JPH0534020B2 - - Google Patents

Info

Publication number
JPH0534020B2
JPH0534020B2 JP1331223A JP33122389A JPH0534020B2 JP H0534020 B2 JPH0534020 B2 JP H0534020B2 JP 1331223 A JP1331223 A JP 1331223A JP 33122389 A JP33122389 A JP 33122389A JP H0534020 B2 JPH0534020 B2 JP H0534020B2
Authority
JP
Japan
Prior art keywords
pores
porous
calcium phosphate
bone
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1331223A
Other languages
Japanese (ja)
Other versions
JPH03191963A (en
Inventor
Takeshi Momotomi
Yoshitaka Ookubo
Hiroyasu Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1331223A priority Critical patent/JPH03191963A/en
Publication of JPH03191963A publication Critical patent/JPH03191963A/en
Publication of JPH0534020B2 publication Critical patent/JPH0534020B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、新生骨の形成を促進し、生体親和性
に優れ、且つ高強度を有するリン酸カルシウム質
多孔体骨補填材に関する。 <従来の技術> 従来骨欠損部及び骨空〓部等に充てんし、新生
骨を形成するための三次元網目構造を有する多孔
体は種々開発がなされており、例えば特開昭56−
166843号公報には、新生骨が生成しやすい凹凸部
を有する空孔チヤンネルを備えた三次元網目構造
の骨欠損部及び骨空〓部充てん材が提供されてい
る。またリン酸カルシウム原料スラリーに、過酸
化水素等の発泡剤を添加して発泡させる発泡法多
孔質骨補填材等も知られている。 しかしながら、前記骨欠損部及び骨空〓部充て
ん材は、均一な気孔径を有するものの強度が十分
でなく、また前記発泡法多孔質骨補填材では、気
孔が不連続であり、且つ気孔に方向性があるため
骨芽細胞ぎ侵入しにくいという欠点がある。 <発明が解決しようとする課題> 従つて本発明の目的は、生体親和性に優れ、新
生骨の形成を促進し得る高強度なリン酸カルシウ
ム質多孔体骨補填材を提供することにある。 <課題を解決するための手段> 本発明によれば、骨芽細胞が多孔体中心部まで
侵入し得る連通した空孔チヤンネルを有する三次
元網目構造のリン酸カルシウム質多孔体であつ
て、該多孔体骨格に、孔径0.5μm以下の細孔を有
し、且つ該細孔の気孔率が、前記空孔チヤンネル
及び細孔の気孔全体に対して、5〜50%であるリ
ン酸カルシウム質多孔体骨補填材が提供される。 以下本発明を更に詳細に説明する。 本発明のリン酸カルシウム質多孔体骨補填材
は、連通した空孔チヤンネルを有し、且つ特定の
気孔率を有する孔径0.5μm以下の細孔が、多孔体
骨格に形成されることを特徴とする。 本発明において、多孔体を形成するリン酸カル
シウム化合物としては、CaHPO4・2H2O若しく
はCaHPO4、Ca3(PO42、Ca5(PO43OH、Ca4O
(PO42、CaP4O11、Ca(PO32、Ca2P2O7、Ca
(H2PO42・H2O等を挙げることができ、単独若
しくは2種以上の混合物として用いることができ
る。これらの化合物のうち、リン酸三カルシウム
〔Ca3(PO42〕、ヒドロキシアパタイト〔Ca5
(PO43OH〕、リン酸四カルシウム〔Ca4O
(PO42〕を用いた場合に特に新生骨の生成が早
く、好ましい化合物であるといえる。最も好まし
い化合物はこれらの中でも特に新生骨の生成が早
いヒドロキシアパタイトであり、中でも500℃以
上、特に好ましくは700〜1250℃で熱処理して得
たヒドロキシアパタイトが特に新生骨と生成が早
く好ましい。熱処理の上限温度については特に限
定されるものではないが、ヒドロキシアパタイト
が分解を開始するので、分解温度以下とすべきで
ある。また本発明にて使用し得るリン酸カルシウ
ム化合物は公知の製造方法により、人工的に合成
されたものであつても又、骨などから得られる天
然のものを用いてもよい。 本発明では前記リン酸カルシウム化合物を多孔
体として用い、多孔体骨格に孔径0.5μm以下の細
孔を設ける。ここで第1図に示す本発明のリン酸
カルシウム質多孔体骨補填材1部拡大断面図によ
り空孔チヤンネルと細孔との関係を説明する。第
1図において、1はリン酸カルシウム化合物の焼
結体であつて、多孔体骨格を示し、2は多孔体内
において、連通する空孔チヤンネルを示す。前記
多孔体骨格1には、孔径0.5μm以下の細孔3が設
けられており、前記空孔チヤンネル2に侵入する
骨芽細胞が細孔3にも侵入し、従来にない優れた
生体親和性及び早い新生骨の形成を期待すること
ができる。尚第1図に表わされるリン酸カルシウ
ム質多孔体骨補填材1部拡大断面図は、説明のた
めに平面的に示されているが、実際には三次元網
目構造を有する多孔体である。前記細孔の孔径が
0.5μmを超える場合には、細胞の増殖性が低下す
るので好ましくない。また前記細孔の気孔率は、
空孔チヤンネル及び細孔の気孔全体に対して5〜
50%の範囲である。前記細孔の気孔率が5%未満
の場合には、細胞の初期付着性が悪くなり、また
50%を超える場合には、多孔体強度が低下し、実
用性に問題が生じるので前記範囲とする必要があ
る。また空孔チヤンネル及び細孔の合計気孔率
は、40〜97%であるのが好ましい。前記空孔チヤ
ンネルは、骨芽細胞が多孔体中心部まで侵入し得
るように連通しておれば、特に限定されるもので
はないが、骨芽細胞の侵入を更にスムーズにする
ために好ましくは孔径50μm以上であるのが望ま
しい。 本発明のリン酸カルシウム質多孔体骨補填材
は、前記連通した空孔チヤンネルを有し、且つ特
定の細孔を有するので、ほぼ均等な三次元方向か
らの強度を備え、好ましくは前記三次元方向から
の強度が夫々50Kg/cm2以上である多孔体骨補填材
であるのが望ましい。 本発明のリン酸カルシウム質多孔体骨補填材を
調製するには、例えば前記リン酸カルシウム化合
物をスラリーとし、該スラリーに、ポリビニルア
ルコール、メチルセルロース、デンプン、シヨ糖
等の可燃性有機物とリン酸カルシウム系微粉末と
を添加して混合した後、過酸化水素、尿素、ドラ
イアイス、硝酸アンモニウム等の発泡剤を加え
て、発泡リン酸カルシウム質スラリーを製造す
る。次いで該発泡リン酸カルシウム質スラリー
を、空孔チヤンネルが連続しており、三次元網状
構造を有するウレタンホーム等の多孔体有機質樹
脂に注入又は含浸させた後、乾燥し、該多孔体有
機質樹脂を除去するために加熱する方法等により
得ることができる。前記方法において、発泡リン
酸カルシウム質スラリーの平均粒径は好ましくは
0.1〜20μmであり、リン酸カルシウム系微粉末の
粒径は0.1〜30μmであるのが好ましい。また該ス
ラリーに添加するリン酸カルシウム系微粉末及び
可燃性有機物の配合割合は、発泡リン酸カルシウ
ム質スラリー全体に対して、夫々0.1〜50重量%
であるのが好ましく、また発泡剤を1.0〜20重量
%添加するのが好ましい。この際発泡リン酸カル
シウム質スラリー全体は、100重量%となるよう
に調整する。更に前記乾燥及び加熱は、各成分の
種類により異なるが、乾燥する場合30〜110℃に
て、12〜160時間行うのが好ましく、また加熱は
500〜1250℃にて行うのが望ましい。この際乾燥
及び加熱は、数回に分割して行うこともできる。
前記方法において、加熱工程を行うことにより、
多孔質有機質樹脂が焼失して、空孔チヤンネルが
連続気孔となり、しかも加熱の際に発泡剤により
発生する気孔が、スラリー内に拘束されるので、
均一な細孔を多孔質骨格に形成することができ
る。 <発明の効果> 本発明のリン酸カルシウム質多孔体骨補填材
は、骨芽細胞が多孔体中心部にまで侵入し得る連
通した空孔チヤンネル及び多孔体骨格に特定な細
孔を設けているので、生体親和性に優れており、
新生骨の形成を速やかに行うことができる。ま
た、三次元方向からの機械的強度もほぼ均等に優
れているので、今後従来の多孔体骨補填材に変つ
ての使用が期待される。 <実施例> 以下本発明を実施例及び比較例により更に詳細
に説明するが、本発明はこれらに限定されるもの
ではない。 実施例 1 平均粒径2μmのヒドロキシアパタイトスラリ
ー450gに、粒径1〜20μmのヒドロキシアパタ
イト微粉末150g及びポリビニルアルコール粉末
20gを添加して混合した後、30重量%過酸化水素
水24c.c.を加えて発泡リン酸カルシウム質スラリー
を調製した。次いで得られたスラリーをウレタン
ホームに注入し、乾燥機により110℃24時間の条
件で発泡、乾燥を行つた。次に得られた乾燥物
を、商品名「ボツクス炉」(光洋リンドバーグ(株)
製)の電気炉内に移し、室温〜500℃まで1℃/
分で昇温し、続いて500〜900℃まで2℃/分で昇
温した。その後900℃で3時間保持した後、5
℃/分で室温まで降温し、多孔体骨補填材を得
た。得られた多孔体骨補填材中の多孔体骨格に存
在する孔径0.5μm以下の細孔の気孔率をポロシメ
ータ(島津製作所株式会社製)により測定したと
ころ34.4%であつた。また全気孔(平均径100μm
の連続する空孔チヤンネルと細孔との合計)の気
孔率は55%であつた。更に得られた多孔体骨補填
材を10×10×10mmに切り出し、上部、下部及び横
部の3方向から力を加えた際の圧縮強度を測定し
たところ、上部162.2Kg/cm2、下部170.0Kg/cm2
横部157.7Kg/cm2であつた。 実施例 2 孔径0.5μmの細孔が全気孔に対して、5%、35
%及び50%となるように調製した以外は、実施例
1と同様に多孔体骨補填材を製造した。次いで得
られた多孔体骨補填材を夫々0.5〜10mmに粉砕し、
1.4φcm×2.3Lcmのカラム(Pharmacia株式会社
製)に充填した後、該カラムに3T3−E1細胞
106/c.c.を3c.c.流し、通過した溶液中の細胞の残
存率を測定した。その結果を表1に示す。 比較例 1 孔径0.5μmの細孔が全気孔に対して、1%、70
%となるように調製した以外は実施例2と同様に
多孔体骨充填材を夫々製造し、試験を行つた。そ
の結果を表1に示す。
<Industrial Application Field> The present invention relates to a calcium phosphate porous bone substitute material that promotes the formation of new bone, has excellent biocompatibility, and has high strength. <Prior art> Various porous materials having a three-dimensional network structure for filling bone defects and bone cavities to form new bone have been developed.
Japanese Patent Application No. 166843 provides a bone defect and bone cavity filling material having a three-dimensional network structure and having a hole channel having uneven portions in which new bone is likely to be generated. Also known are foaming porous bone grafting materials in which a foaming agent such as hydrogen peroxide is added to a calcium phosphate raw material slurry to foam the material. However, although the bone defect and bone cavity filling materials have uniform pore diameters, they do not have sufficient strength, and in the foamed porous bone filling materials, the pores are discontinuous and the pores are oriented in different directions. It has the disadvantage that it is difficult for osteoblasts to invade due to its nature. <Problems to be Solved by the Invention> Therefore, an object of the present invention is to provide a high-strength calcium phosphate porous bone grafting material that has excellent biocompatibility and can promote the formation of new bone. <Means for Solving the Problems> According to the present invention, a calcium phosphate porous body having a three-dimensional network structure having a continuous pore channel through which osteoblasts can penetrate to the center of the porous body, A calcium phosphate porous bone grafting material having pores with a pore diameter of 0.5 μm or less in the skeleton, and the porosity of the pores being 5 to 50% of the total pores in the pore channel and pores. is provided. The present invention will be explained in more detail below. The calcium phosphate porous bone graft material of the present invention is characterized in that pores having a pore diameter of 0.5 μm or less and having a continuous pore channel and a specific porosity are formed in the porous skeleton. In the present invention, the calcium phosphate compound forming the porous body includes CaHPO 4 .2H 2 O, CaHPO 4 , Ca 3 (PO 4 ) 2 , Ca 5 (PO 4 ) 3 OH, Ca 4 O
( PO4 ) 2 , CaP4O11 , Ca( PO3 ) 2 , Ca2P2O7 , Ca
Examples include (H 2 PO 4 ) 2 ·H 2 O, which can be used alone or as a mixture of two or more. Among these compounds, tricalcium phosphate [Ca 3 (PO 4 ) 2 ], hydroxyapatite [Ca 5
(PO 4 ) 3 OH], tetracalcium phosphate [Ca 4 O
(PO 4 ) 2 ] can be said to be a preferable compound because new bone formation is particularly rapid. Among these, the most preferred compound is hydroxyapatite, which produces new bone particularly quickly, and among these, hydroxyapatite obtained by heat treatment at 500° C. or higher, particularly preferably 700 to 1250° C., is particularly preferred because it produces new bone quickly. The upper limit temperature of the heat treatment is not particularly limited, but since hydroxyapatite starts to decompose, it should be lower than the decomposition temperature. Further, the calcium phosphate compound that can be used in the present invention may be artificially synthesized by a known production method, or it may be a natural compound obtained from bones or the like. In the present invention, the calcium phosphate compound described above is used as a porous body, and pores with a pore diameter of 0.5 μm or less are provided in the porous body skeleton. Here, the relationship between the pore channels and the pores will be explained with reference to a partially enlarged sectional view of the calcium phosphate porous bone grafting material of the present invention shown in FIG. In FIG. 1, 1 indicates a porous body skeleton which is a sintered body of a calcium phosphate compound, and 2 indicates a pore channel communicating within the porous body. The porous skeleton 1 is provided with pores 3 with a pore diameter of 0.5 μm or less, and osteoblasts that invade the pore channel 2 also invade the pores 3, resulting in unprecedented biocompatibility. And rapid new bone formation can be expected. Although the enlarged cross-sectional view of a part of the calcium phosphate porous bone graft material shown in FIG. 1 is shown in a plan view for the sake of explanation, it is actually a porous body having a three-dimensional network structure. The pore diameter of the pore is
If it exceeds 0.5 μm, it is not preferable because the proliferation of cells decreases. Furthermore, the porosity of the pores is
5 to 5 for the entire pore channel and pores
It is in the range of 50%. If the porosity of the pores is less than 5%, the initial adhesion of cells will be poor, and
If it exceeds 50%, the strength of the porous body decreases, causing problems in practicality, so it is necessary to keep it within the above range. Further, the total porosity of the pore channels and pores is preferably 40 to 97%. The pore channel is not particularly limited as long as it communicates so that osteoblasts can penetrate into the center of the porous body, but it is preferable that the pore diameter be adjusted to allow smoother penetration of osteoblasts. It is desirable that the thickness is 50 μm or more. Since the calcium phosphate porous bone graft material of the present invention has the above-mentioned communicating pore channels and has specific pores, it has substantially uniform strength from the three-dimensional direction, and preferably from the three-dimensional direction. It is desirable that the porous bone grafting material has a strength of 50 kg/cm 2 or more. To prepare the calcium phosphate porous bone grafting material of the present invention, for example, the calcium phosphate compound is made into a slurry, and a combustible organic substance such as polyvinyl alcohol, methyl cellulose, starch, or sucrose and calcium phosphate fine powder are added to the slurry. After mixing, a foaming agent such as hydrogen peroxide, urea, dry ice, or ammonium nitrate is added to produce a foamed calcium phosphate slurry. Next, the foamed calcium phosphate slurry is injected into or impregnated into a porous organic resin such as urethane foam having a three-dimensional network structure with continuous pore channels, and then dried to remove the porous organic resin. It can be obtained by a method such as heating. In the method, the average particle size of the foamed calcium phosphate slurry is preferably
The particle size of the calcium phosphate fine powder is preferably 0.1 to 30 μm. In addition, the blending ratio of calcium phosphate fine powder and combustible organic matter added to the slurry is 0.1 to 50% by weight, respectively, based on the entire foamed calcium phosphate slurry.
The foaming agent is preferably added in an amount of 1.0 to 20% by weight. At this time, the entire foamed calcium phosphate slurry is adjusted to 100% by weight. Furthermore, although the drying and heating described above differ depending on the type of each component, it is preferable to carry out the drying at 30 to 110°C for 12 to 160 hours;
It is desirable to carry out at 500-1250°C. At this time, drying and heating can also be carried out in several parts.
In the method, by performing a heating step,
The porous organic resin is burnt out and the pore channels become continuous pores, and the pores generated by the foaming agent during heating are confined within the slurry.
Uniform pores can be formed in the porous framework. <Effects of the Invention> The calcium phosphate porous bone grafting material of the present invention has a continuous pore channel through which osteoblasts can penetrate into the center of the porous body and specific pores in the porous skeleton. It has excellent biocompatibility,
New bone can be formed quickly. Furthermore, since the mechanical strength in three-dimensional directions is almost uniformly excellent, it is expected that it will be used in place of conventional porous bone graft materials in the future. <Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Example 1 150 g of hydroxyapatite fine powder with a particle size of 1 to 20 μm and polyvinyl alcohol powder were added to 450 g of hydroxyapatite slurry with an average particle size of 2 μm.
After adding and mixing 20 g, 24 c.c. of 30% by weight hydrogen peroxide solution was added to prepare a foamed calcium phosphate slurry. The resulting slurry was then poured into a urethane foam, foamed and dried in a dryer at 110°C for 24 hours. Next, the obtained dried product is heated to
Transferred to an electric furnace (manufactured in
The temperature was then raised at a rate of 2°C/min from 500 to 900°C. After that, after holding at 900℃ for 3 hours,
The temperature was lowered to room temperature at a rate of °C/min to obtain a porous bone graft material. The porosity of pores with a pore diameter of 0.5 μm or less existing in the porous skeleton of the porous bone graft material obtained was measured using a porosimeter (manufactured by Shimadzu Corporation) and found to be 34.4%. In addition, all pores (average diameter 100 μm
The porosity of the continuous pore channels and pores was 55%. Furthermore, the obtained porous bone graft material was cut into a size of 10 x 10 x 10 mm, and the compressive strength was measured when force was applied from three directions: the upper part, the lower part, and the lateral part.The upper part was 162.2 Kg/cm 2 and the lower part was 170.0. Kg/ cm2 ,
The side weight was 157.7Kg/ cm2 . Example 2 Pores with a pore diameter of 0.5 μm account for 5% of the total pores, 35
A porous bone graft material was produced in the same manner as in Example 1, except that the porous bone filling material was adjusted to 50%. Next, each of the porous bone graft materials obtained was crushed into pieces of 0.5 to 10 mm.
After filling a 1.4φcm x 2.3Lcm column (manufactured by Pharmacia Co., Ltd.), 3T3-E1 cells were added to the column.
10 6 /cc was flowed for 3 c.c., and the residual rate of cells in the solution that passed through was measured. The results are shown in Table 1. Comparative example 1 Pores with a pore diameter of 0.5 μm account for 1% of the total pores, 70
Porous bone filling materials were manufactured in the same manner as in Example 2, except that the porous bone filling materials were prepared to have a % of %. The results are shown in Table 1.

【表】 表1より、孔径0.5μmの細孔の全気孔に対する
気孔率が5〜50%の範囲では、細胞の付着性が良
好であることが判つた。 実施例 3 実施例1で製造した多孔体骨補填材を5×5×
5mmに切断し、ビーグル犬の脛骨に埋入した。4
週間後、多孔体骨補填材を取り出し、切断して、
切断面の新生骨量を観察したところ、良好に新生
骨が形成されていることが判つた。
[Table] From Table 1, it was found that cell adhesion was good when the porosity of pores with a pore diameter of 0.5 μm was in the range of 5 to 50% of the total pores. Example 3 The porous bone graft material produced in Example 1 was prepared in a 5×5×
It was cut into 5 mm pieces and implanted into the tibia of a beagle dog. 4
After a week, the porous bone graft material was removed and cut.
Observation of the amount of new bone on the cut surface revealed that new bone was well formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のリン酸カルシウム質多孔体
骨補填材の1部拡大断面図である。 1……多孔体骨格、2……空孔チヤンネル、3
……細孔。
FIG. 1 is a partially enlarged sectional view of the calcium phosphate porous bone prosthesis material of the present invention. 1... Porous body skeleton, 2... Void channel, 3
……pore.

Claims (1)

【特許請求の範囲】[Claims] 1 骨芽細胞が多孔体中心部まで侵入し得る連通
した空孔チヤンネルを有する三次元網目構造のリ
ン酸カルシウム質多孔体であつて、該多孔体骨格
に、孔径0.5μm以下の細孔を有し、且つ該細孔の
気孔率が、前記空孔チヤンネル及び細孔の気孔全
体に対して、5〜50%であるリン酸カルシウム質
多孔体骨補填材。
1. A calcium phosphate porous body with a three-dimensional network structure having a continuous pore channel through which osteoblasts can penetrate to the center of the porous body, the porous body skeleton having pores with a pore diameter of 0.5 μm or less, The pores have a porosity of 5 to 50% of the total pores of the pore channel and pores.
JP1331223A 1989-12-22 1989-12-22 Calcium phosphate porous bone filter Granted JPH03191963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331223A JPH03191963A (en) 1989-12-22 1989-12-22 Calcium phosphate porous bone filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331223A JPH03191963A (en) 1989-12-22 1989-12-22 Calcium phosphate porous bone filter

Publications (2)

Publication Number Publication Date
JPH03191963A JPH03191963A (en) 1991-08-21
JPH0534020B2 true JPH0534020B2 (en) 1993-05-21

Family

ID=18241273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331223A Granted JPH03191963A (en) 1989-12-22 1989-12-22 Calcium phosphate porous bone filter

Country Status (1)

Country Link
JP (1) JPH03191963A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1671662A4 (en) * 2003-08-27 2010-12-15 Makoto Ogiso Structural body constituted of biocompatible material impregnated with fine bone dust and process for producing the same
MX2007003099A (en) * 2004-09-21 2007-08-14 Thomas Joseph Lally Multi-purpose bio-material composition.
CA3048850A1 (en) 2010-05-11 2011-11-17 Howmedica Osteonics Corp. Organophosphorous, multivalent metal compounds, & polymer adhesive interpenetrating network compositions & methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812649A (en) * 1981-07-15 1983-01-24 三菱鉱業セメント株式会社 Filler for bone deficient part and void part
JPS6016879A (en) * 1983-07-09 1985-01-28 住友セメント株式会社 Porous ceramic material
JPS60142857A (en) * 1983-12-29 1985-07-29 住友セメント株式会社 Bone cement composition
JPS619858A (en) * 1984-06-23 1986-01-17 Terada Denki Seisakusho:Kk Auto-reverse mechanism of magnetic tape device
JPS6222655A (en) * 1985-07-22 1987-01-30 株式会社イナックス Apatite sintered body for filling tooth and bone and its production
JPS63294864A (en) * 1987-10-23 1988-12-01 Tdk Corp Preparation of artificial bone material
JPH01314572A (en) * 1988-06-15 1989-12-19 Asahi Optical Co Ltd Preparation of ceramic porous body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449501A (en) * 1987-08-18 1989-02-27 Japan Synthetic Rubber Co Ltd Production of shoe sole

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812649A (en) * 1981-07-15 1983-01-24 三菱鉱業セメント株式会社 Filler for bone deficient part and void part
JPS6016879A (en) * 1983-07-09 1985-01-28 住友セメント株式会社 Porous ceramic material
JPS60142857A (en) * 1983-12-29 1985-07-29 住友セメント株式会社 Bone cement composition
JPS619858A (en) * 1984-06-23 1986-01-17 Terada Denki Seisakusho:Kk Auto-reverse mechanism of magnetic tape device
JPS6222655A (en) * 1985-07-22 1987-01-30 株式会社イナックス Apatite sintered body for filling tooth and bone and its production
JPS63294864A (en) * 1987-10-23 1988-12-01 Tdk Corp Preparation of artificial bone material
JPH01314572A (en) * 1988-06-15 1989-12-19 Asahi Optical Co Ltd Preparation of ceramic porous body

Also Published As

Publication number Publication date
JPH03191963A (en) 1991-08-21

Similar Documents

Publication Publication Date Title
JPH0154309B2 (en)
JP2001224679A (en) Porous ceramic body
US4846838A (en) Prosthetic body for bone substitute and a method for the preparation thereof
US20030044301A1 (en) Method of making open cell material
JP2001510375A (en) Method for producing a synthetic bone substitute having controlled porosity
KR101268408B1 (en) Composition and Manufacturing method for porous calcium phosphate granules by physical foaming
DE10160178A1 (en) Porous sintered body made from ceramic based on calcium phosphate, used e.g. as carrier for cultivating cells or biological tissue and as biocompatible artificial material for filling defective bone part, has high porosity
JPH10314295A (en) Bone filling material and its manufacture
US7326464B2 (en) Calcium phosphate microgranules
CN106518143A (en) Three-dimensional connected honeycomb porous calcium phosphate ceramic artificial bone material and preparation method thereof
JPH11276510A (en) Surface modifying bone prothesis member and method for manufacturing the same
Karashima et al. Fabrication of low‐crystallinity hydroxyapatite foam based on the setting reaction of α‐tricalcium phosphate foam
WO2000030998A1 (en) Porous ceramic composites
JPH0154308B2 (en)
JPH0534020B2 (en)
JPH05237178A (en) Bone supplement material and production thereof
GB2105316A (en) Porous silicon nitride
KR100743182B1 (en) Bone filler and method for fabricating the same
KR20070028271A (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
JPWO2005039544A1 (en) Calcium phosphate ceramics porous body and method for producing the same
JP2921918B2 (en) Biomaterial with multiphase structure and method for producing the same
JP2597355B2 (en) Method for producing porous calcium phosphate
JPH0723994A (en) Porous bone filler
JP3559461B2 (en) Bone repair material
JP2859289B2 (en) Method for producing porous ceramic material and green compact used in the method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees