JPH0536699A - Single crystal silicon substrate - Google Patents

Single crystal silicon substrate

Info

Publication number
JPH0536699A
JPH0536699A JP18908191A JP18908191A JPH0536699A JP H0536699 A JPH0536699 A JP H0536699A JP 18908191 A JP18908191 A JP 18908191A JP 18908191 A JP18908191 A JP 18908191A JP H0536699 A JPH0536699 A JP H0536699A
Authority
JP
Japan
Prior art keywords
substrate
rear surface
silicon substrate
surface side
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18908191A
Other languages
Japanese (ja)
Inventor
Katsu Kanamori
克 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18908191A priority Critical patent/JPH0536699A/en
Publication of JPH0536699A publication Critical patent/JPH0536699A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Abstract

PURPOSE:To remove heavy metal to be mixed during a manufacturing processing from a surface side element forming part and to improve yield of an element by ion implanting in a rear surface of a substrate, then and then forming a silicon carbide layer to become a gettering site by heat treating. CONSTITUTION:A silicon carbide layer 2 to become a gettering site is formed near a rear surface of a silicon substrate 1. That is, a silicon substrate having no processing strain, in which its front surface side is a mirror-finished and a rear surface side is lapped and then etch-finished, is used. Carbon ions are implanted to the entire rear surface of the substrate 1 of 1X10<15>cm<-2> at 180keV of an acceleration voltage, it is heat treated at 1100 deg.C for 4 hours. A peak peculiar to carbide is recognized from an infrared containing spectrum, and a precipitation and a defect generated from a precipitate are confined by an observation of a transmission type electron microscope near the rear surface. An element is manufactured on the substrate to improve yield of the element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路用の単結晶シリ
コン基板に関し、特にゲッタリングサイトを裏面に高密
度に形成した単結晶シリコン基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal silicon substrate for an integrated circuit, and more particularly to a single crystal silicon substrate having a back surface with gettering sites formed at a high density.

【0002】[0002]

【従来の技術】従来、集積回路製造用の単結晶シリコン
基板へのプロセス汚染に対するゲッタリング方法として
は、種々の方法が提案され試みられてきた。例えば、チ
ョクラルスキ法によるシリコン基板に含まれる酸素の析
出を利用したイントリンシックゲッタリング法、基板裏
面への粒子吹き付けによる歪付けを利用したゲッタリン
グ法、基板裏面へのポリシリコンの被着による歪付けを
利用したゲッタリング法、あるいはアルゴン等の不活性
ガスのイオン注入によるゲッタリング法などが主に実施
されてきた。
2. Description of the Related Art Conventionally, various methods have been proposed and tried as a gettering method for process contamination of a single crystal silicon substrate for manufacturing an integrated circuit. For example, the intrinsic gettering method utilizing the precipitation of oxygen contained in the silicon substrate by the Czochralski method, the gettering method utilizing the distortion by spraying particles on the back surface of the substrate, and the distortion by depositing polysilicon on the back surface of the substrate. A gettering method utilizing the above or a gettering method by ion implantation of an inert gas such as argon has been mainly performed.

【0003】[0003]

【発明が解決しようとする課題】上述した従来のゲッタ
リング方法には次のような欠点がある。まず、基板中の
酸素析出を利用したイントリンシックゲッタリング法
は、表面層での酸素析出を防ぐための高温熱処理が必要
であり、これに続いて酸素析出核形成のための低温熱処
理が必要である。これらの余分の長時間の熱処理がこの
ゲッタリング法には必要不可欠のものである。更に、酸
素析出のコントロールが容易ではないという欠点があ
り、安定した効果を維持できない。
The conventional gettering method described above has the following drawbacks. First, the intrinsic gettering method utilizing oxygen precipitation in the substrate requires high-temperature heat treatment to prevent oxygen precipitation in the surface layer, followed by low-temperature heat treatment to form oxygen precipitation nuclei. is there. These extra long heat treatments are essential to this gettering method. Further, there is a drawback that the control of oxygen precipitation is not easy, and a stable effect cannot be maintained.

【0004】また粒子の裏面への吹き付けを利用した歪
付け法は、微粒子が発生するという難点がある。裏面へ
のポリシリコン被着を利用した裏面歪付け法は、被着時
に基板酸素を著しく析出させる核を形成する熱処理が付
随し、プロセス中の酸素析出と重畳して、基板にそりや
スリップを形成し易いという難点がある。またアルゴン
等の不活性ガスのイオン注入法は、ゲッタリング効果が
持続しないという難点がある。
Further, the straining method utilizing the spraying of particles on the back surface has a drawback that fine particles are generated. The backside straining method, which uses the deposition of polysilicon on the backside, is accompanied by heat treatment that forms nuclei that significantly precipitate substrate oxygen during deposition, and superposes oxygen precipitation during the process to prevent warping and slipping on the substrate. There is a drawback that it is easy to form. Further, the ion implantation method of an inert gas such as argon has a drawback that the gettering effect does not last.

【0005】[0005]

【課題を解決するための手段】本発明による単結晶シリ
コン基板は、裏面内にシリコンカーバイド層を形成した
ものである。
The single crystal silicon substrate according to the present invention has a silicon carbide layer formed in the back surface thereof.

【0006】本発明による単結晶シリコン基板は、製造
プロセスの初期の熱処理においてすでに裏面内に充分な
量のゲッタリングサイトとなるシリコンカーバイドを発
生させており、いったん形成されたこのサイトはこれに
続く熱処理でも消えにくく、従って、ゲッタリング効果
はプロセス初期から長期間持続する。イオン注入の加速
電圧及びドーズ量については、基板内のなるべく深い位
置に、固溶限を越えた炭素を注入するという条件から決
定される。熱処理温度は800℃以上が有効であり、こ
れより高い温度であればより短時間でシリコンカーバイ
ドを形成する事が出来、シリコンカーバイドの形成は赤
外吸収スペクトルから判定できる。カーバイドが比較的
浅い位置に形成され、製造プロセス中の酸化によってゲ
ッタリングサイトが無くなるおそれの有る場合には、裏
面に酸化防止の為の厚い保護膜を付ける方法もとる事が
できる。
The single crystal silicon substrate according to the present invention has already generated a sufficient amount of silicon carbide, which is a gettering site, in the back surface in the heat treatment in the initial stage of the manufacturing process, and this site once formed is followed by this. It is hard to disappear even by heat treatment, and therefore the gettering effect lasts for a long period from the beginning of the process. The acceleration voltage and dose of ion implantation are determined under the condition that carbon exceeding the solid solubility limit is implanted at a position as deep as possible in the substrate. It is effective that the heat treatment temperature is 800 ° C. or higher, and if the temperature is higher than this, silicon carbide can be formed in a shorter time, and the formation of silicon carbide can be judged from the infrared absorption spectrum. When the carbide is formed at a relatively shallow position and there is a possibility that gettering sites will be lost due to oxidation during the manufacturing process, a method of attaching a thick protective film for preventing oxidation can be used on the back surface.

【0007】[0007]

【作用】本発明の単結晶シリコン基板は、裏面近傍にゲ
ッタリングサイトとなるシリコンカーバイド層を形成し
ており、これにより、製造プロセス中に混入する重金属
を表面側素子形成部から除去できる。
In the single crystal silicon substrate of the present invention, a silicon carbide layer which becomes a gettering site is formed in the vicinity of the back surface, whereby heavy metals mixed during the manufacturing process can be removed from the front surface side element forming portion.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の断面である。
The present invention will be described below with reference to the drawings. FIG. 1 is a cross section of an embodiment of the present invention.

【0009】シリコン基板1の裏面近傍にはシリコンカ
ーバイド層2が形成されている。集積回路の製造プロセ
ス中の重金属汚染は、このシリコンカーバイド層2の付
近でゲッタリングされる。次に製造方法について説明す
る。
A silicon carbide layer 2 is formed near the back surface of the silicon substrate 1. Heavy metal contamination during the integrated circuit manufacturing process is gettered near this silicon carbide layer 2. Next, the manufacturing method will be described.

【0010】表面側は鏡面仕上げ、裏面側はラップ後エ
ッチング仕上げされ加工歪の無い状態になっているシリ
コン基板1を用いた。この基板の裏面に、炭素イオンを
加速電圧180keVで、1×1015cm-2全面に注入
した後、1100℃4時間の熱処理を加えた。赤外吸収
スペクトルからカーバイド特有のピークが認められ、ま
た、裏面近傍を透過型電子顕微鏡で観察したところ、析
出及び、析出物から発生した欠陥が確認された。欠陥密
度は108 cm-2程度であった。
A silicon substrate 1 having a mirror surface finish on the front surface and an etching finish on the back surface after lapping and no processing distortion was used. Carbon ions were implanted on the entire surface of 1 × 10 15 cm −2 at an acceleration voltage of 180 keV on the back surface of this substrate, and then heat treatment was performed at 1100 ° C. for 4 hours. A peak peculiar to carbide was observed from the infrared absorption spectrum, and when the vicinity of the back surface was observed with a transmission electron microscope, precipitation and defects generated from the precipitate were confirmed. The defect density was about 10 8 cm -2 .

【0011】この基板に素子を製造し、裏面にイオン注
入を行なわない基板と素子歩留りを比較すると、平均し
て2.2倍の歩留りの上昇が確認できた。また、MOS
C−t法によるライフタイムを比較すると、平均して
1ケタ程度のライフタイム増大が認められ、製造プロセ
ス中の重金属汚染のゲッタリングがなされていると推定
された。
When a device was manufactured on this substrate and the device yield was compared with that of a substrate on the back surface of which no ion implantation was performed, it was confirmed that the yield was increased by 2.2 times on average. Also, MOS
Comparing the lifetimes by the Ct method, an average lifetime increase of about one digit was observed, and it was estimated that gettering of heavy metal contamination during the manufacturing process was performed.

【0012】[0012]

【発明の効果】以上説明したように本発明は、裏面に炭
素のイオン注入と熱処理を行いシリコンカーバイド層を
形成する事により、素子歩留りを向上できる効果があ
る。注入イオンとして用いている炭素は基板中で電気的
に不活性であり、また、拡散係数が小さく、表面側に達
する恐れも無い。また使用するシリコン基板は、チョク
ラルスキラ法,フローティングゾーン法,磁場中チョク
ラルスキ法いずれでも良く、製造法によらない。
As described above, the present invention has an effect that the device yield can be improved by forming a silicon carbide layer on the back surface by ion implantation of carbon and heat treatment. The carbon used as the implanted ions is electrically inactive in the substrate, has a small diffusion coefficient, and is unlikely to reach the surface side. The silicon substrate used may be any of the Czochralski method, the floating zone method, and the Czochralski method in a magnetic field, regardless of the manufacturing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単結晶シリコン基板の断面図である。FIG. 1 is a cross-sectional view of a single crystal silicon substrate of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコンカーバイド層 1 Silicon substrate 2 Silicon carbide layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の裏面内にシリコンカーバイド層を
形成した事を特徴とする単結晶シリコン基板。
1. A single crystal silicon substrate having a silicon carbide layer formed in the back surface of the substrate.
JP18908191A 1991-07-30 1991-07-30 Single crystal silicon substrate Pending JPH0536699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18908191A JPH0536699A (en) 1991-07-30 1991-07-30 Single crystal silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18908191A JPH0536699A (en) 1991-07-30 1991-07-30 Single crystal silicon substrate

Publications (1)

Publication Number Publication Date
JPH0536699A true JPH0536699A (en) 1993-02-12

Family

ID=16234996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18908191A Pending JPH0536699A (en) 1991-07-30 1991-07-30 Single crystal silicon substrate

Country Status (1)

Country Link
JP (1) JPH0536699A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434960B1 (en) * 1996-10-02 2004-10-14 주식회사 하이닉스반도체 Method for manufacturing semiconductor device for trapping impurities using gettering layer
CN108074995A (en) * 2016-11-11 2018-05-25 英飞凌科技股份有限公司 Semiconductor wafer and semiconductor devices and its manufacturing method with barrier layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434960B1 (en) * 1996-10-02 2004-10-14 주식회사 하이닉스반도체 Method for manufacturing semiconductor device for trapping impurities using gettering layer
CN108074995A (en) * 2016-11-11 2018-05-25 英飞凌科技股份有限公司 Semiconductor wafer and semiconductor devices and its manufacturing method with barrier layer
US10833218B2 (en) 2016-11-11 2020-11-10 Infineon Technologies Ag Semiconductor wafers and semiconductor devices with barrier layer and methods of manufacturing
CN108074995B (en) * 2016-11-11 2021-02-23 英飞凌科技股份有限公司 Semiconductor wafer and semiconductor device with barrier layer and method for manufacturing the same
US11239384B2 (en) 2016-11-11 2022-02-01 Infineon Technologiesag Semiconductor wafers and semiconductor devices with barrier layer and methods of manufacturing

Similar Documents

Publication Publication Date Title
US4376657A (en) Method of making fault-free surface zone in semiconductor devices by step-wise heat treating
US6579779B1 (en) Process for the preparation of an ideal oxygen precipitating silicon wafer having an asymmetrical vacancy concentration profile capable of forming an enhanced denuded zone
JP4681063B2 (en) Thermally annealed wafers with improved internal getterability
US6849119B2 (en) Ideal oxygen precipitating silicon wafers and oxygen out-diffusion-less process therefor
KR100770190B1 (en) Non-oxygen precipitating czochralski silicon wafers
KR100745309B1 (en) Process for controlling denuded zone depth in an ideal oxygen precipitating silicon wafer
TW425641B (en) Non-uniform minority carrier lifetime distributions in high performance silicon power devices
KR100920862B1 (en) Process for making ideal oxygen precipitating silicon wafers with nitrogen/carbon stabilized oxygen precipitate nucleation centers
KR102001326B1 (en) Epitaxially coated semiconductor wafer, and method for producing an epitaxially coated semiconductor wafer
US20050048247A1 (en) Process for making silicon wafers with stabilized oxygen precipitate nucleation centers
US6808781B2 (en) Silicon wafers with stabilized oxygen precipitate nucleation centers and process for making the same
JPH0536699A (en) Single crystal silicon substrate
US4784964A (en) EPI defect reduction using rapid thermal annealing
JP3144378B2 (en) Method for manufacturing solid-state imaging device
JP2943369B2 (en) Semiconductor substrate manufacturing method
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH10144696A (en) Silicon wafer and its manufacture
JPH11145146A (en) Semiconductor substrate and its manufacture
JPH08250504A (en) Manufacture of semiconductor device
JPH0645270A (en) Method for heat-treating semiconductor substrate
JP2004356456A (en) Oxygen infused silicon wafer
JPH06291123A (en) Fabrication of semiconductor device
JPH05166816A (en) Manufacture of semiconductor
JPH04207036A (en) Intrinsic gettering method