JPH0154308B2 - - Google Patents

Info

Publication number
JPH0154308B2
JPH0154308B2 JP55078918A JP7891880A JPH0154308B2 JP H0154308 B2 JPH0154308 B2 JP H0154308B2 JP 55078918 A JP55078918 A JP 55078918A JP 7891880 A JP7891880 A JP 7891880A JP H0154308 B2 JPH0154308 B2 JP H0154308B2
Authority
JP
Japan
Prior art keywords
calcium phosphate
slurry
porous body
pores
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078918A
Other languages
Japanese (ja)
Other versions
JPS577859A (en
Inventor
Takao Inukai
Yasuaki Fukuda
Mikya Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP7891880A priority Critical patent/JPS577859A/en
Priority to DE3123460A priority patent/DE3123460C2/en
Publication of JPS577859A publication Critical patent/JPS577859A/en
Publication of JPH0154308B2 publication Critical patent/JPH0154308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/42Phosphorus; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates
    • C12N2533/18Calcium salts, e.g. apatite, Mineral components from bones, teeth, shells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Cardiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Structural Engineering (AREA)
  • Cell Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Geology (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Filtering Materials (AREA)

Description

【発明の詳細な説明】 本発明はリン酸カルシウム多孔体の製造方法、
更に詳細には連続した微細な空孔を有するリン酸
カルシウム多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing a calcium phosphate porous material,
More specifically, the present invention relates to a method for producing a calcium phosphate porous body having continuous fine pores.

従来、リン酸カルシウム等のセラミツク多孔体
は骨欠損部の充填材、触媒の担体、ロ過材等に使
用されているが該セラミツク多孔体の製造方法と
してはセラミツク原料スラリーにポリウレタンフ
オームなどの連続した空孔を有する有機質多孔体
を浸漬して空孔内表面にセラミツク原料スラリー
を附着させ、次いで加熱して有機質多孔体を分解
させ、附着されたセラミツクを焼結させてセラミ
ツク多孔体を形成する方法が知られている。とこ
ろが、この公知方法では、有機質多孔体の空孔内
にセラミツク原料スラリーが充満してしまい目づ
まりが生ずる。その結果連続した空孔を備え且つ
全体にわたつて均一に分布した空孔を有するセラ
ミツク多孔体ができにくいという欠点を有してい
た。この目づまりしやすいという傾向は特に微細
な空孔を有する有機質多孔体用いて連続した微細
な空孔を有するセラミツク多孔体を製造せんとす
る場合には顕著であり、場合によつてはセラミツ
ク原料スラリーを有機質多孔体の内部の空孔に附
着させることすらできなく、上記方法では到底製
造不可能であつた。
Hitherto, ceramic porous bodies such as calcium phosphate have been used as filling materials for bone defects, catalyst carriers, filtration materials, etc. However, the method for producing ceramic porous bodies involves adding continuous pores such as polyurethane foam to a ceramic raw material slurry. There is a method of dipping an organic porous body having pores to deposit a ceramic raw material slurry on the inner surface of the pores, then heating to decompose the organic porous body, and sintering the attached ceramic to form a ceramic porous body. Are known. However, in this known method, the ceramic raw material slurry fills the pores of the organic porous body, resulting in clogging. As a result, it has the disadvantage that it is difficult to produce a ceramic porous body having continuous pores and pores uniformly distributed throughout. This tendency to be easily clogged is particularly noticeable when a ceramic porous body having continuous fine pores is manufactured using an organic porous body having fine pores, and in some cases, the ceramic raw material It was not even possible to attach the slurry to the pores inside the organic porous body, and it was completely impossible to produce the slurry using the above method.

この目づまりを防止するため、セラミツク原料
スラリーを有機質多孔体に浸漬した後遠心分離機
若しくはロールにかけて原料スラリーに目づまり
部分を除去する方法が提案されたが、セラミツク
原料スラリーの目づまり部分のみを除去すること
は困難であり、有機質多孔体の空孔内表面に附着
しているセラミツク原料スラリーまでも除去され
てしまうという欠点があり、このため形成される
セラミツク多孔体の骨格が弱くなり、強度が極め
て小さく、実用に供し得るものではなかつた。
In order to prevent this clogging, a method has been proposed in which the ceramic raw material slurry is immersed in an organic porous material and then passed through a centrifuge or rolls to remove the clogged parts of the raw material slurry, but only the clogged parts of the ceramic raw material slurry are removed. It is difficult to do so, and has the disadvantage that even the ceramic raw material slurry adhering to the inner surface of the pores of the organic porous body is removed, which weakens the skeleton of the ceramic porous body that is formed and reduces its strength. It was extremely small and could not be put to practical use.

一方、強度という点に着目してセラミツク原料
スラリーを構成するセラミツク粉末の粒度を小さ
くしてスラリーの密度を大とし強度を高めようと
すると、必然的に粘度が大となり、益々目づまり
を助長する結果となつてしまう。逆に目づまりを
防止するため、セラミツク原料スラリーの密度を
小とすると、形成されるセラミツク多孔体の強度
が小さくなり、強度の増加と目づまり防止という
矛盾する要件を満たすことができなかつた。
On the other hand, if we focus on strength and try to increase the strength by increasing the density of the slurry by reducing the particle size of the ceramic powder that makes up the ceramic raw material slurry, the viscosity will inevitably increase, which will further promote clogging. I become confused. On the other hand, if the density of the ceramic raw material slurry is reduced in order to prevent clogging, the strength of the ceramic porous body formed will be reduced, making it impossible to satisfy the contradictory requirements of increasing strength and preventing clogging.

また、有機質多孔体の空孔内表面へのセラミツ
ク原料スラリーの附着性を増大するため、空孔内
表面を粗面に加工する方法も提案されているが、
粗面加工という余分な工程が必要であること及び
微細な空孔を有する有機質多孔体の場合にはどう
してもセラミツク原料スラリーが目づまりを生ず
ることから有効な製造方法を提供するものではな
かつた。
Furthermore, in order to increase the adhesion of ceramic raw material slurry to the inner surface of the pores of an organic porous body, a method has been proposed in which the inner surface of the pores is roughened.
It has not been possible to provide an effective manufacturing method because an extra step of surface roughening is required, and in the case of an organic porous body having fine pores, the ceramic raw material slurry inevitably becomes clogged.

上述のように公知のセラミツク多孔体の製造方
法ではいずれもセラミツク原料スラリーを微細な
空孔の有機質多孔体の空孔内表面に目づまりする
ことなく附着させることができず、連続した微細
な空孔を備え且つ全体にわたつて均一に分布した
空孔を有する強度のあるセラミツク多孔体を製造
することはできなかつた。
As mentioned above, in all known methods for producing ceramic porous bodies, it is not possible to attach the ceramic raw material slurry to the inner surface of the pores of the organic porous body having fine pores without clogging it, and it is impossible to attach the ceramic raw material slurry to the inner surface of the pores of the organic porous body with continuous fine pores. It has not been possible to produce strong ceramic porous bodies with pores and pores uniformly distributed throughout.

故に、本発明の一目的は微細な空孔を備えた有
機質多孔体の空孔内表面に目づまりすることなく
非晶質リン酸カルシウムのスラリーを附着させて
連続した微細な空孔を有するリン酸カルシウム多
孔体を製造する方法を提供することにある。
Therefore, one object of the present invention is to attach a slurry of amorphous calcium phosphate to the inner surface of the pores of an organic porous material having fine pores without clogging the pores, thereby producing a calcium phosphate porous material having continuous fine pores. The purpose is to provide a method for manufacturing.

本発明の他の目的は全体にわたつて均一に分布
した空孔を有するリン酸カルシウム多孔体を製造
する方法を提供することにある。
Another object of the present invention is to provide a method for producing a calcium phosphate porous body having pores uniformly distributed throughout.

本発明の更に他の目的は実用に供し得る強度を
備えたリン酸カルシウム多孔体の製造方法を提供
することにある。
Still another object of the present invention is to provide a method for producing a porous calcium phosphate material having a strength suitable for practical use.

本発明の上記及びその他の目的は以下の記載か
ら明らかとなろう。
These and other objects of the invention will become apparent from the following description.

本発明によれば、カルシウム対リンのモル比が
1.30〜1.58である非晶質リン酸カルシウムのスラ
リーに起泡剤を添加し、連続した微細な空孔を有
する有機質多孔体を前記非晶質リン酸カルシウム
のスラリーに前記起泡剤の発泡後浸漬するか浸漬
してから発泡させて前記スラリーを前記空孔内表
面に附着させ、次いで前記スラリーが附着された
有機質多孔体を加熱して該有機質多孔体を分解消
失させると共に非晶質リン酸カルシウムをリン酸
三カルシウムに熱変化させ、形成されたリン酸三
カルシウム骨格を焼結せしめて連続した微細な空
孔を備え且つ全体にわたつて均一に分布した空孔
を有するリン酸カルシウム多孔体を形成すること
を特徴とするリン酸カルシウム多孔体の製造方法
が提供される。
According to the invention, the molar ratio of calcium to phosphorus is
A foaming agent is added to a slurry of amorphous calcium phosphate having a molecular weight of 1.30 to 1.58, and an organic porous body having continuous fine pores is immersed or soaked in the slurry of amorphous calcium phosphate after foaming with the foaming agent. The slurry is then foamed to adhere to the inner surface of the pores, and then the organic porous body to which the slurry has been adhered is heated to decompose and disappear, and the amorphous calcium phosphate is converted to tricalcium phosphate. The method is characterized in that the tricalcium phosphate skeleton formed is sintered to form a calcium phosphate porous body having continuous fine pores and pores uniformly distributed throughout. A method for producing a calcium phosphate porous body is provided.

本発明において使用する非晶質リン酸カルシウ
ムとはX線回折によつて主として幅の広いぼやけ
たハローが認められ、原子配列においてほとんど
規則的な繰返しがなく、あつても局部的にしか認
められないものをいう。かような非晶質リン酸カ
ルシウムのスラリーは公知の湿式合成法により得
ることができる。すなわち、カルシウムイオンを
含す溶液若しくはカルシウム化合物の懸濁液にリ
ン酸イオンを含む溶液をカルシウム対リンのモル
比が1.30〜1.58となるように添加して水溶液中で
合成することができ、脱水操作により過剰な水分
を除去するか、100℃程度の温度で乾燥後適量な
分散媒を加えることにより、非晶質リン酸カルシ
ウムのスラリーを容易に得ることができる。この
場合、カルシウム対リンのモル比は1.30〜1.58の
範囲とする必要がある。カルシウム対リンのモル
比が1.30未満になると結晶質のブルツシヤイト
CaHPO4・2H2Oが生成し、一方1.58を越えると
目的とする多孔体中のリン酸三カルシウムの含有
量が50%以上含まなくなり使用できない。以上の
ようにして生成される非晶質リン酸カルシウムの
スラリーはリン酸カルシウムの粒径が極めて微細
であり、たとえば平均0.05μ、最大でも0.5μの粒
径のものが得られ、表面積が大となりスラリーの
凝集力が増大する。従つて、有機質多孔体をスラ
リーに浸漬してその空孔内に附着させ、有機質多
孔体を加熱分解させた直後の焼結が行われていな
い非晶質リン酸カルシウム多孔体の強度はスラリ
ーの凝集力が高いため大となるので好ましい。湿
式合成法を用いると簡単にリン酸カルシウムの粒
径、形状、粒度分布を制御でき、スラリーの粘性
特性を変えることができるので有機質多孔体の空
孔内表面への附着性がよいチクソトロピツクな性
質を有するスラリーを得ることができる。
The amorphous calcium phosphate used in the present invention is one in which mainly a wide, blurred halo is observed by X-ray diffraction, and there is almost no regular repetition in the atomic arrangement, and even if it is, it is only observed locally. means. Such a slurry of amorphous calcium phosphate can be obtained by a known wet synthesis method. That is, it can be synthesized in an aqueous solution by adding a solution containing phosphate ions to a solution containing calcium ions or a suspension of calcium compounds so that the molar ratio of calcium to phosphorus is 1.30 to 1.58, and then dehydration. A slurry of amorphous calcium phosphate can be easily obtained by removing excess water by operation or by adding an appropriate amount of dispersion medium after drying at a temperature of about 100°C. In this case, the molar ratio of calcium to phosphorus should be in the range 1.30-1.58. When the molar ratio of calcium to phosphorus is less than 1.30, crystalline brutschite
CaHPO 4 .2H 2 O is produced, and on the other hand, if it exceeds 1.58, the tricalcium phosphate content in the intended porous material will be 50% or more and cannot be used. The slurry of amorphous calcium phosphate produced in the above manner has an extremely fine particle size of calcium phosphate, for example, an average particle size of 0.05μ, and a maximum particle size of 0.5μ, resulting in a large surface area and agglomeration of the slurry. Power increases. Therefore, the strength of an amorphous calcium phosphate porous material that has not been sintered immediately after immersing an organic porous material in a slurry and adhering it to the pores and thermally decomposing the organic porous material is determined by the cohesive force of the slurry. It is preferable because it is large because of its high value. By using the wet synthesis method, the particle size, shape, and particle size distribution of calcium phosphate can be easily controlled, and the viscosity characteristics of the slurry can be changed, so it has thixotropic properties that allow it to adhere well to the inner surface of the pores of the organic porous material. You can get slurry.

本発明では、前述の非晶質リン酸カルシウムの
スラリーに起泡剤を添加し、発泡を行つた後若し
くは連続した微細な空孔を有する有機質多孔体を
前記スラリーに浸漬してから発泡させる。発泡操
作は単にスラリーを撹拌するかスラリー中に浸漬
した有機質多孔体を圧縮膨張させることによつて
行なうことができる。この起泡剤の添加による発
泡は本発明では重要な意味を有する。すなわち、
非晶質リン酸カルシウムのスラリーは起泡剤の発
泡により微細な気泡を包含し、この微細な気泡が
有機質多孔体の微細な空孔中に入るため、スラリ
ーで空孔が充満した目づまりしてしまうというこ
とがない。有機質多孔体の空孔中に入つた微細な
独立気泡はスラリーの膜で構成されており、該独
立気泡は互いに結合し、空孔内表面にスラリーが
附着する。起泡剤として後述のように起泡性を有
する界面活性剤を用いると、有機質多孔体の空孔
内表面への附着性が増大される気泡が小さい場合
には、減圧下に置いて気泡を増大させ、空孔内表
面に非晶質リン酸カルシウムのスラリー膜が附着
され、気泡が互いに結合する傾向を増すことがで
きる。スラリーの有機質多孔体への附着量を調節
するため、遠心分離器やローラにかけることもで
きるが、かような場合にもスラリー膜で構成され
る気泡は空孔内にとどまり、スラリーが除去され
すぎてしまうということはない。前述のように独
立した気泡は結合するが、全部の気泡が結合して
非晶質リン酸カルシウムのスラリーの連続した附
着膜が空孔内に形成されるわけではなく、次工程
すなわち有機質多孔体を加熱する際に完全に破泡
され、スラリー分散媒が蒸発し非晶質リン酸カル
シウムが空孔に沿つて連続して附着される。有機
質多孔体は通常500℃前後に加熱されると分解消
失し、非晶質リン酸カルシウム骨格のみが残る。
加熱して破泡させせる前にエーテル蒸気又は超音
波にあてることにより破泡を行なうこともでき
る。
In the present invention, a foaming agent is added to the aforementioned slurry of amorphous calcium phosphate, and the slurry is foamed after foaming or after an organic porous body having continuous fine pores is immersed in the slurry. The foaming operation can be carried out simply by stirring the slurry or compressing and expanding an organic porous material immersed in the slurry. Foaming caused by the addition of a foaming agent has an important meaning in the present invention. That is,
The slurry of amorphous calcium phosphate contains fine air bubbles due to foaming by the foaming agent, and these fine air bubbles enter the fine pores of the organic porous material, resulting in clogging with the pores filled with slurry. There is no such thing. The fine closed cells that have entered the pores of the organic porous material are composed of a slurry film, and the closed cells are bonded to each other, and the slurry is attached to the inner surface of the pores. If a surfactant with foaming properties is used as a foaming agent, as described below, the adhesion to the inner surface of the pores of the organic porous material will be increased.If the bubbles are small, the bubbles may be removed by placing them under reduced pressure. By increasing the size of the pores, a slurry film of amorphous calcium phosphate is deposited on the inner surface of the pores, and the tendency of the bubbles to bond with each other can be increased. In order to control the amount of slurry adhering to the organic porous material, it is possible to use a centrifuge or rollers, but even in such cases, the air bubbles made up of the slurry film remain within the pores and the slurry is not removed. There is no such thing as too much. As mentioned above, independent bubbles are combined, but not all the bubbles are combined to form a continuous deposited film of amorphous calcium phosphate slurry within the pores. During this process, the bubbles are completely broken, the slurry dispersion medium evaporates, and amorphous calcium phosphate is continuously deposited along the pores. Organic porous materials usually decompose and disappear when heated to around 500°C, leaving only the amorphous calcium phosphate skeleton.
Bubbles can also be broken by applying ether vapor or ultrasonic waves before heating to break the bubbles.

加熱処理し温度が800℃以上になると、結晶構
造の再編成が起き、非晶質リン酸カルシウムがリ
ン酸三カルシウムに熱変化する。この結晶構造の
再編成が起きるため、焼結が著しく進行し強度の
あるリン酸三カルシウムが得られる。た、本発明
では連続した微細な空孔を有する有機質多孔体を
用いるため形成されるリン酸三カルシウム骨格の
表面積が大となり、水分が十分蒸発され強度の高
いリン酸三カルシウムの焼結体が得られる。焼結
温度の上限はリン酸カルシウムの分解融解などに
より制限されるが、主に経済的な理由から1400℃
以下とするのが望ましい。
When the temperature reaches 800°C or higher during heat treatment, the crystal structure is rearranged, and amorphous calcium phosphate is thermally converted to tricalcium phosphate. Because this crystal structure rearrangement occurs, sintering progresses significantly and strong tricalcium phosphate is obtained. In addition, in the present invention, since an organic porous body having continuous fine pores is used, the surface area of the formed tricalcium phosphate skeleton is increased, and moisture is sufficiently evaporated to form a strong tricalcium phosphate sintered body. can get. The upper limit of sintering temperature is limited by decomposition and melting of calcium phosphate, etc., but it is set at 1400℃ mainly for economic reasons.
The following is desirable.

本発明にて用いる連続した微細な空孔を有する
有機質多孔体としては、ポリウレタンフオーム、
ポリビニル系フオームを挙げることができる。有
機質多孔体の空孔径は0.05乃至1.5mm、特に0.1乃
至0.7mmの範囲のものを用いるのが好ましい。
0.05mm未満になるとセラミツク原料スラリーの目
づまりの危険を生ずることがあり、一方1.5mmを
越えると最終製品であるリン酸カルシウム多孔体
の強度が不足する場合が生じる。
The organic porous material having continuous fine pores used in the present invention includes polyurethane foam,
Mention may be made of polyvinyl foams. The organic porous material preferably has a pore diameter in the range of 0.05 to 1.5 mm, particularly 0.1 to 0.7 mm.
If it is less than 0.05 mm, there may be a risk of clogging of the ceramic raw material slurry, while if it exceeds 1.5 mm, the strength of the final product, the calcium phosphate porous body, may be insufficient.

前述の非晶質リン酸カルシウムのスラリーに添
加する起泡剤としては起泡性を有する界面活性剤
を挙げることができ、アニオン系界面活性剤、カ
チオン系界面活性剤などのイオン系界面活性剤、
非イオン系界面活性剤、非水分散媒系の界面活性
剤がある。
Examples of the foaming agent added to the slurry of amorphous calcium phosphate include surfactants having foaming properties, such as ionic surfactants such as anionic surfactants and cationic surfactants;
There are nonionic surfactants and nonaqueous dispersion medium surfactants.

アニオン系界面活性剤としては、ラウリン酸ソ
ーダ、ミルスチン酸ソーダ、オレイン酸ソーダ等
の脂肪酸石ケンがナトリウムデシルサルフエー
ト、ナトリウムヘキサデシルサルフエート等のア
ルキルサルフエート塩や直鎖アルキルベンゼンス
ルホネート塩などがある。カチオン系界面活性剤
としてはベンジル・ジメチル・アルキルアンモニ
ウム・クロライド、ドデシル・ジメチル・ベンジ
ル・アンモニウム・ブロマイドなどの第四アンモ
ニウム塩類やジエチルアミノエチルオレイルアミ
ド等のアミン塩類などがある。非イオン系界面活
性剤としてはラウリルアルコール、ステアリルア
ルコール、セチルアルコール等のエチレンオキサ
イド付加物などのポリオキシエチレンアルキルエ
ーテル類や、ソルビタンモノラウレートポリグリ
コールエーテル、ソルビタンモノオレートポリグ
リコールエーテルなどのポリオキシエチレンソル
ビタンモノアルキルエステル類や砂糖エステルな
どがある。この他に、非水分散媒系の界面活性剤
では脂肪酸ドデシルアンモニウムがナトリウムジ
オクチルスルホサクシネートなどがある。
Examples of anionic surfactants include fatty acid soaps such as sodium laurate, sodium myrstate, and sodium oleate, alkyl sulfate salts such as sodium decyl sulfate, sodium hexadecyl sulfate, and linear alkylbenzene sulfonate salts. . Examples of cationic surfactants include quaternary ammonium salts such as benzyl dimethyl alkylammonium chloride, dodecyl dimethyl benzyl ammonium bromide, and amine salts such as diethylaminoethyl oleylamide. Examples of nonionic surfactants include polyoxyethylene alkyl ethers such as ethylene oxide adducts such as lauryl alcohol, stearyl alcohol, and cetyl alcohol, and polyoxyethylene such as sorbitan monolaurate polyglycol ether and sorbitan monooleate polyglycol ether. Examples include ethylene sorbitan monoalkyl esters and sugar esters. In addition, non-aqueous dispersion medium-based surfactants include fatty acid dodecyl ammonium and sodium dioctyl sulfosuccinate.

本発明の方法により0.03乃至1.2mmの微細な連
続した空孔を有し、多孔体全体にわたつて空孔が
均一に分布しており、気孔率が40乃至97%を有し
実用強度を備えたリン酸カルシウム多孔体を得る
ことが可能である。本発明のリン酸カルシウム多
孔体はロ過材、触媒担体として利用できる他、微
細な連続空孔を有することから生体材料の面にて
応用可能であり微生物や細胞の培養担体や骨充填
剤、骨置換剤などに利用することができる。
By the method of the present invention, the porous body has fine continuous pores of 0.03 to 1.2 mm, the pores are uniformly distributed throughout the porous body, the porosity is 40 to 97%, and it has practical strength. It is possible to obtain a calcium phosphate porous body. The calcium phosphate porous material of the present invention can be used as a filtration material and a catalyst carrier, and since it has fine continuous pores, it can be applied as a biomaterial, and can be used as a culture carrier for microorganisms and cells, a bone filler, and a bone replacement. It can be used as a medicine.

次に本発明を実施例について説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 水酸化カルシウム懸濁液を撹拌しながら、リン
酸水溶液を滴下し、反応後のPHを調節してカル
シウム対リンのモル比がそれぞれ1.30、1.50、
1.58である非晶質リン酸カルシウムを得た。これ
を脱水乾燥後、粉砕をし、水を加えて非晶質リン
酸カルシウムスラリー、A、B、Cを得た。一
方、リン酸水素カルシウムと炭酸カルシウムを所
定比で混合し、1300℃で2時間焼成してリン酸三
カルシウムを得た。これに水を加え、ポツトミル
で一昼夜粉砕を行ないリン酸三カルシウムスラリ
ーDを得た。
Example 1 While stirring a calcium hydroxide suspension, a phosphoric acid aqueous solution was added dropwise, and the pH after the reaction was adjusted so that the molar ratio of calcium to phosphorus was 1.30, 1.50, and 1.50, respectively.
Amorphous calcium phosphate with a concentration of 1.58 was obtained. This was dehydrated and dried, then ground, and water was added to obtain amorphous calcium phosphate slurries A, B, and C. On the other hand, calcium hydrogen phosphate and calcium carbonate were mixed at a predetermined ratio and fired at 1300°C for 2 hours to obtain tricalcium phosphate. Water was added to this, and tricalcium phosphate slurry D was obtained by grinding in a pot mill overnight.

このようにして得た各スラリーに起泡剤として
ポリオキシエチレンソルビタンモノラウレートを
1重量部添加した。これら各スラリー中に平均
0.5mmの空孔径を有するポリウレタンフオームを
浸漬し、スラリー中で膨張、圧縮を繰り返して撹
拌し、ウルタンフオーム中に泡を生じさせるとと
もに、スラリーを十分含浸させた。これらを100
℃で一昼夜乾燥させそののち1100℃で2時間焼結
を行い有機物を加熱分解させるとともに焼結させ
多孔体を得た。
1 part by weight of polyoxyethylene sorbitan monolaurate was added as a foaming agent to each slurry thus obtained. During each of these slurries the average
A polyurethane foam having a pore diameter of 0.5 mm was immersed in the slurry and stirred by repeating expansion and compression to generate bubbles in the urthane foam and to sufficiently impregnate it with the slurry. 100 of these
It was dried at 1100°C for a day and night, and then sintered at 1100°C for 2 hours to thermally decompose the organic matter and sinter it to obtain a porous body.

A、B、Cのスラリーを用いた場合はいずれも
ほとんど閉気孔のない連続した空孔を有する多孔
体(平均空孔径0.35mm、気孔率90%)が得られ、
それらのうちスラリーA、Bから得た多孔体の骨
格はほぼ全量が、スラリーCから得た多孔体の骨
格は50%がリン酸三カルシウムからなつているこ
とがX線回折により判明した。しかしながらDの
スラリーを用いた場合においては、一見A、B、
Cスラリーによる多孔体と同じようなものが得ら
れるが、ほとんど骨格部は焼結しておらず、実用
強度はなく、多孔体を持ち上げることも出来ずに
崩壊した。
When slurries A, B, and C were used, porous bodies having continuous pores with almost no closed pores (average pore diameter 0.35 mm, porosity 90%) were obtained,
It was found by X-ray diffraction that almost all of the skeletons of the porous bodies obtained from slurries A and B, and 50% of the skeleton of the porous body obtained from slurry C, consisted of tricalcium phosphate. However, when slurry D is used, at first glance A, B,
A porous body similar to that obtained using C slurry was obtained, but the skeleton was hardly sintered and had no practical strength, and the porous body could not be lifted and collapsed.

実施例 2 硝酸カルシウム溶液のPHをアンモニア水を添加
してPH9とし、これにリン酸アンモニウムをカル
シウムとリンのモル比が1.50となるまで加え、こ
れを脱水後十分に水洗し、非晶質リン酸カルシウ
ムを得、これに水を加えスラリーAとした。
Example 2 The pH of the calcium nitrate solution was adjusted to PH9 by adding aqueous ammonia, and ammonium phosphate was added to this until the molar ratio of calcium to phosphorus was 1.50. After dehydration, this was thoroughly washed with water to form amorphous calcium phosphate. A slurry A was obtained by adding water to the slurry.

このようにして得たスラリーAに実施例1にて
用いた起泡剤を0.5重量部加えスラリーBを作製
した。AとBの各スラリー中に0.1mmの平均空孔
径を有するポリビニール系フオーム多孔体を浸漬
し、スラリー中で膨張、圧縮を繰り返してスラリ
ーを十分含浸させ、スラリーBにおいてはポリビ
ニール系フオーム中に泡を生じさせた。
0.5 part by weight of the foaming agent used in Example 1 was added to slurry A thus obtained to prepare slurry B. A polyvinyl foam porous material having an average pore diameter of 0.1 mm is immersed in each slurry of A and B, and is repeatedly expanded and compressed in the slurry to be sufficiently impregnated with the slurry. bubbles were formed.

これを100℃で一昼夜乾燥させ、そののち1200
℃で1時間焼成を行い有機物を加熱分解させると
ともに焼結させ多孔体を得た。スラリーAを用い
て多孔体を作製した場合には多孔体の空孔の多く
が目づまりを生じていた。しかしスラリーBを用
いた場合は、このような目づまりのないほぼリン
酸三カルシウムよりなるリン酸カルシウム連続多
孔体が作製された。
This was dried at 100℃ for a day and night, and then heated to 1200℃.
Firing was performed at ℃ for 1 hour to thermally decompose the organic matter and sinter it to obtain a porous body. When a porous body was produced using slurry A, many of the pores in the porous body were clogged. However, when slurry B was used, a continuous porous body of calcium phosphate made of tricalcium phosphate without such clogging was produced.

実施例 3 空孔径3.0、1.5、0.4mmの連続空孔を有するポリ
ウレタンフオーム及び空孔径0.05、0.04mmの連続
空孔を有するポリビニール系フオームにサポニン
0.5%水溶液を塗布し、フオームを圧縮膨張する
ことによりフオーム空孔中に泡を形成させ、空孔
連続部にも膜を形成させた。余分なサポニン水溶
液はローラーに通し除去した。ついでこれらのフ
オームを実施例2で作製した非晶質リン酸カルシ
ウムスラリー中に浸漬し、スラリーを十分含浸さ
せ、次いで余分なスラリーをローラに通して除去
し、ポリウレタン及びポリビニル系フオームの空
孔内表面にスラリーを付着させた。これを1300℃
で1時間焼結を行い、有機物を加熱分解させると
ともに焼結させ多孔体を得た。空孔径0.04mmの連
続空孔を有するポリビニール系フオームを用いた
場合には空孔径が小さいためスラリーが多孔体内
部まで含浸されない部分もあつたが実質的に使用
するには差つかえなかつた。多孔体の平均空孔
0.03mm、気孔率は45%であつた。
Example 3 Saponin was added to polyurethane foam having continuous pores with pore diameters of 3.0, 1.5, and 0.4 mm and polyvinyl foam having continuous pores with pore diameters of 0.05 and 0.04 mm.
A 0.5% aqueous solution was applied and the foam was compressed and expanded to form bubbles in the pores of the foam, and a film was also formed in the continuous pores. Excess saponin aqueous solution was removed by passing it through a roller. Next, these foams were immersed in the amorphous calcium phosphate slurry prepared in Example 2, and the slurry was sufficiently impregnated.Then, the excess slurry was removed by passing it through a roller, and the inner surface of the pores of the polyurethane and polyvinyl foams was coated. The slurry was applied. This at 1300℃
Sintering was performed for 1 hour to thermally decompose the organic matter and sinter it to obtain a porous body. When a polyvinyl foam having continuous pores with a pore diameter of 0.04 mm was used, there were some parts where the slurry was not impregnated into the porous body due to the small pore diameter, but this was not a problem for practical use. Average pores in porous material
The diameter was 0.03 mm, and the porosity was 45%.

一方、空孔径が3.0mmの連続空孔を有するポリ
ウレタンフオームを用いて作製したリン酸カルシ
ウム多孔体は平均空孔径が2.19mm、気孔率98%
で、多孔体の骨格部の強度がやや弱かつた。ポリ
ウレタンフオームの空孔径が1.5mm、0.4mmのもの
及びポリビニル系フオームの空孔径が0.05のもの
を用いて作製した多孔体の平均空孔径は各々1.01
mm、0.3mm、0.04mm、気孔率は各々95%、90%、
51%で十分な強度を有していた。
On the other hand, a calcium phosphate porous material made using polyurethane foam having continuous pores with a pore diameter of 3.0 mm has an average pore diameter of 2.19 mm and a porosity of 98%.
However, the strength of the skeleton of the porous body was somewhat weak. The average pore diameter of the porous bodies produced using polyurethane foam with pore diameters of 1.5 mm and 0.4 mm and polyvinyl foam with pore diameter of 0.05 was 1.01, respectively.
mm, 0.3mm, 0.04mm, porosity is 95% and 90%, respectively.
It had sufficient strength at 51%.

Claims (1)

【特許請求の範囲】 1 カルシウム対リンのモル比が1.30〜1.58であ
る非晶質リン酸カルシウムのスラリーに起泡剤を
添加し、連続した微細な空孔を有する有機質多孔
体を前記非晶質リン酸カルシウムのスラリーに前
記起泡剤の発泡後浸漬するか浸漬してから発泡さ
せて前記スラリーを前記空孔内表面に附着させ、
次いで前記スラリーが附着された有機質多孔体を
加熱して該有機質多孔体を分解消失させると共に
非晶質リン酸カルシウムをリン酸三カルシウムに
熱変化させ、形成されたリン酸三カルシウム骨格
を焼結せしめて連続した微細な空孔を備え且つ全
体にわたつて均一に分布した空孔を有有するリン
酸カルシウム多孔体を形成することを特徴とする
リン酸カルシウム多孔体の製造方法。 2 前記起泡剤をイオン系界面活性剤、非イオン
系界面活性剤、及び非水分散媒系の界面活性剤か
らなる群から選択することを特徴とする特許請求
の範囲第1項記載のリン酸カルシウム多孔体の製
造方法。 3 前記イオン系界面活性剤を脂肪酸石ケン、ア
ルキルサルフエート塩、直鎖アルキルベンゼンス
ルホネート塩、第四アンモニウム塩、及びアミン
塩からなる群より選択することを特徴とする特許
請求の範囲第2項記載のリン酸カルシウム多孔体
の製造方法。 4 前記非イオン系界面活性剤をポリオキシエチ
レンアルキルエーテル、ポリオキシエチレンソル
ビタンモノアルキルエステル、及び砂糖エステル
からなる群から選択することを特徴とする特許請
求の範囲第2項記載のリン酸カルシウム多孔体の
製造方法。 5 前記非水分散媒系の界面活性剤を脂肪酸ドデ
シルアンモニウム及びナトリウムジオクチルスル
ホサクシネートよりなる群より選択することを特
徴とする特許請求の範囲第2項記載のリン酸カル
シウム多孔体の製造方法。 6 前記有機質多孔体の空孔径が0.05乃至1.5mm
であることを特徴とする特許請求の範囲第1項記
載のリン酸カルシウム多孔体の製造方法。 7 前記有機質多孔体をポリウレタンフオーム及
びポリビニル系フオームからなる群より選択する
ことを特徴とする特許請求の範囲第1項又は第6
項記載のリン酸カルシウム多孔体の製造方法。 8 前記非晶質リン酸カルシウムのスラリーを前
記有機質多孔体の空孔内表面に附着させた後、減
圧下におくことを特徴とする特許請求の範囲第1
項記載のリン酸カルシウム多孔体の製造方法。 9 前記非晶質リン酸カルシウムのスラリーを前
記有機質多孔体の空孔内表面に附着させた後、エ
ーテル蒸気又は超音波にあてることを特徴とする
特許請求の範囲第1項又は第8項記載のリン酸カ
ルシウム多孔体の製造方法。 10 前記非晶質リン酸カルシウムのスラリーを
前記有機質多孔体の空孔内表面に附着させた後、
遠心分離器又はローラにかけることを特徴とする
特許請求の範囲第1項、第8項又は第9項記載の
リン酸カルシウム多孔体の製造方法。 11 前記非晶質リン酸カルシウムのスラリー
を、湿式合成法により得た非晶質リン酸カルシウ
ム含有液体を脱水するか若しくは乾燥後分散媒を
加えることにより得ることを特徴とする特許請求
の範囲第1項記載のリン酸カルシウム多孔体の製
造方法。 12 前記スラリーが附着された有機質多孔体を
少くとも800℃以上の温度に加熱することを特徴
とする特許請求の範囲第1項記載のリン酸カルシ
ウム多孔体の製造方法。 13 前記リン酸カルシウム多孔体が0.03乃至
1.2mmの空孔を有し気孔率が40乃至97%を備える
ことを特徴とする特許請求の範囲第1項記載のリ
ン酸カルシウム多孔体の製造方法。
[Claims] 1. A foaming agent is added to a slurry of amorphous calcium phosphate having a molar ratio of calcium to phosphorus of 1.30 to 1.58, and an organic porous body having continuous fine pores is formed into the amorphous calcium phosphate. immersing the foaming agent in the slurry after foaming or immersing the foaming agent in the slurry and then foaming the slurry to adhere to the inner surface of the pores;
Next, the organic porous body to which the slurry is attached is heated to decompose and disappear the organic porous body, and the amorphous calcium phosphate is thermally changed into tricalcium phosphate, and the formed tricalcium phosphate skeleton is sintered. A method for producing a calcium phosphate porous body, which comprises forming a calcium phosphate porous body having continuous fine pores and pores uniformly distributed throughout. 2. The calcium phosphate according to claim 1, wherein the foaming agent is selected from the group consisting of ionic surfactants, nonionic surfactants, and non-aqueous dispersion medium surfactants. Method for producing porous body. 3. The ionic surfactant is selected from the group consisting of fatty acid soaps, alkyl sulfate salts, linear alkylbenzene sulfonate salts, quaternary ammonium salts, and amine salts. A method for producing a calcium phosphate porous material. 4. The calcium phosphate porous material according to claim 2, wherein the nonionic surfactant is selected from the group consisting of polyoxyethylene alkyl ether, polyoxyethylene sorbitan monoalkyl ester, and sugar ester. Production method. 5. The method for producing a calcium phosphate porous material according to claim 2, wherein the non-aqueous dispersion medium-based surfactant is selected from the group consisting of fatty acid dodecyl ammonium and sodium dioctyl sulfosuccinate. 6 The organic porous body has a pore diameter of 0.05 to 1.5 mm.
A method for producing a calcium phosphate porous material according to claim 1, characterized in that: 7. Claim 1 or 6, characterized in that the organic porous material is selected from the group consisting of polyurethane foam and polyvinyl foam.
A method for producing a calcium phosphate porous material as described in 1. 8. Claim 1, characterized in that after the slurry of amorphous calcium phosphate is deposited on the inner surface of the pores of the organic porous body, the slurry is placed under reduced pressure.
A method for producing a calcium phosphate porous material as described in 1. 9. The calcium phosphate according to claim 1 or 8, wherein the amorphous calcium phosphate slurry is applied to the inner surface of the pores of the organic porous body and then exposed to ether vapor or ultrasonic waves. Method for producing porous body. 10 After attaching the slurry of amorphous calcium phosphate to the inner surface of the pores of the organic porous body,
10. The method for producing a calcium phosphate porous material according to claim 1, 8, or 9, wherein the porous material is subjected to a centrifugal separator or a roller. 11 The slurry of amorphous calcium phosphate is obtained by dehydrating a liquid containing amorphous calcium phosphate obtained by a wet synthesis method or by adding a dispersion medium after drying. Method for producing porous calcium phosphate material. 12. The method for producing a calcium phosphate porous body according to claim 1, characterized in that the organic porous body to which the slurry is attached is heated to a temperature of at least 800°C or higher. 13 The calcium phosphate porous material is 0.03 to
2. The method for producing a calcium phosphate porous material according to claim 1, wherein the porous material has pores of 1.2 mm and a porosity of 40 to 97%.
JP7891880A 1980-06-13 1980-06-13 Manufacture of calcium phosphate porous body Granted JPS577859A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7891880A JPS577859A (en) 1980-06-13 1980-06-13 Manufacture of calcium phosphate porous body
DE3123460A DE3123460C2 (en) 1980-06-13 1981-06-12 Process for the production of a porous sintered body from calcium phosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7891880A JPS577859A (en) 1980-06-13 1980-06-13 Manufacture of calcium phosphate porous body

Publications (2)

Publication Number Publication Date
JPS577859A JPS577859A (en) 1982-01-16
JPH0154308B2 true JPH0154308B2 (en) 1989-11-17

Family

ID=13675227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7891880A Granted JPS577859A (en) 1980-06-13 1980-06-13 Manufacture of calcium phosphate porous body

Country Status (2)

Country Link
JP (1) JPS577859A (en)
DE (1) DE3123460C2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3224265A1 (en) * 1982-06-28 1984-01-05 Schütt und Grundei GmbH Medizintechnische Fabrikation, 2400 Lübeck METHOD FOR PRODUCING AN IMPLANT AS BONE REPLACEMENT
US4654314A (en) * 1983-07-09 1987-03-31 Sumitomo Cement Co., Ltd. Porous ceramic material and processes for preparing same
JPS6021763A (en) * 1983-07-15 1985-02-04 ティーディーケイ株式会社 Artificial bone material
JP2597355B2 (en) * 1986-08-05 1997-04-02 オリンパス光学工業株式会社 Method for producing porous calcium phosphate
JPH0829992B2 (en) * 1986-10-06 1996-03-27 株式会社クラレ Method for producing granular calcium phosphate compact
FR2606403B1 (en) * 1986-11-12 1992-06-12 Ecole Nale Sup Ceramique Indle PROCESS FOR THE MANUFACTURE OF POROUS CERAMICS BY ELECTROPHORESIS, AND PROSTHESES IN POROUS BIOCERAMICS
JPS63125259A (en) * 1986-11-14 1988-05-28 旭光学工業株式会社 Calcium phosphate type porous bone filler
US4861733A (en) * 1987-02-13 1989-08-29 Interpore International Calcium phosphate bone substitute materials
DE4340346A1 (en) * 1993-11-26 1995-06-01 Audi Ag Application of plastics foam for vehicle filter
FR2758988B1 (en) * 1997-02-05 2000-01-21 S H Ind PROCESS FOR THE PREPARATION OF SYNTHETIC BONE SUBSTITUTES OF PERFECTLY MASTERED POROUS ARCHITECTURE
DE19940717A1 (en) * 1999-08-26 2001-03-01 Gerontocare Gmbh Resorbable bone replacement and bone augmentation material
JP4683590B2 (en) * 2001-03-22 2011-05-18 国立大学法人 奈良先端科学技術大学院大学 Novel porous calcium phosphate and method for producing the same
FR2823674B1 (en) * 2001-04-19 2004-11-12 Limousine De Brevet Soc PROCESS FOR THE MANUFACTURE OF BONE SUBSTITUTES AND IMPLANTABLE ELEMENTS OF VERY HIGH RESISTANCE POROUS CERAMIC

Also Published As

Publication number Publication date
DE3123460A1 (en) 1982-02-04
DE3123460C2 (en) 1983-10-06
JPS577859A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
JPH0154309B2 (en)
JPH0154308B2 (en)
US3946039A (en) Reticulated foam structure
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
US4803025A (en) Ceramic foam
Swain et al. Preparation of porous scaffold from hydroxyapatite powders
WO1995026844A1 (en) Method for producing porous bodies
US11377352B2 (en) Method for producing porous calcium deficient hydroxyapatite granules
JP2597355B2 (en) Method for producing porous calcium phosphate
US7687138B2 (en) Porous calcium phosphate ceramic and method for producing same
EP0142229B1 (en) Production of reaction-bonded silicon carbide artefacts
AU601109B2 (en) Ceramic foam
JPS6327310B2 (en)
CN103539478A (en) Preparation method of calcium metaphosphate porous bioceramic
JPH0987705A (en) Production of porous metal laminate
JPH0723994A (en) Porous bone filler
JP2004115297A (en) Method for manufacturing hydroxyapatite porous sintered material
JPH0534020B2 (en)
JPH05294752A (en) Production of porous calcium phosphate sintered compact
JPH06343456A (en) Cell culture supporter and culture of osteoblast
JPH08112341A (en) Bone packing material and its production
HASHISHIN et al. Effect of aluminum lactate powder in the production of mullite porous bodies
Kunio et al. Apatite foam fabrication based on hydrothermal reaction of α-tricalcium phosphate foam
FR2697243A1 (en) Process for the preparation of microporous calcium phosphate parts comprising hydroxylapatite, with controlled microporosity, and parts obtained by this process.
JPS5866267A (en) Manufacture of substrate for alkaline storage battery