, the film grown on the GaAs substrate becomes a good epitaxial growth film (active layer) 6, whereas the film 4 deposited on the SiO 2 film becomes a high resistance deposition layer having extremely poor crystallinity. Next, MESFET
The ohmic electrodes of the source electrode 7 and the drain electrode 9 and the Schottky gate electrode 8 are formed to separately form the MESFETs of the integrated circuit (FIG. 1).
9).

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来例
では各活性層6が半絶縁性GaAs基板1と電気的に完
全に分離されていないため、分離されたMESFET間
で半絶縁性GaAs基板を通じてリーク電流が流れてし
まい、集積化が進み各素子間の距離が近くなればなるほ
どサイドゲート効果の抑制が充分でなくなってくるとい
う問題があった。
However, in the above-mentioned conventional example, since each active layer 6 is not electrically completely separated from the semi-insulating GaAs substrate 1, the semi-insulating GaAs substrate is interposed between the separated MESFETs. There is a problem that the leakage current flows, the integration is advanced, and the closer the distance between the respective elements is, the more insufficient the suppression of the side gate effect becomes.

【0006】本発明は、このような従来の問題点を解決
し、簡単な方法で各素子を電気的に完全に分離できるた
め、極めて優れた化合物半導体装置を提供するものであ
る。
The present invention solves the above-mentioned conventional problems and provides an extremely excellent compound semiconductor device because each element can be electrically separated completely by a simple method.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、次のような2つの方法を用いて化合物半導体
装置を形成するものである。
In order to achieve this object, the present invention forms a compound semiconductor device by using the following two methods.

【0008】第1の方法は、半絶縁性化合物半導体基板
上に絶縁膜を形成し、素子を形成する領域を選択的に除
去し窓開けを行い、分子線エピタキシー法を用いてまず
200℃前後の低温で化合物半導体高抵抗層を成長し、
次に400℃以上の成長温度で化合物半導体活性層の結
晶成長を行う。次に窓開けを行った領域に電極形成を行
い、集積回路を形成する各々の半導体素子を形成し、絶
縁膜および絶縁膜上に堆積した高抵抗の成長層と低温で
成長した高抵抗化合物半導体層を素子間分離層とする方
法である。
In the first method, an insulating film is formed on a semi-insulating compound semiconductor substrate, a region for forming an element is selectively removed and a window is opened, and then a molecular beam epitaxy method is used to obtain a temperature of about 200 ° C. Compound semiconductor high resistance layer is grown at low temperature
Next, crystal growth of the compound semiconductor active layer is performed at a growth temperature of 400 ° C. or higher. Next, an electrode is formed in the region where the window is opened to form each semiconductor element forming an integrated circuit, and an insulating film and a high resistance growth layer deposited on the insulating film and a high resistance compound semiconductor grown at a low temperature are formed. In this method, the layer is used as an element isolation layer.

【0009】第2の方法は、半絶縁性化合物半導体基板
上に分子線エピタキシー法を用いてまず200℃前後の
低温で化合物半導体高抵抗層を成長する。次に化合物半
導体高抵抗層上に絶縁膜を形成し、素子を作製する領域
を選択的に除去し窓開けを行う。再び分子線エピタキシ
ー法を用いて400℃以上の成長温度で化合物半導体活
性層の結晶成長を行い、窓開けを行った領域に電極形成
を行い、集積回路を形成する各々の半導体素子を形成
し、絶縁膜および絶縁膜上に堆積した高抵抗の成長層と
低温で成長した高抵抗化合物半導体層を素子間分離層と
する方法である。
The second method is to grow a compound semiconductor high resistance layer on a semi-insulating compound semiconductor substrate at a low temperature of about 200 ° C. by using the molecular beam epitaxy method. Next, an insulating film is formed on the compound semiconductor high resistance layer, and a region for forming an element is selectively removed to open a window. Using the molecular beam epitaxy method again, crystal growth of the compound semiconductor active layer is performed at a growth temperature of 400 ° C. or higher, electrodes are formed in the region where the window is opened, and each semiconductor element forming an integrated circuit is formed, In this method, an insulating film and a high resistance growth layer deposited on the insulating film and a high resistance compound semiconductor layer grown at a low temperature are used as element isolation layers.

【0010】[0010]

【作用】この方法において、分子線エピタキシー法によ
り成長温度400℃以上で化合物半導体基板上に成長し
た膜は結晶性の良い膜が得られるのに対して、絶縁膜上
に成長した結晶成長膜は非常に高抵抗なアモルファス状
の膜が形成される。
In this method, a film grown on the compound semiconductor substrate at a growth temperature of 400 ° C. or higher by the molecular beam epitaxy method has a good crystallinity, whereas a film grown on the insulating film has a good crystallinity. A very high resistance amorphous film is formed.

【0011】また分子線エピタキシー法により200〜
250℃の低温で化合物半導体基板上に成長した膜は、
通常ひ素蒸発源の温度が200〜250℃であり化合物
半導体基板上には過剰のひ素が吸着していることにより
結晶の化学量論的組成比(ストイキオメトリー)がずれ
るため非常に結晶性の悪い高抵抗な膜が形成される。
The molecular beam epitaxy method is used to measure 200 to
The film grown on the compound semiconductor substrate at a low temperature of 250 ° C.
Usually, the temperature of the arsenic evaporation source is 200 to 250 ° C., and the stoichiometric composition ratio of the crystal shifts due to the excess arsenic adsorbed on the compound semiconductor substrate. A bad high resistance film is formed.

【0012】したがって各素子は絶縁膜とその上に形成
された高抵抗の膜、低温で成長した高抵抗な膜によって
完全に分離されることになり、素子間のサイドゲート効
果を低減でき、各素子の動作を安定化させる事ができ
る。
Therefore, each element is completely separated by the insulating film, the high resistance film formed thereon, and the high resistance film grown at a low temperature, so that the side gate effect between the elements can be reduced, It is possible to stabilize the operation of the device.

【0013】[0013]

【実施例】本発明の第1の実施例としてGaAsMES
FETから構成される集積回路の製造方法について図1
〜図8の工程断面図を用いて説明する。まず半絶縁性G
aAs基板1表面を清浄にするために硫酸系エッチャン
ト(例えばH2SO4:H22:H2O=8:1:1等)
でエッチングし、半絶縁性GaAs基板1上全面に50
〜100Å程度のSiO2膜2を蒸着する。この時のS
iO2膜2の膜厚はFETの電極形成、および集積回路
を構成する各FETを配線する際に段切れが発生しない
様に十分薄い膜厚を選択する必要がある(図1)。レジ
スト3を塗布し(図2)、フォトリソグラフィによりF
ETを形成する領域のレジストの窓開けを行う(図
3)。次にフッ化水素でFETを形成する領域のSiO
2膜を選択的に除去しGaAs基板表面を露出させる
(図4)。アセトンでレジストを除去し、さらにこのあ
と分子線エピタキシー装置の高真空中に導入し、清浄な
GaAs表面に結晶成長を行う為、酸素プラズマ処理等
により表面に残留したレジスト等の特にカーボン系の不
純物を完全に除去する。さらに結晶成長が行われるGa
As表面をクリーニングする必要があるが、前記のエッ
チングレートの大きい硫酸系のエッチャントをもちいる
と窓開けを行った部分のGaAs表面とSiO2表面と
の段差が大きくなり結晶成長,FETの電極形成、およ
び集積回路を構成する各FETを配線する際に段切れが
発生し易くなるため、GaAsが殆ど削られない様な塩
酸系(例えばHCl:H2O=1:1)の溶液を用いて
表面処理をおこなう(図5)。その後分子線エピタキシ
ー装置に搬入し、基板加熱によりサーマルクリーニング
を行い、580℃以上に温度を上げGaAs表面上の自
然酸化膜を除去し、清浄なGaAs表面を露出させ、結
晶成長を開始する。まず成長基板温度を200〜250
℃の低温でGaAs基板1上に成長する。このとき20
0〜250℃の低温でGaAs基板上に成長した膜は結
晶性の悪い高抵抗な膜5が形成される。一方、SiO2
上に成長した結晶成長膜は非常に高抵抗なアモルファス
状の膜4が堆積する(図6)。次に、成長基板温度を通
常のGaAs成長を行う500〜600℃として成長を
行う。成長はまず5000Å程度のアンドープGaAs
層を成長し、次にMESFETの活性層となるSi濃度
5x1017cm-3程度、厚さ2000Å程度のn型Ga
Asの結晶成長を行なう、さらにFETのソース抵抗を
低減するための厚さ500Å以下のSi濃度が2x10
18cm-3のn型GaAsを成長する。この時低温成長し
た高抵抗GaAs層5上には良好な結晶性を有するエピ
タキシャル層が成長するが、それに対してSiO2膜2
上の高抵抗GaAs堆積層4上には同様に高抵抗のアモ
ルファス状の高抵抗GaAs層4が堆積する(図7)。
次に分子線エピタキシー装置から基板を取り出し、FE
Tのソース電極7、ドレイン電極9を形成する。このオ
ーミック電極の材料としてはAu/Ge/Ni/Au等
を用いる。次にショトキ電極が形成されるゲート部分の
高濃度n型GaAs層を選択的にエッチング除去し、さ
らにエンハンスメント型FETとディプレッション型F
ETの2種類のFETを作製する為、n型GaAs層の
エッチング深さを各々変える事によりFETのしきい値
を調整する。Ti/Pt/Au等の電極材料を用いてゲ
ート電極8を形成し、最後に各FET間の配線を行い集
積回路を作製する(図8)。
EXAMPLE As a first example of the present invention, GaAs MES
FIG. 1 shows a method of manufacturing an integrated circuit composed of FETs.
~ It demonstrates using the process sectional drawing of FIG. First, semi-insulating G
A sulfuric acid-based etchant (for example, H 2 SO 4 : H 2 O 2 : H 2 O = 8: 1: 1 etc.) for cleaning the surface of the aAs substrate 1.
Etching is performed on the entire surface of the semi-insulating GaAs substrate 1 by 50
A SiO 2 film 2 of about 100 Å is deposited. S at this time
It is necessary to select the film thickness of the iO 2 film 2 to be sufficiently thin so that step breakage does not occur when forming the electrodes of the FET and wiring each FET forming the integrated circuit (FIG. 1). Resist 3 is applied (Fig. 2), and F is applied by photolithography.
A window is opened in the resist in the region where ET is formed (FIG. 3). Next, SiO in the region where the FET is formed with hydrogen fluoride
The two films are selectively removed to expose the surface of the GaAs substrate (Fig. 4). After removing the resist with acetone, and then introducing it into the high vacuum of the molecular beam epitaxy system to grow crystals on a clean GaAs surface, especially carbon-based impurities such as resist remaining on the surface by oxygen plasma treatment etc. Is completely removed. Ga for further crystal growth
Although it is necessary to clean the As surface, if a sulfuric acid-based etchant having a large etching rate is used, the step difference between the GaAs surface and the SiO 2 surface in the portion where the window is opened becomes large, crystal growth, and FET electrode formation. , And because a step breakage is likely to occur when wiring the FETs that form the integrated circuit, a hydrochloric acid-based solution (for example, HCl: H 2 O = 1: 1) that hardly removes GaAs is used. Surface treatment is performed (Fig. 5). After that, it is carried into a molecular beam epitaxy apparatus, and thermal cleaning is performed by heating the substrate to raise the temperature to 580 ° C. or higher to remove the natural oxide film on the GaAs surface, expose a clean GaAs surface, and start crystal growth. First, the growth substrate temperature is set to 200 to 250.
It grows on the GaAs substrate 1 at a low temperature of ° C. At this time 20
The film grown on the GaAs substrate at a low temperature of 0 to 250 ° C. forms a high resistance film 5 having poor crystallinity. On the other hand, SiO 2
The crystal-grown film grown on top of this has an extremely high-resistance amorphous film 4 deposited (FIG. 6). Next, the growth substrate temperature is set to 500 to 600 [deg.] C. where normal GaAs growth is performed, and the growth is performed. First of all, the growth is about 5000 Å undoped GaAs.
N-type Ga having a Si concentration of about 5 × 10 17 cm −3 and a thickness of about 2000 Å to be an active layer of MESFET.
The Si concentration of 500 Å or less is 2 × 10 in order to perform As crystal growth and further reduce the FET source resistance.
Grow 18 cm −3 n-type GaAs. The on the high-resistance GaAs layer 5 at low temperature growth when the epitaxial layer is grown with good crystallinity but, SiO 2 film 2 thereto
A high resistance amorphous high resistance GaAs layer 4 is similarly deposited on the upper high resistance GaAs deposition layer 4 (FIG. 7).
Next, the substrate is taken out from the molecular beam epitaxy apparatus and FE
The source electrode 7 and the drain electrode 9 of T are formed. Au / Ge / Ni / Au or the like is used as the material of the ohmic electrode. Next, the high-concentration n-type GaAs layer in the gate portion where the Schottky electrode is formed is selectively removed by etching, and the enhancement type FET and the depletion type F are further removed.
In order to manufacture two types of FETs of ET, the threshold value of FETs is adjusted by changing the etching depth of the n-type GaAs layer. The gate electrode 8 is formed by using an electrode material such as Ti / Pt / Au, and finally wirings between the FETs are performed to manufacture an integrated circuit (FIG. 8).

【0014】次に本発明の第2の実施例を図9〜図16
の工程断面図を用いて説明する。まず半絶縁性GaAs
基板1表面を清浄にするために硫酸系エッチャント(例
えばH2SO4:H22:H2O=8:1:1等)でエッ
チングする。分子線エピタキシー装置の高真空中に導入
し、基板加熱によりサーマルクリーニングを行い、58
0℃以上に温度を上げGaAs表面上の自然酸化膜を除
去し、清浄なGaAs表面を露出させ、結晶成長を開始
する。まず成長基板温度を200〜250℃の低温でG
aAs基板1上に成長する。このとき200〜250℃
の低温でGaAs基板上に成長した膜は結晶性の悪い高
抵抗な膜5が形成される(図9)。次に分子線エピタキ
シー装置より前記基板を取り出し前記基板上全面に50
〜100Å程度のSiO2膜2を蒸着する。この時のS
iO2膜2の膜厚はFETの電極形成、および集積回路
を構成する各FETを配線する際に段切れが発生しない
様に十分薄い膜厚を選択する必要がある(図10)。レ
ジスト3を塗布し(図11)、フォトリソグラフィによ
りFETを形成する領域のレジストの窓開けを行う(図
12)。次にフッ化水素でFETを形成する領域のSi
2膜を選択的に除去し低温成長した高抵抗GaAs層
5を露出させる(図13)。アセトンでレジストを除去
し、さらにこのあと分子線エピタキシー装置の高真空中
に再導入し、清浄なGaAs表面に結晶成長を行う為、
酸素プラズマ処理等により表面に残留したレジスト等の
特にカーボン系の不純物を完全に除去する。さらに結晶
成長が行われるGaAs表面をクリーニングする必要が
あるが、前記のエッチングレートの大きい硫酸系のエッ
チャントをもちいると窓開けを行った部分のGaAs表
面とSiO2表面との段差が大きくなり、FETの電極
形成および集積回路を構成する各FETを配線する際に
段切れが発生し易くなるため、GaAsが殆ど削られな
い様な塩酸系(例えばHCl:H2O=1:1)の溶液
を用いて表面処理をおこなう(図14)。その後分子線
エピタキシー装置に再導入し、基板加熱によりサーマル
クリーニングを行い、580℃以上に温度を上げGaA
s表面上の自然酸化膜を除去し、清浄なGaAs表面を
露出させ、結晶成長を開始する。この時、成長基板温度
はSiO2上に成長する層が再蒸発しない様な温度とし
通常のGaAs成長を行う500〜600℃を用いてお
こなう。成長はまず5000Å程度のアンドープGaA
s層を成長し、次にMESFETの活性層となるSi濃
度5x1017cm-3程度、厚さ2000Å程度のn型G
aAsの結晶成長を行なう、さらにFETのソース抵抗
を低減するための厚さ500Å以下のSi濃度が2x1
18cm-3のn型GaAsを成長する。この時低温成長
した高抵抗GaAs層5上には良好な結晶性を有するエ
ピタキシャル層が成長するが、それに対してSiO2
2上には高抵抗のアモルファス状の高抵抗GaAs堆積
層4が形成される。(図15)。次に分子線エピタキシ
ー装置から基板を取り出し、FETのソース電極7、ド
レイン電極9を形成する。このオーミック電極の材料と
してはAu/Ge/Ni/Au等を用いる。次にショト
キ電極が形成されるゲート部分の高濃度n型GaAs層
を選択的にエッチング除去し、さらにエンハンスメント
型FETとディプレッション型FETの2種類のFET
を作製する為、n型GaAs層のエッチング深さを各々
変える事によりFETのしきい値を調整する。Ti/P
t/Au等の電極材料を用いてゲート電極8を形成し、
最後に各FET間の配線を行い、集積回路を作製する
(図16)。
Next, a second embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to process sectional views. First, semi-insulating GaAs
In order to clean the surface of the substrate 1, etching is performed with a sulfuric acid-based etchant (for example, H 2 SO 4 : H 2 O 2 : H 2 O = 8: 1: 1). Introduced into the high vacuum of a molecular beam epitaxy system, the substrate is heated to perform thermal cleaning.
The temperature is raised to 0 ° C. or higher to remove the natural oxide film on the GaAs surface, expose a clean GaAs surface, and start crystal growth. First, the growth substrate temperature is set to a low temperature of 200 to 250 ° C.
It grows on the aAs substrate 1. At this time 200-250 ℃
The film grown on the GaAs substrate at a low temperature has a high resistance film 5 with poor crystallinity (FIG. 9). Next, the substrate is taken out from the molecular beam epitaxy apparatus and 50
A SiO 2 film 2 of about 100 Å is deposited. S at this time
It is necessary to select the film thickness of the iO 2 film 2 to be sufficiently thin so that step breakage does not occur when forming the electrodes of the FET and wiring each FET forming the integrated circuit (FIG. 10). A resist 3 is applied (FIG. 11), and a resist window is opened in a region where an FET is formed by photolithography (FIG. 12). Next, Si in the region where the FET is formed with hydrogen fluoride
The O 2 film is selectively removed to expose the high resistance GaAs layer 5 grown at low temperature (FIG. 13). To remove the resist with acetone, and then to re-introduce it into the high vacuum of the molecular beam epitaxy system to perform crystal growth on a clean GaAs surface,
Particularly, carbon-based impurities such as resist remaining on the surface are completely removed by oxygen plasma treatment or the like. Further, it is necessary to clean the GaAs surface where crystal growth is performed, but if a sulfuric acid-based etchant with a large etching rate is used, the step between the GaAs surface and the SiO 2 surface in the portion where the window is opened becomes large, Since step breakage is likely to occur when forming FET electrodes and wiring each FET that constitutes an integrated circuit, a hydrochloric acid-based solution (for example, HCl: H 2 O = 1: 1) that hardly removes GaAs. The surface treatment is performed using (FIG. 14). After that, it is re-introduced into the molecular beam epitaxy apparatus, and thermal cleaning is performed by heating the substrate to raise the temperature to 580 ° C. or higher and GaA.
The natural oxide film on the s surface is removed, the clean GaAs surface is exposed, and crystal growth is started. At this time, the growth substrate temperature is set to a temperature at which the layer grown on SiO 2 does not re-evaporate, and the temperature is set to 500 to 600 ° C. for performing normal GaAs growth. First of all, the growth is about 5000 Å undoped GaA.
n-type G with an Si concentration of about 5 × 10 17 cm -3 and a thickness of about 2000 Å to be an active layer of MESFET.
The Si concentration of 500 Å or less is 2 × 1 for crystal growth of aAs and for reducing the source resistance of FET.
0 18 cm −3 n-type GaAs is grown. At this time, an epitaxial layer having good crystallinity grows on the high-resistance GaAs layer 5 grown at low temperature, while a high-resistance amorphous high-resistance GaAs deposition layer 4 is formed on the SiO 2 film 2. To be done. (FIG. 15). Next, the substrate is taken out from the molecular beam epitaxy apparatus, and the source electrode 7 and the drain electrode 9 of the FET are formed. Au / Ge / Ni / Au or the like is used as the material of the ohmic electrode. Next, the high-concentration n-type GaAs layer in the gate portion where the Schottky electrode is formed is selectively removed by etching, and two types of FETs, an enhancement type FET and a depletion type FET, are further removed.
In order to manufacture the above, the threshold value of the FET is adjusted by changing the etching depth of the n-type GaAs layer. Ti / P
forming the gate electrode 8 using an electrode material such as t / Au,
Finally, wiring is performed between the FETs to manufacture an integrated circuit (FIG. 16).

【0015】なお本実施例ではGaAs基板について説
明したがGaP、InP等の他の化合物半導体基板であ
っても同様の効果が得られる事は言うまでもない。
In this embodiment, the GaAs substrate has been described, but it goes without saying that the same effect can be obtained with other compound semiconductor substrates such as GaP and InP.

【0016】[0016]

【発明の効果】以上のように本発明の化合物半導体装置
は、半絶縁性化合物半導体基板上に作製された集積回路
において各素子を電気的に完全に分離できるため、各素
子間のサイドゲート効果を大幅に低減でき、集積回路の
動作を安定に保つ事ができる。しかも絶縁膜を充分薄く
すると、高抵抗化合物半導体堆積層と化合物半導体活性
層との段差が小さくなり電極切れも同時に解消する事が
できるため、高密度高性能な化合物半導体集積回路の作
製には実用上極めて有利なものである。
As described above, in the compound semiconductor device of the present invention, since each element can be electrically separated completely in the integrated circuit formed on the semi-insulating compound semiconductor substrate, the side gate effect between each element can be obtained. Can be greatly reduced, and the operation of the integrated circuit can be kept stable. Moreover, if the insulating film is made sufficiently thin, the step between the high-resistance compound semiconductor deposition layer and the compound semiconductor active layer can be reduced, and electrode disconnection can be eliminated at the same time. Therefore, it is practical for the production of high-density and high-performance compound semiconductor integrated circuits. This is extremely advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のGaAs集積回路の第
1の工程断面図
FIG. 1 is a sectional view showing a first step of a GaAs integrated circuit according to a first embodiment of the present invention.

【図2】本発明の第1の実施例のGaAs集積回路の第
2の工程断面図
FIG. 2 is a sectional view showing a second step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図3】本発明の第1の実施例のGaAs集積回路の第
3の工程断面図
FIG. 3 is a sectional view showing a third step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図4】本発明の第1の実施例のGaAs集積回路の第
4の工程断面図
FIG. 4 is a sectional view showing a fourth step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図5】本発明の第1の実施例のGaAs集積回路の第
5の工程断面図
FIG. 5 is a sectional view of a fifth step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図6】本発明の第1の実施例のGaAs集積回路の第
6の工程断面図
FIG. 6 is a sectional view showing a sixth step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図7】本発明の第1の実施例のGaAs集積回路の第
7の工程断面図
FIG. 7 is a sectional view of a seventh step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図8】本発明の第1の実施例のGaAs集積回路の第
8の工程断面図
FIG. 8 is a sectional view of an eighth step of the GaAs integrated circuit according to the first embodiment of the present invention.

【図9】本発明の第2の実施例のGaAs集積回路の第
1の工程断面図
FIG. 9 is a sectional view of a first step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図10】本発明の第2の実施例のGaAs集積回路の
第2の工程断面図
FIG. 10 is a sectional view showing a second step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図11】本発明の第2の実施例のGaAs集積回路の
第3の工程断面図
FIG. 11 is a sectional view showing a third step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図12】本発明の第2の実施例のGaAs集積回路の
第4の工程断面図
FIG. 12 is a sectional view showing a fourth step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図13】本発明の第2の実施例のGaAs集積回路の
第5の工程断面図
FIG. 13 is a sectional view of a fifth step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図14】本発明の第2の実施例のGaAs集積回路の
第6の工程断面図
FIG. 14 is a sectional view showing a sixth step of the GaAs integrated circuit according to the second embodiment of the invention.

【図15】本発明の第2の実施例のGaAs集積回路の
第7の工程断面図
FIG. 15 is a sectional view of a seventh step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図16】本発明の第2の実施例のGaAs集積回路の
第8の工程断面図
FIG. 16 is a sectional view showing an eighth step of the GaAs integrated circuit according to the second embodiment of the present invention.

【図17】従来例のGaAs集積回路の第1の工程断面
FIG. 17 is a first process cross-sectional view of a conventional GaAs integrated circuit.

【図18】従来例のGaAs集積回路の第2の工程断面
FIG. 18 is a sectional view of a second step of the conventional GaAs integrated circuit.

【図19】従来例のGaAs集積回路の第3の工程断面
FIG. 19 is a sectional view showing a third step of the conventional GaAs integrated circuit.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaAs基板 2 SiO2膜 3 レジスト 4 高抵抗GaAs堆積層 5 低温成長した高抵抗GaAs層 6 GaAs活性層 7 ソース電極 8 ゲート電極 9 ドレイン電極1 semi-insulating GaAs substrate 2 SiO 2 film 3 resist 4 high resistance GaAs deposition layer 5 high resistance GaAs layer grown at low temperature 6 GaAs active layer 7 source electrode 8 gate electrode 9 drain electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性化合物半導体基板、低温成長した
化合物半導体高抵抗層、絶縁膜、前記絶縁膜上に堆積し
た化合物半導体高抵抗堆積層と化合物半導体素子を形成
する活性層からなり、前記複数の化合物半導体素子を形
成する活性層が半絶縁性化合物半導体基板上に形成さ
れ、前記半絶縁性化合物半導体基板と前記活性層は低温
成長した化合物半導体高抵抗層により電気的に分離さ
れ、前記活性層間は前記絶縁膜と前記絶縁膜上に堆積し
た化合物半導体高抵抗堆積層により電気的に分離される
ことを特徴とする化合物半導体装置。
1. A semi-insulating compound semiconductor substrate, a low temperature grown compound semiconductor high resistance layer, an insulating film, a compound semiconductor high resistance deposition layer deposited on the insulating film, and an active layer forming a compound semiconductor element, An active layer forming a plurality of compound semiconductor devices is formed on a semi-insulating compound semiconductor substrate, and the semi-insulating compound semiconductor substrate and the active layer are electrically separated by a compound semiconductor high resistance layer grown at a low temperature, A compound semiconductor device, wherein active layers are electrically separated by the insulating film and a compound semiconductor high resistance deposition layer deposited on the insulating film.
【請求項2】半絶縁性化合物半導体基板の一主面上に絶
縁膜を形成する工程と、前記絶縁膜を選択的に除去し前
記半絶縁性化合物半導体基板表面が露出された領域を形
成する工程と、前記半絶縁性化合物半導体基板全面に分
子線エピタキシー法を用いて200℃前後の低温におい
て化合物半導体高抵抗層の結晶成長を行う工程と、前記
低温において化合物半導体高抵抗層の結晶成長を行った
半絶縁性化合物半導体基板全面に分子線エピタキシー法
を用いて400℃以上の成長温度で化合物半導体の結晶
成長を行い前記選択的に絶縁膜を除去した領域の低温成
長した化合物半導体高抵抗層上に化合物半導体素子の活
性層を形成する工程を含む化合物半導体装置の製造方
法。
2. A step of forming an insulating film on one main surface of a semi-insulating compound semiconductor substrate, and a region where the surface of the semi-insulating compound semiconductor substrate is exposed by selectively removing the insulating film. A step of performing crystal growth of the compound semiconductor high resistance layer at a low temperature of about 200 ° C. on the entire surface of the semi-insulating compound semiconductor substrate using a molecular beam epitaxy method, and a crystal growth of the compound semiconductor high resistance layer at the low temperature. The compound semiconductor high-resistance layer grown at low temperature in the region where the insulating film is selectively removed by crystallizing the compound semiconductor at a growth temperature of 400 ° C. or higher by using a molecular beam epitaxy method on the entire surface of the semi-insulating compound semiconductor substrate A method of manufacturing a compound semiconductor device, comprising the step of forming an active layer of a compound semiconductor element on the above.
【請求項3】半絶縁性化合物半導体基板の一主面上に分
子線エピタキシー法を用いて200℃前後の低温におい
て化合物半導体高抵抗層の結晶成長を行う工程と、前記
低温において化合物半導体高抵抗層の結晶成長を行った
半絶縁性化合物半導体基板全面に絶縁膜を形成する工程
と、前記絶縁膜を選択的に除去し低温において化合物半
導体高抵抗層の結晶成長を行った層の表面が露出された
領域を形成する工程と、前記半絶縁性化合物半導体基板
全面に分子線エピタキシー法を用いて400℃以上の成
長温度で化合物半導体活性層の結晶成長を行い前記選択
的に絶縁膜を除去した領域の低温成長した化合物半導体
高抵抗層上に化合物半導体素子の活性層を形成する工程
を含む化合物半導体装置の製造方法。
3. A step of crystal-growing a compound semiconductor high resistance layer on a main surface of a semi-insulating compound semiconductor substrate at a low temperature of about 200 ° C. using a molecular beam epitaxy method, and a compound semiconductor high resistance at the low temperature. The step of forming an insulating film on the entire surface of the semi-insulating compound semiconductor substrate on which the crystal growth of the layer is performed, and the surface of the layer on which the crystal growth of the compound semiconductor high resistance layer is performed at a low temperature by selectively removing the insulating film is exposed. And the selective removal of the insulating film by performing crystal growth of the compound semiconductor active layer on the entire surface of the semi-insulating compound semiconductor substrate at a growth temperature of 400 ° C. or higher using a molecular beam epitaxy method. A method of manufacturing a compound semiconductor device, comprising the step of forming an active layer of a compound semiconductor element on a compound semiconductor high resistance layer grown at a low temperature in a region.
JP3193125A 1991-08-01 1991-08-01 Compound semiconductor device and its manufacture Pending JPH0536729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193125A JPH0536729A (en) 1991-08-01 1991-08-01 Compound semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193125A JPH0536729A (en) 1991-08-01 1991-08-01 Compound semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0536729A true JPH0536729A (en) 1993-02-12

Family

ID=16302683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193125A Pending JPH0536729A (en) 1991-08-01 1991-08-01 Compound semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0536729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306130A (en) * 2007-06-11 2008-12-18 Sanken Electric Co Ltd Field-effect semiconductor device and its manufacturing method
WO2010116700A1 (en) * 2009-04-07 2010-10-14 住友化学株式会社 Semiconductor substrate, manufacturing method therefor, and electronic device
JP2012164693A (en) * 2011-02-03 2012-08-30 Fujitsu Ltd Compound semiconductor device, and method of manufacturing the same
EP3008752B1 (en) * 2013-06-10 2021-04-14 Raytheon Company Semiconductor structure having column iii-v isolation regions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306130A (en) * 2007-06-11 2008-12-18 Sanken Electric Co Ltd Field-effect semiconductor device and its manufacturing method
WO2010116700A1 (en) * 2009-04-07 2010-10-14 住友化学株式会社 Semiconductor substrate, manufacturing method therefor, and electronic device
US8987782B2 (en) 2009-04-07 2015-03-24 Sumitomo Chemical Company, Limited Semiconductor structure for forming a combination of different types of devices
JP2012164693A (en) * 2011-02-03 2012-08-30 Fujitsu Ltd Compound semiconductor device, and method of manufacturing the same
EP3008752B1 (en) * 2013-06-10 2021-04-14 Raytheon Company Semiconductor structure having column iii-v isolation regions

Similar Documents

Publication Publication Date Title
US4795717A (en) Method for producing semiconductor device
JPH0536729A (en) Compound semiconductor device and its manufacture
JP3023189B2 (en) Method for manufacturing semiconductor device
JPH04206932A (en) Semiconductor device and manufacture thereof
JPS60145625A (en) Manufacture of semiconductor device
JP2917690B2 (en) Method for manufacturing compound semiconductor device
JP3340868B2 (en) Superconducting base transistor and method of manufacturing the same
JPH04260325A (en) Manufacture of semiconductor device
JP3948172B2 (en) Method for producing compound semiconductor epitaxial wafer
CN116926672A (en) Method for vertical heteroepitaxy high-orientation metal platinum based on monocrystal tungsten diselenide
JP3350427B2 (en) Method of forming semiconductor thin film
JP2527227B2 (en) Semiconductor device and manufacturing method thereof
JPS59228715A (en) Selective epitaxial growth method
JPH05259188A (en) Manufacture of semiconductor device
JPS61240648A (en) Manufacture of separating region between elements of compound semiconductor integrated device
JPH08264791A (en) Semiconductor device and its manufacture
JPH03163885A (en) Superconducting transistor and manufacture thereof
JPH0563946B2 (en)
JPH04258137A (en) Fabrication of electronic element
JPH04133321A (en) Chemical vapor growth method of metal thin film
JPH08153683A (en) Compound semiconductor device on silicon substrate and its manufacture
JPH02174166A (en) Manufacture of compound semiconductor
JP2000223420A (en) Manufacture of semiconductor substrate
JPH0864826A (en) Semiconductor device and method of fabrication thereof
JPH01261870A (en) Field effect transistor and its manufacture