JPH05345665A - Particle-dispersed zro2 ceramic material and its production - Google Patents

Particle-dispersed zro2 ceramic material and its production

Info

Publication number
JPH05345665A
JPH05345665A JP4156757A JP15675792A JPH05345665A JP H05345665 A JPH05345665 A JP H05345665A JP 4156757 A JP4156757 A JP 4156757A JP 15675792 A JP15675792 A JP 15675792A JP H05345665 A JPH05345665 A JP H05345665A
Authority
JP
Japan
Prior art keywords
zro
dispersed
ceramic material
nanoparticles
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4156757A
Other languages
Japanese (ja)
Other versions
JP2985512B2 (en
Inventor
Ryuichi Matsuki
竜一 松木
Takeyoshi Takenouchi
武義 竹之内
Koichi Niihara
晧一 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15634660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05345665(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4156757A priority Critical patent/JP2985512B2/en
Priority to DE19934319911 priority patent/DE4319911A1/en
Publication of JPH05345665A publication Critical patent/JPH05345665A/en
Application granted granted Critical
Publication of JP2985512B2 publication Critical patent/JP2985512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the ceramic material having improved thermal shock resistance, high-temperature characteristics, breaking toughness and breaking strength by dispersing a specific amount of nano-particles having a dimension of nanometer order as a 2nd phase in a ZrO2 crystal grain. CONSTITUTION:ZrO2 powder having an average particle diameter of about 0. 3mum is mixed with a non-oxide powder such as SiC and/or an oxide powder such as Al2O3 having an average particle diameter of <=400nm. The mixture is formed and sintered at >=1200 deg.C to obtain the particle-dispersed ZrO2 ceramic material containing 0.1-30vol.% of nano-particles having a dimension of nano- meter order (an average particle diameter of >=400nm) and consisting of non- oxide particles and/or oxide particles as a 2nd phase dispersed in the ZrO2 crystal grain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特殊構造のセラミック
ス材料及びその製法に関する。詳しくは、耐熱衝撃性、
高温特性に優れた高靭性、高強度ZrO2 系セラミック
ス材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic material having a special structure and a method for producing the same. Specifically, thermal shock resistance,
The present invention relates to a high-toughness, high-strength ZrO 2 -based ceramic material excellent in high temperature characteristics and a method for producing the same.

【0002】[0002]

【従来の技術】Y23 (酸化イットリウム)等に代表
される希土類酸化物等を、結晶格子内に固溶させて部分
安定化したZrO2 (酸化ジルコニウム)は、高靭性で
高強度な材料であるために、工業用材料として広く利用
されている。
2. Description of the Related Art ZrO 2 (zirconium oxide), which is partially stabilized by dissolving a rare earth oxide represented by Y 2 O 3 (yttrium oxide) in a crystal lattice, has high toughness and high strength. Being a material, it is widely used as an industrial material.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の技術で
得られる部分安定化ZrO2 は、優れた破壊強度、破壊
靭性を示すものの、Y23 、CaO(酸化カルシウ
ム)、MgO(酸化マグネシウム)等の安定化剤をZr
2 結晶格子内に固溶させることにより、準安定相の正
方晶を維持していることから、変態温度以上の高温で機
械的、熱的特性が著しく低下する。また、焼結時或いは
使用時の高温雰囲気において、安定化剤の遊離(脱安定
化)が起こる。このため、繰り返し使用すると、初期の
優れた低温側の耐熱衝撃性、機械的特性も次第に失われ
ることから、使用雰囲気温度は比較的低温付近に著しく
制限される。
However, although the partially stabilized ZrO 2 obtained by the conventional technique shows excellent fracture strength and fracture toughness, it is difficult to solve the problems of Y 2 O 3 , CaO (calcium oxide), MgO (magnesium oxide). ) And other stabilizers such as Zr
By forming a solid solution in the O 2 crystal lattice, the tetragonal crystal of the metastable phase is maintained, so that the mechanical and thermal characteristics are significantly deteriorated at a temperature higher than the transformation temperature. Further, liberation (destabilization) of the stabilizer occurs in a high temperature atmosphere during sintering or during use. For this reason, when repeatedly used, the initial excellent thermal shock resistance and mechanical properties on the low temperature side are gradually lost, so that the ambient temperature in use is significantly limited to a relatively low temperature.

【0004】従って、ZrO2 セラミックス系材料を多
くの工業分野で実用化するためには、これらの欠点を同
時に改善する必要がある。
Therefore, in order to put the ZrO 2 ceramic material into practical use in many industrial fields, it is necessary to simultaneously improve these drawbacks.

【0005】本発明は、ZrO2 の有する特性を損なう
ことなく、耐熱衝撃性に優れ、また高温特性に優れた高
靭性、高強度粒子分散型ZrO2 系セラミックス材料及
びその製造方法を提供することにある。
The present invention provides a high-toughness, high-strength particle-dispersed ZrO 2 -based ceramic material excellent in thermal shock resistance and high-temperature characteristics without impairing the characteristics of ZrO 2 , and a method for producing the same. It is in.

【0006】[0006]

【課題を解決するための手段】請求項1の粒子分散型Z
rO2 系セラミックス材料は、ZrO2 結晶粒内に、第
2相としてナノメーター寸法のナノ粒子を0.1〜30
体積%分散させたことを特徴とする。
A particle dispersion type Z according to claim 1
The rO 2 -based ceramic material contains nanometer-sized nanoparticles of 0.1 to 30 as a second phase in ZrO 2 crystal grains.
It is characterized by being dispersed by volume%.

【0007】請求項2の粒子分散型ZrO2 系セラミッ
クス材料は、請求項1のZrO2 系セラミックス材料に
おいて、ZrO2 結晶粒内に分散するナノ粒子が平均粒
子径400nm以下の非酸化物粒子及び/又は酸化物粒
子であることを特徴とする。
[0007] particle-dispersed ZrO 2 based ceramic material of claim 2, in ZrO 2 based ceramic material of claim 1, a non-oxide nanoparticles is less than an average particle diameter of 400nm dispersed in ZrO 2 crystal grains grains and And / or oxide particles.

【0008】請求項3の粒子分散型ZrO2 系セラミッ
クス材料は、ZrO2 粉末に平均粒子径400nm以下
の非酸化物粉末及び/又は酸化物粉末を混合し、得られ
た混合物を成形した後、該成形体を1200℃以上の焼
結温度で焼結することにより、請求項1又は2に記載の
粒子分散型ZrO2 系セラミックス材料を製造すること
を特徴とする。
The particle-dispersed ZrO 2 -based ceramic material of claim 3 is obtained by mixing ZrO 2 powder with non-oxide powder and / or oxide powder having an average particle diameter of 400 nm or less, and molding the resulting mixture. The particle-dispersed ZrO 2 -based ceramic material according to claim 1 or 2 is manufactured by sintering the compact at a sintering temperature of 1200 ° C. or higher.

【0009】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0010】本発明の粒子分散型ZrO2 系セラミック
ス材料は、マトリックスとしてZrO2 を、分散粒子の
第2相として非酸化物及び/又は酸化物ナノ粒子を用い
ることが特徴である。ナノ粒子の平均粒子径は、好まし
くは400nm以下で、ZrO2 マトリックス中に均一
に分散させた構造のものである。
The particle-dispersed ZrO 2 system ceramic material of the present invention is characterized by using ZrO 2 as a matrix and non-oxide and / or oxide nanoparticles as the second phase of the dispersed particles. The average particle diameter of the nanoparticles is preferably 400 nm or less, and the nanoparticles have a structure in which they are uniformly dispersed in a ZrO 2 matrix.

【0011】本発明の方法において、粉末原料として平
均粒子径400nm以下の粒子を用いる理由は、ZrO
2 結晶粒内に取り込まれ易いこと、そして、材料欠陥と
なるほどのマイクロクラックが発生しない範囲であるこ
と等による。特に、粉末原料の平均粒子径は50〜30
0nmとするのが好ましい。
In the method of the present invention, the reason why particles having an average particle diameter of 400 nm or less are used as the powder raw material is ZrO.
(2) It is easy to be taken into the crystal grains, and it is within the range where microcracks, which are material defects, are not generated. Particularly, the average particle size of the powder raw material is 50 to 30.
It is preferably 0 nm.

【0012】また、分散粒子であるナノ粒子の添加量を
0.1〜30体積%とする理由は、焼結体中のZrO2
が正方晶を保持でき、破断時にZrO2 の応力誘起変態
が十分に発現でき、従来のZrO2 では機械的特性が大
幅に低下する変態温度以上でも高い破壊強度・破壊靭性
を維持できる組成範囲であることによる。
The reason why the amount of the nanoparticles, which are dispersed particles, is 0.1 to 30% by volume is that ZrO 2 in the sintered body is used.
In the composition range that can maintain a tetragonal structure, can fully develop the stress-induced transformation of ZrO 2 at the time of fracture, and can maintain high fracture strength and fracture toughness even at a transformation temperature or higher at which the mechanical properties of conventional ZrO 2 are significantly reduced. It depends.

【0013】なお、本発明において、非酸化物系のナノ
粒子としては、SiC(炭化珪素)、TiC(炭化チタ
ン)、WC(炭化タングステン)等の炭化物、TiN
(窒化チタン)等の窒化物、TiB2 等のホウ化物など
が好適である。酸化物系のナノ粒子としてはAl23
(酸化アルミニウム)等が挙げられる。これらのナノ粒
子は、1種単独で用いても2種以上を併用して用いても
良い。
In the present invention, the non-oxide type nanoparticles include carbides such as SiC (silicon carbide), TiC (titanium carbide), WC (tungsten carbide), and TiN.
A nitride such as (titanium nitride) and a boride such as TiB 2 are suitable. Al 2 O 3 can be used as oxide-based nanoparticles.
(Aluminum oxide) and the like. These nanoparticles may be used alone or in combination of two or more.

【0014】[0014]

【作用】本発明者等は、ZrO2 系セラミックスのZr
2 結晶粒内に分散した酸化物及び非酸化物ナノ粒子
に、大別して以下のような2種類の役割を与えることに
より、従来のZrO2 系セラミックスの問題点を克服し
た。
The present inventors have found that the ZrO 2 -based ceramics Zr
The oxide and non-oxide nanoparticles dispersed in O 2 crystal grains are roughly divided into the following two types of roles to overcome the problems of the conventional ZrO 2 -based ceramics.

【0015】即ち、本発明の粒子分散型ZrO2 系セラ
ミックス材料において、ZrO2 の結晶粒内に分散した
ナノ粒子の第一の役割は、分散粒子の内部或いは周囲の
極局所(ナノ粒子の直径の約2倍以内)に、ZrO2
分散相間の主として熱膨張率の差により製造温度からの
冷却中に生じる熱残留応力を利用して、この熱残留応力
でZrO2 の正方晶から斜方晶への変態を制御すること
である。分散させるナノ粒子の熱膨張率の大小により、
例えばZrO2 より著しく熱膨張率の小さいSiCナノ
粒子は正方晶の安定化への寄与が大きく、またZrO2
より僅かに熱膨張率が小さいAl23 の場合は、正方
晶の安定化への寄与は小さい。それ故、分散させるナノ
粒子の種類と分散量を制御することにより、ZrO2
変態を容易に制御でき、この変態を利用した強靭化をよ
り効率的に発揮させることができる。なお、従来のZr
2 系セラミックスは前述したように、本発明とは完全
に異なる方法、即ちCaO、Y23 、MgO等を結晶
格子内に固溶させることにより結晶変態が制御されてき
た。
That is, in the particle-dispersed ZrO 2 system ceramic material of the present invention, the primary role of the nanoparticles dispersed in the crystal grains of ZrO 2 is the extremely local (inner diameter of the nanoparticles) inside or around the dispersed particles. The thermal residual stress generated during cooling from the manufacturing temperature mainly due to the difference in the coefficient of thermal expansion between ZrO 2 and the dispersed phase is utilized to increase the thermal residual stress from the tetragonal system to the orthorhombic system of ZrO 2. It is to control the transformation into crystals. Depending on the thermal expansion coefficient of nanoparticles to be dispersed,
For example, SiC nanoparticles having a coefficient of thermal expansion significantly smaller than that of ZrO 2 make a large contribution to the stabilization of tetragonal crystals, and ZrO 2
In the case of Al 2 O 3 having a slightly smaller coefficient of thermal expansion, the contribution to the stabilization of the tetragonal crystal is small. Therefore, by controlling the type and amount of dispersed nanoparticles, the transformation of ZrO 2 can be easily controlled, and the toughening utilizing this transformation can be more efficiently exerted. The conventional Zr
As described above, the crystal transformation of O 2 -based ceramics has been controlled by a completely different method from the present invention, that is, by solid-dissolving CaO, Y 2 O 3 , MgO, etc. in the crystal lattice.

【0016】本発明の粒子分散型ZrO2 系セラミック
ス材料において、ZrO2 の結晶粒内に分散したナノ粒
子の第二の役割は、従来のZrO2 系セラミックスが変
態温度以上で著しく破壊靭性・破壊強度が低下すること
を防止すると共に、変態温度以下でもこのナノ粒子によ
り破壊を制御し、変態による強靭化以上に破壊強度・破
壊靭性を向上させることであり、この役割は以下のよう
に分類することができる。
In the particle-dispersed ZrO 2 system ceramic material of the present invention, the second role of the nanoparticles dispersed in the ZrO 2 crystal grains is that the conventional ZrO 2 system ceramics has remarkable fracture toughness and fracture above the transformation temperature. In addition to preventing the strength from decreasing, the fracture is controlled by the nanoparticles even below the transformation temperature, and the fracture strength and fracture toughness are improved over the toughness caused by transformation.This role is classified as follows. be able to.

【0017】 材料組織の微細化、異常粒成長の抑制
及び結晶粒形の制御による破壊強度の改善。 結晶粒内に分散した微粒子によるクラックの偏向、
結晶粒内でのマイクロクラックの生成による破壊靭性の
改善。 結晶粒内に発生した圧縮応力による破壊源発生の抑
制、及び、破壊強度の改善。 結晶粒内に分散した粒子の周りに生じる引っ張り応
力によって結晶粒内破壊を誘導することによる、高温で
の破壊の抑制、即ち高温強度の改善。 結晶粒内に分散した硬い粒子の高温での転位の移動
のピニングによる、高温硬度、高温強度、クリープ抵
抗、脆性/延性転位温度(耐熱温度)の改善。 本発明では、このように、ZrO2 結晶粒内に特定の割
合で分散させたナノ粒子に、以上述べた二つの異なる役
割を同時に与えることにより、従来のZrO2系セラミ
ックス材料の欠点を全て同時に克服することが可能とな
り、高温領域まで高強度、高靭性を維持し、耐熱性に優
れ、また熱衝撃特性に優れたZrO2 系セラミックス材
料の実現を可能とした。
Improvement of fracture strength by miniaturization of material structure, suppression of abnormal grain growth, and control of crystal grain shape. Deflection of cracks by fine particles dispersed in crystal grains,
Improvement of fracture toughness by generation of microcracks in crystal grains. Suppress the generation of fracture sources due to the compressive stress generated in the crystal grains and improve the fracture strength. Suppression of fracture at high temperature, that is, improvement of high-temperature strength, by inducing intra-grain fracture by the tensile stress generated around the grains dispersed in the grain. Improvement of high temperature hardness, high temperature strength, creep resistance, brittle / ductile dislocation temperature (heat resistant temperature) by pinning dislocation movement of hard particles dispersed in crystal grains at high temperature. In the present invention, by simultaneously imparting the two different roles described above to the nanoparticles dispersed in the ZrO 2 crystal grains at a specific ratio in this manner, all the defects of the conventional ZrO 2 -based ceramic material are simultaneously solved. It has become possible to overcome these problems, and it has become possible to realize a ZrO 2 -based ceramic material that maintains high strength and high toughness even in the high temperature range, has excellent heat resistance, and has excellent thermal shock characteristics.

【0018】本発明の粒子分散型ZrO2 系セラミック
ス材料は、ZrO2 結晶粒内に分散させたナノ粒子とZ
rO2 の熱膨張率の差により、焼結温度からの冷却中に
生じる熱残留応力を利用して、この熱残留応力でZrO
2 の正方晶から単斜晶への相変態を制御するものであ
り、ZrO2 の結晶粒内にナノ粒子が分散したナノ複合
化組織を有している。本発明によるZrO2 系セラミッ
クス材料では、ZrO2の結晶粒内にナノ粒子を分散し
たこのナノ複合化組織により、出発原料の未安定ZrO
2 は、焼結体中では準安定相(正方晶)を保持してい
る。
The particle-dispersed ZrO 2 -based ceramic material of the present invention is composed of nanoparticles and Z dispersed in ZrO 2 crystal grains.
The thermal residual stress generated during cooling from the sintering temperature due to the difference in the coefficient of thermal expansion of rO 2 is used to generate ZrO at this thermal residual stress.
It controls the phase transformation from tetragonal crystal to monoclinic crystal of No. 2 and has a nanocomposite structure in which nanoparticles are dispersed in the crystal grains of ZrO 2 . In the ZrO 2 -based ceramic material according to the present invention, due to this nanocomposite structure in which nanoparticles are dispersed in the crystal grains of ZrO 2 , the unstable ZrO starting material is used.
No. 2 retains a metastable phase (tetragonal crystal) in the sintered body.

【0019】また、本発明の製造方法では、未安定Zr
2 と平均粒子径400nm以下の非酸化物及び/又は
酸化物を所定の割合で混合し、成形した後、焼結するこ
とにより、緻密な上記組織構造のものを得、上記特性を
有したナノ粒子分散型ZrO2 系セラミックス材料を製
造する。即ち、本発明の粒子分散型ZrO2 系セラミッ
クス材料の製造方法によれば、マトリックスであるZr
2 は焼結過程で緻密に焼結され、この粒子内に分散相
である非酸化物又は酸化物ナノ粒子が均一に取り込まれ
たナノ複合化組織ができる。
Further, in the production method of the present invention, the unstable Zr
O 2 and non-oxides and / or oxides having an average particle size of 400 nm or less were mixed at a predetermined ratio, molded, and then sintered to obtain a dense structure having the above-mentioned structure and having the above-mentioned characteristics. A nanoparticle-dispersed ZrO 2 ceramic material is manufactured. That is, according to the method for producing a particle-dispersed ZrO 2 -based ceramic material of the present invention, the matrix ZrO 2
O 2 is densely sintered in the sintering process to form a nanocomposite structure in which non-oxide or oxide nanoparticles as a dispersed phase are uniformly incorporated in the particles.

【0020】本発明の方法においては、ZrO2 粉末
に、平均粒子径400nm以下の酸化物及び/又は非酸
化物粉末を所定割合で混合し、得られた混合物を成形、
焼結する。ここで焼結方法としては、ホットプレス焼
結、常圧焼結或いは常圧焼結・HIP(熱間等方圧プレ
ス)等を採用できる。特に、常圧焼結・HIPは、複雑
な形状品を多量に製造できるので好ましい。HIPを用
いる場合のガス圧は、広範囲に選定できるが、特に50
0〜2000kg/cm2 が好ましい。なお、焼結温度
は1200℃以上、好ましくは1300〜1500℃と
する。
In the method of the present invention, ZrO 2 powder is mixed with oxide and / or non-oxide powder having an average particle diameter of 400 nm or less at a predetermined ratio, and the resulting mixture is molded,
Sinter. Here, as the sintering method, hot press sintering, normal pressure sintering, normal pressure sintering, HIP (hot isostatic pressing) or the like can be adopted. In particular, pressureless sintering / HIP is preferable because a large number of complicated shaped products can be manufactured. The gas pressure when using HIP can be selected over a wide range, but especially 50
0 to 2000 kg / cm 2 is preferable. The sintering temperature is 1200 ° C or higher, preferably 1300 to 1500 ° C.

【0021】本発明の粒子分散型ZrO2 系セラミック
ス材料は耐熱材料として、切削工具、建設工具材料、耐
摩耗部材、摺動部材、耐熱衝撃性を要求される構造材料
として、特に好適である。
The particle-dispersed ZrO 2 system ceramic material of the present invention is particularly suitable as a heat resistant material, as a cutting tool, a construction tool material, a wear resistant member, a sliding member, and a structural material required to have thermal shock resistance.

【0022】[0022]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。なお、以下においては、ナノ粒子としてSi
C、TiCを添加した実施例を挙げるが、本発明はその
要旨を超えない限り、以下の実施例に限定されるもので
はなく、ナノ粒子の種類等において、他の構成を採用し
得る。
EXAMPLES The present invention will be described in more detail with reference to the following examples. In the following, Si will be used as nanoparticles.
Examples in which C and TiC are added will be given, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded, and other configurations can be adopted in the type of nanoparticles and the like.

【0023】実施例1〜8,比較例1〜3(炭化物系ナ
ノ粒子) ZrO2 粉末としては、第一希元素社製未安定ZrO2
(平均粒径0.3μm)を用いた。また、ナノ粒子とし
ては次のTiC,SiCを用いた。TiC粉末は白水化
学社製TiC(平均粒径0.2μm)であり、SiC粉
末はイビデン社製βランダム(平均粒径0.2μm)で
ある。このTiC又はSiCを表1の割合で用い、残部
ZrO2 とし、エタノールを分散媒として、湿式ボール
ミルで24時間混合を行なった。これを十分に乾燥した
後、乾式ボールミルで解砕混合を12時間行なって原料
粉末とした。
Examples 1 to 8 and Comparative Examples 1 to 3 (Carbide type nanoparticles) As ZrO 2 powder, unstable ZrO 2 manufactured by Daiichi Rare Elements Co., Ltd.
(Average particle size 0.3 μm) was used. The following TiC and SiC were used as nanoparticles. The TiC powder is TiC (average particle size 0.2 μm) manufactured by Hakusui Chemical Co., Ltd., and the SiC powder is β random (average particle size 0.2 μm) manufactured by Ibiden. This TiC or SiC was used at the ratio shown in Table 1, the balance was ZrO 2, and ethanol was used as a dispersion medium, and mixing was performed for 24 hours in a wet ball mill. This was thoroughly dried, and then pulverized and mixed in a dry ball mill for 12 hours to obtain a raw material powder.

【0024】この原料粉末約50gを黒鉛ダイスに充填
し、ホットプレス装置(富士電波工業社製)で焼結し
た。ホットプレス条件は、表1に示す所定の焼結温度ま
で昇温させた後、1時間保持、プレス圧30MPaで行
なった。
About 50 g of this raw material powder was filled in a graphite die and sintered with a hot press machine (Fuji Denpa Kogyo KK). The hot press conditions were such that the temperature was raised to a predetermined sintering temperature shown in Table 1 and maintained for 1 hour under a press pressure of 30 MPa.

【0025】得られた各種の焼結体は研削加工して、J
IS R1601に準じた3×4×40mmの3点曲げ
試験片の大きさとし、3点曲げ試験法により、荷重速度
0.5mm/min、スパン長さ30mmで、室温にて
曲げ強度を測定した。また、荷重5kg重、保持時間1
0秒でIF法により、破壊靭性を測定した。
The various sintered bodies thus obtained were ground to obtain J
Bending strength was measured at room temperature at a load speed of 0.5 mm / min and a span length of 30 mm by the size of a 3 × 4 × 40 mm 3-point bending test piece according to IS R1601. Also, load 5 kg weight, holding time 1
The fracture toughness was measured by the IF method at 0 seconds.

【0026】表1にZrO2 とTiC及び/又はSiC
の組成配合に対する曲げ強度、破壊靭性を示す。なお、
比較例1は、TiC、SiCを用いず、未安定ZrO2
の代りにY23 安定化ZrO2 を用い、ZrO2 (3
mol%Y23 )単相としたものである。
Table 1 shows ZrO 2 and TiC and / or SiC
Flexural strength and fracture toughness with respect to the composition blend of. In addition,
Comparative Example 1 does not use TiC or SiC, and has unstable ZrO 2
ZrO 2 stabilized with Y 2 O 3 instead of ZrO 2 (3
mol% Y 2 O 3 ) single phase.

【0027】表1から明らかなように、本発明のZrO
2 /TiC、ZrO2 /SiCセラミックス複合材料
は、ナノ粒子により破壊が制御され、曲げ強度、破壊靭
性が大幅に改善されていることが分かる。
As is apparent from Table 1, ZrO of the present invention
It can be seen that in the 2 / TiC and ZrO 2 / SiC ceramics composite materials, the fracture is controlled by the nanoparticles, and the bending strength and fracture toughness are significantly improved.

【0028】実施例9〜12、比較例4(窒化物、ホウ
化物系ナノ粒子) ナノ粒子として次のTiN、TiB2 を用い、焼結温度
を表2の通りとしたほかは上記実施例及び比較例と同様
にして焼結体を製造した。
Examples 9 to 12 and Comparative Example 4 (Nitride and boride type nanoparticles) The following TiN and TiB 2 were used as nanoparticles and the sintering temperature was changed as shown in Table 2 above. A sintered body was manufactured in the same manner as the comparative example.

【0029】TiN:白水化学工業社製TiN(平均粒
径0.2μm)。
TiN: TiN manufactured by Shiramizu Chemical Co., Ltd. (average particle size 0.2 μm).

【0030】TiB2 粉末:出光化学社製TiB2 の加
圧撹拌ミル粉砕品(平均粒径0.3μm)。
TiB 2 powder: TiB 2 manufactured by Idemitsu Kagaku Co., Ltd., pulverized with a pressure stirring mill (average particle size 0.3 μm).

【0031】得られた焼結体の曲げ強度及び破壊靭性値
を表2に示す 実施例13、14、比較例5(酸化物系ナノ粒子) ナノ粒子として次のAl23 を用い、焼結温度を表3
の通りとしたほかは上記実施例及び比較例と同様にして
焼結体を製造した。
The bending strength and fracture toughness values of the obtained sintered bodies are shown in Table 2. Examples 13 and 14 and Comparative Example 5 (oxide nanoparticles) The following Al 2 O 3 was used as nanoparticles and fired. Table 3
Sintered bodies were produced in the same manner as in the above-mentioned Examples and Comparative Examples except that the above was adopted.

【0032】Al23 粉末:住友化学工業社製Al2
3 (平均粒径0.2μm) 得られた焼結体の曲げ強度及び破壊靭性値を表3に示
す。
Al 2 O 3 powder: Al 2 made by Sumitomo Chemical Co., Ltd.
O 3 (average particle size 0.2 μm) Table 3 shows the bending strength and fracture toughness of the obtained sintered body.

【0033】表2及び表3からも、本発明の複合材料は
曲げ強度及び破壊靭性が著しく高いことが明らかであ
る。
It is clear from Tables 2 and 3 that the composite material of the present invention has remarkably high bending strength and fracture toughness.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】なお、X線回折より、実施例1〜14で得
られた複合焼結体の研磨面のZrO2 は殆ど正方晶で存
在し、破断時の正方晶から単斜相への応力誘起変態の割
合が高いことが確認された。
From the X-ray diffraction, ZrO 2 on the polished surface of the composite sintered bodies obtained in Examples 1 to 14 existed in almost tetragonal structure, and the stress induction from the tetragonal structure to the monoclinic phase at the time of rupture occurred. It was confirmed that the rate of metamorphosis was high.

【0038】また、実施例2で得られたZrO2 /10
体積%TiCセラミックス複合材料と比較例1で得られ
たZrO2 (3mol%Y23 )単相について、高温
における曲げ強度を上記と同様にして測定し、高温強度
の変化を表4に示した。表4より、ZrO2 単相では、
高温になると著しい強度低下を生じるが、TiCナノ粒
子を分散させた本発明のセラミックス複合材料では、変
態温度以上でも破壊強度の低下が抑制され、高温でも高
強度が維持されることが明らかである。
Further, ZrO 2/10 obtained in Example 2
The bending strength at high temperature of the volume% TiC ceramic composite material and the ZrO 2 (3 mol% Y 2 O 3 ) single phase obtained in Comparative Example 1 were measured in the same manner as above, and changes in high temperature strength are shown in Table 4. It was From Table 4, in the ZrO 2 single phase,
Although the strength is remarkably reduced at high temperature, it is clear that the ceramic composite material of the present invention in which TiC nanoparticles are dispersed suppresses the reduction in fracture strength even at the transformation temperature or higher and maintains the high strength even at high temperature. ..

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【発明の効果】以上説明したように、本発明の粒子分散
型ZrO2 系セラミックス材料によれば、ZrO2 結晶
粒内に非酸化物及び/又は酸化物ナノ粒子を分散させる
ことにより、ZrO2 の変態を容易に制御して高靭化を
達成できる。
As described above, according to the particle-dispersed ZrO 2 system ceramic material of the present invention, by dispersing non-oxide and / or oxide nanoparticles in ZrO 2 crystal grains, ZrO 2 The transformation can be easily controlled to achieve high toughness.

【0041】また、従来のZrO2 系セラミックス材料
における変態温度以上での著しい破壊靭性・破壊強度の
低下を防止すると共に、変態温度以下でもこのナノ粒子
で破壊を制御し、変態による強靭化以上に破壊靭性・破
壊強度を向上させることが可能となる。
Further, in the conventional ZrO 2 -based ceramics material, notable deterioration of fracture toughness and fracture strength above the transformation temperature is prevented, and fracture is controlled by the nanoparticles even at the transformation temperature or below, and more than toughness due to transformation is achieved. It is possible to improve fracture toughness and fracture strength.

【0042】従って、本発明の粒子分散型ZrO2 系セ
ラミックス材料によれば、耐熱衝撃性、高温特性に優れ
た、高靭性、高強度ZrO2 系セラミックス材料が提供
される。
Therefore, according to the particle-dispersed ZrO 2 based ceramic material of the present invention, a high toughness and high strength ZrO 2 based ceramic material excellent in thermal shock resistance and high temperature characteristics is provided.

【0043】また、本発明の製造方法によれば、ナノ粒
子の分散によりZrO2 の相変態を制御することによ
り、耐熱衝撃性、室温及び高温での曲げ強度、破壊靭性
の機械的特性が大幅に改善され、構造用材料にも応用可
能な粒子分散型ZrO2 系セラミックス材料が容易かつ
効率的に製造される。
Further, according to the production method of the present invention, the mechanical properties such as thermal shock resistance, bending strength at room temperature and high temperature, and fracture toughness are significantly controlled by controlling the phase transformation of ZrO 2 by dispersing nanoparticles. Therefore, a particle-dispersed ZrO 2 -based ceramic material, which is improved to the above and can be applied to a structural material, can be easily and efficiently manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新原 晧一 大阪府枚方市香里ヶ丘9−7−1142 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinichi Shinbara 9-7-1142 Korigaoka, Hirakata-shi, Osaka

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ZrO2 結晶粒内に、第2相としてナノ
メーター寸法のナノ粒子を0.1〜30体積%分散させ
たことを特徴とする粒子分散型ZrO2 系セラミックス
材料。
1. A particle-dispersed ZrO 2 -based ceramic material, characterized in that 0.1 to 30% by volume of nanometer-sized nanoparticles are dispersed as a second phase in ZrO 2 crystal grains.
【請求項2】 ZrO2 結晶粒内に分散するナノ粒子が
平均粒子径400nm以下の非酸化物粒子及び/又は酸
化物粒子であることを特徴とする請求項1に記載の粒子
分散型ZrO2 系セラミックス材料。
2. A ZrO 2 grain non-oxide nanoparticles dispersed is less than the average particle size of 400nm in the particles and / or oxide particles distributed ZrO 2 according to claim 1, wherein the particle is Ceramic materials.
【請求項3】 ZrO2 粉末に平均粒子径400nm以
下の非酸化物粉末及び/又は酸化物粉末を混合し、得ら
れた混合物を成形した後、該成形体を1200℃以上の
焼結温度で焼結することにより、請求項1又は2に記載
の粒子分散型ZrO2 系セラミックス材料を製造する方
法。
3. A ZrO 2 powder is mixed with a non-oxide powder and / or an oxide powder having an average particle diameter of 400 nm or less, the obtained mixture is molded, and the molded body is sintered at a sintering temperature of 1200 ° C. or higher. The method for producing the particle-dispersed ZrO 2 -based ceramic material according to claim 1 or 2, by sintering.
JP4156757A 1992-06-16 1992-06-16 Particle-dispersed ZrO2-based ceramic material and method for producing the same Expired - Lifetime JP2985512B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4156757A JP2985512B2 (en) 1992-06-16 1992-06-16 Particle-dispersed ZrO2-based ceramic material and method for producing the same
DE19934319911 DE4319911A1 (en) 1992-06-16 1993-06-16 Ceramic zirconium oxide with finely dispersed oxide and/or non-oxide particles - improve thermal shock strength and high temp. properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4156757A JP2985512B2 (en) 1992-06-16 1992-06-16 Particle-dispersed ZrO2-based ceramic material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05345665A true JPH05345665A (en) 1993-12-27
JP2985512B2 JP2985512B2 (en) 1999-12-06

Family

ID=15634660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4156757A Expired - Lifetime JP2985512B2 (en) 1992-06-16 1992-06-16 Particle-dispersed ZrO2-based ceramic material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2985512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935271C2 (en) * 1999-07-27 2002-04-11 Mtu Friedrichshafen Gmbh Matrix material for fuel cells, process for its production and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935271C2 (en) * 1999-07-27 2002-04-11 Mtu Friedrichshafen Gmbh Matrix material for fuel cells, process for its production and its use

Also Published As

Publication number Publication date
JP2985512B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JP2703207B2 (en) Zirconia-based composite ceramic sintered body and method for producing the same
Petrovic et al. ZrO2‐Reinforced MoSi2 Matrix Composites
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JP2659082B2 (en) Manufacturing method of zirconia-based composite ceramic sintered body
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH07109175A (en) Composite ceramic material used in industrial application under high temperature and severe thermal shock condition and production thereof
JPH06219840A (en) Silicon nitride sintered compact and its production
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP3045367B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JPH09227236A (en) Silicon nitride-base sintered compact and its production
JPH05319910A (en) Ceramic composite material and its production
JP2979703B2 (en) Composite ceramic material and method for producing the same
JPH04104944A (en) Al2o3-sic-zro2 composite sinter
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH05194022A (en) Ceramic composite material and its production
JPH09100165A (en) Boride ceramic and its production
JPH0393668A (en) Zirconia-based cutting tool and production thereof
JPH02167857A (en) Highly tough mullite-based calcined body and production thereof
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JP2742621B2 (en) High toughness silicon nitride sintered body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831