【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
この発明はICやLSIなどの半導体装置のリード
材に関するものである。
〔従来の技術〕
従来、一般に、ICやLSIなどの半導体装置は、
(a) まず、リード素材として、板厚:0.1〜0.3mm
を有する条材を用意し、
(b) 上記リード素材から、製造しようとする半導
体装置の形状に適合したリードフレームを打抜
き加工によつて形成させ、
(c) ついで、上記リードフレームの所定個所に高
純度SiまたはGeなどの半導体素子を、Agペー
ストなどの導電性樹脂を用いて加熱接着する
か、あるいは予め上記リード素材の片面にめつ
きしておいたAu,Ag,Niあるいはこれらの複
合層の被膜を介して加熱拡散接着するかし、
(d) 上記の半導体素子とリードフレームとに渡つ
てAu線によるワイヤボンデイング(結線)を
施し、
(e) 引続いて、上記半導体素子、結線、および半
導体素子が取り付けられた部分のリードフレー
ムなどを、これらを保護する目的で、プラスチ
ツクで封止し、
(f) 最終的に、上記リードフレームにおける相互
に連なる部分を切除してリード材とする、以上
(a)〜(f)の主要工程によつて製造されている。
したがつて、半導体装置のリード材となるリー
ド素材には、良好なプレス打抜き性、半導体素子
の加熱接着に際して熱歪および熱軟化が生じない
耐熱性、良好な放熱性と導電性、さらに半導体装
置の輸送あるいは電気機器への組込みに際して曲
がりや繰返し曲げによつて破損が生じない強度が
要求され、特性的には、引張強さ47Kgf/mm2以
上、伸び:4%以上、導電率(放熱性、すなわち
熱伝導性は導電率で換算評価される):13%IACS
以上、軟化点(耐熱性を評価するために利用され
る):390℃以上が要求されることから、現在、リ
ード素材の一つとして、Sn:0.5〜5.0%、P:
0.01〜0.1%を含有し、残りがCuと不可避不純物
からなる組成(以上重量%)を有する燐青銅が実
用に供されている。
〔発明が解決しようとする問題点〕
しかしながら、近年に至り、半導体装置の集積
度は益々向上する傾向にあり、これに伴つて上記
各特性、すなわち強度(引張強度、伸び)、導電
性、プレス打抜き性および耐熱性が一層改善され
たリード材が要求されるようになつてきていると
ころから、上記組成の従来燐青銅は、次第にリー
ド材として十分な特性を有する材料とは言い難く
なり、特にプレス打抜き性および耐熱性について
問題がある材料となりつつあるのが現状である。
〔問題を解決するための手段〕
そこで、本発明者等は、上述のような観点か
ら、従来の燐青銅を改良して、集積度の高い半導
体装置のリード材としても実用に耐える材料を得
べく、特にプレス打抜き性および耐熱性のすぐれ
たCu合金に着目し研究を進めた結果、Sn:0.5〜
5.0%、P:0.01〜0.1%、Mg:0.01〜0.15%を含
有し、残りがCuと不可避不純物からなる組成
(以上重量%)を有する銅合金は、従来の燐青銅
よりもすぐれた特性、特に、プレス打抜き性およ
び耐熱性を具備するという知見を得た。
この発明は上記知見にもとづいて発明されたも
のであつて、以下に成分組成を上記の通りに限定
した理由を説明する。
(a) Sn
Sn成分には、リード材の強度を著しく向上さ
せる作用があるが、その含有量が0.5%未満では
所望の高強度を確保することができず、一方5.0
%を越えて含有させると、熱間圧延性が著しく悪
くなる上に、導電性も劣化して十分な放熱性を確
保できないところから、その含有量を0.5〜5.0%
と定めた。
(b) P
P成分は脱酸作用を有し、水素脆化の防止と燐
化合物生成による強度、導電性並びに耐熱性の向
上に寄与する成分であるが、その含有量が0.01%
未満では前記の特性向上に所望の効果が得られ
ず、一方0.1%を越えて含有させても、前記脱酸
作用による一層の特性向上効果が現われないこと
から、その含有量を0.01〜0.1%と定めた。
(c) Mg
Mg成分は、脱酸作用を有し、かつMg3P2、
Mg2Snなどのマグネシウム化合物を析出させる
ことによつて、マトリツクスの強化、すなわち銅
合金の強度上昇並びに導電性およびプレス打抜き
性の向上に役立つ成分であるが、その含有量が
0.01%未満ではこのような作用に所望の効果が得
られず、一方0.15%を越えて含有させると、銅合
金の溶解鋳造時の湯流れに悪影響が現われ、さら
にプレス打抜き性が低下して金型摩耗が増加する
ところから、その含有量を0.01〜0.15%と定め
た。
〔実施例〕
つぎに、この発明の銅合金リード材を実施例に
より具体的に説明する。
通常の低周波溝型誘導炉を用い、それぞれ第1
表に示される成分組成をもつた銅合金溶湯を調製
し、半連続鋳造法にて厚さ:150mm×幅:400mm×
長さ:1500mmの鋳塊とした後、圧延開始温度:
800℃にて熱間圧延を施して厚さ:11mmの熱延板
とし、ついで水冷後、前記熱延板の上下面を面削
して厚さ:10mmとし、引続いて冷間圧延と焼鈍を
交互に繰返し施し、仕上圧延率:45%にて最終冷
間圧延を施した後、レベラー通板によつて、それ
ぞれ本発明リード材1〜4および従来燐青銅リー
ド材1〜2を製造した。
この結果得られた本発明リード材1〜4および
従来燐青銅リード材1〜2の引張強さ、伸び、導
電率および軟化点を測定したところ、第1表に示
す結果が得られた。
さらに、プレス打抜き性を評価するために、本
発明リード材1〜4および従来1〜2を通常のW
−Co系超硬合金金型を用い、縦:1.0mm、横:2.0
mmの長方形を毎分600ストロークで打抜き、スト
ローク数が100万回に達したときの上記金型の摩
耗量を測定し、その測定結果も第1表に示した。
[Industrial Application Field] This invention relates to lead materials for semiconductor devices such as ICs and LSIs. [Conventional technology] Conventionally, in general, semiconductor devices such as ICs and LSIs are manufactured using: (a) First, a lead material with a thickness of 0.1 to 0.3 mm is used.
(b) forming a lead frame from the lead material by punching that matches the shape of the semiconductor device to be manufactured; (c) then stamping the lead frame at predetermined locations Semiconductor elements such as high-purity Si or Ge are heat-bonded using conductive resin such as Ag paste, or Au, Ag, Ni, or composite layers of these are plated on one side of the lead material in advance. (d) Perform wire bonding (connection) using Au wire across the semiconductor element and the lead frame, (e) Subsequently, bond the semiconductor element, the connection, and the part of the lead frame where the semiconductor element is attached is sealed with plastic for the purpose of protecting them, (f) Finally, the interconnected parts of the lead frame are cut out and used as lead material. ,that's all
It is manufactured by the main steps (a) to (f). Therefore, the lead material that is used as the lead material for semiconductor devices must have good press punchability, heat resistance that does not cause thermal distortion or thermal softening during heat bonding of semiconductor elements, good heat dissipation and conductivity, and in addition, semiconductor devices When transported or incorporated into electrical equipment, it is required to have strength that will not cause damage due to bending or repeated bending. , that is, thermal conductivity is evaluated in terms of electrical conductivity): 13% IACS
As mentioned above, since a softening point (used to evaluate heat resistance) of 390°C or higher is required, Sn: 0.5 to 5.0%, P:
Phosphor bronze containing 0.01 to 0.1% Cu and the remainder consisting of Cu and unavoidable impurities (weight percent) is in practical use. [Problems to be solved by the invention] However, in recent years, the degree of integration of semiconductor devices has tended to improve more and more, and with this, each of the above properties, namely strength (tensile strength, elongation), conductivity, pressability, etc. As lead materials with improved punchability and heat resistance are increasingly required, conventional phosphor bronze with the above composition is no longer a material with sufficient properties as a lead material. Currently, it is becoming a material that has problems with press punchability and heat resistance. [Means for Solving the Problem] Therefore, from the above-mentioned viewpoint, the present inventors improved the conventional phosphor bronze to obtain a material that can be used as a lead material for highly integrated semiconductor devices. As a result of our research focusing on Cu alloys with particularly excellent press punchability and heat resistance, we found that Sn: 0.5~
5.0%, P: 0.01~0.1%, Mg: 0.01~0.15%, and the rest consists of Cu and unavoidable impurities (wt%).The copper alloy has superior properties than conventional phosphor bronze. In particular, it was found that the material has good press punchability and heat resistance. This invention was invented based on the above knowledge, and the reason why the component composition was limited as described above will be explained below. (a) Sn The Sn component has the effect of significantly improving the strength of the lead material, but if the content is less than 0.5%, the desired high strength cannot be secured;
If the content exceeds 0.5% to 5.0%, the hot rolling property will deteriorate significantly and the conductivity will also deteriorate, making it impossible to ensure sufficient heat dissipation.
It was determined that (b) P The P component has a deoxidizing effect and contributes to preventing hydrogen embrittlement and improving strength, conductivity, and heat resistance by forming phosphorus compounds, but its content is 0.01%.
If the content is less than 0.1%, the desired effect of improving the properties cannot be obtained, and on the other hand, if the content exceeds 0.1%, the effect of further improving the properties due to the deoxidizing effect will not appear. It was determined that (c) Mg The Mg component has a deoxidizing effect and contains Mg 3 P 2 ,
By precipitating magnesium compounds such as Mg 2 Sn, it is a component that helps strengthen the matrix, that is, increases the strength of the copper alloy, and improves the conductivity and press punchability.
If the content is less than 0.01%, the desired effect cannot be obtained; on the other hand, if the content exceeds 0.15%, there will be an adverse effect on the flow of the melt during melting and casting of copper alloys, and furthermore, the press punchability will decrease, resulting in poor metallurgy. The content was set at 0.01 to 0.15% since mold wear increases. [Example] Next, the copper alloy lead material of the present invention will be specifically explained with reference to Examples. Using an ordinary low-frequency groove induction furnace, the first
A molten copper alloy having the composition shown in the table was prepared and semi-continuously cast to a thickness of 150 mm x width of 400 mm.
After making an ingot with length: 1500mm, rolling start temperature:
A hot-rolled plate with a thickness of 11 mm was hot-rolled at 800°C, and then after cooling with water, the top and bottom surfaces of the hot-rolled plate were chamfered to a thickness of 10 mm, followed by cold rolling and annealing. After the final cold rolling was performed at a finishing rolling rate of 45%, lead materials 1 to 4 of the present invention and conventional phosphor bronze lead materials 1 to 2 were manufactured by leveler threading, respectively. . The tensile strength, elongation, electrical conductivity, and softening point of the resulting lead materials 1 to 4 of the present invention and conventional phosphor bronze lead materials 1 to 2 were measured, and the results shown in Table 1 were obtained. Furthermore, in order to evaluate the press punching properties, lead materials 1 to 4 of the present invention and conventional materials 1 to 2 were tested using ordinary W.
-Using a Co-based cemented carbide mold, length: 1.0mm, width: 2.0mm
A rectangle of mm diameter was punched out at 600 strokes per minute, and the wear amount of the die was measured when the number of strokes reached 1 million times.The measurement results are also shown in Table 1.
〔発明の効果〕〔Effect of the invention〕
第1表に示される結果から、本発明リード材
は、同程度のSnおよびP含有量の従来燐青銅リ
ード材と比較して特に耐熱性が向上しているほ
か、打抜き加工に際しての金型摩耗量も少ないと
ころからプレス打抜き加工性にも優れ、さらに強
度および放熱性(導電性)にも優れ、従来の燐青
銅リード材よりも金型交換回数を減らすことがで
きるためにコストを大幅に削減することができ、
高集積度の半導体装置を低コストで量産できるこ
とがわかる。
また、本発明リード材は、銅合金で構成されて
いるために、Au,Ag,Ni,およびこれらの合金
に対するめつき性並びにはんだ付け性もきわめて
優れたものであつた。
上述のように、この発明のリード材は、従来の
燐青銅リード材よりも強度並びに放熱性にも優れ
ているばかりでなく、就中、プレス打抜き性およ
び耐熱性にも優れているので、この発明による
と、これらの特性について高度の性能が要求され
る、集積度の高い半導体装置のリード材として有
用な銅合金リード材を提供することができる。
From the results shown in Table 1, the lead material of the present invention has particularly improved heat resistance compared to the conventional phosphor bronze lead material with the same Sn and P contents, as well as improved die wear during punching. It has excellent press punching workability due to its small quantity, and also has excellent strength and heat dissipation (conductivity), and it can significantly reduce costs by reducing the number of mold changes compared to conventional phosphor bronze lead materials. can,
It can be seen that highly integrated semiconductor devices can be mass-produced at low cost. Furthermore, since the lead material of the present invention was composed of a copper alloy, it had extremely excellent plating and soldering properties to Au, Ag, Ni, and alloys thereof. As mentioned above, the lead material of the present invention not only has superior strength and heat dissipation properties compared to conventional phosphor bronze lead materials, but also has excellent press punchability and heat resistance. According to the invention, it is possible to provide a copper alloy lead material that is useful as a lead material for highly integrated semiconductor devices that require high performance in these characteristics.