KR101268408B1 - Composition and Manufacturing method for porous calcium phosphate granules by physical foaming - Google Patents

Composition and Manufacturing method for porous calcium phosphate granules by physical foaming Download PDF

Info

Publication number
KR101268408B1
KR101268408B1 KR1020100040354A KR20100040354A KR101268408B1 KR 101268408 B1 KR101268408 B1 KR 101268408B1 KR 1020100040354 A KR1020100040354 A KR 1020100040354A KR 20100040354 A KR20100040354 A KR 20100040354A KR 101268408 B1 KR101268408 B1 KR 101268408B1
Authority
KR
South Korea
Prior art keywords
acrylate
weight
methacrylate
calcium phosphate
amine
Prior art date
Application number
KR1020100040354A
Other languages
Korean (ko)
Other versions
KR20110120784A (en
Inventor
유창국
양정호
Original Assignee
유창국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유창국 filed Critical 유창국
Priority to KR1020100040354A priority Critical patent/KR101268408B1/en
Publication of KR20110120784A publication Critical patent/KR20110120784A/en
Application granted granted Critical
Publication of KR101268408B1 publication Critical patent/KR101268408B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 물리적인 발포법을 이용하여 치과 및 정형외과 분야에서 사용되는 과립형 골충진재의 제조에 관한 것으로, 200~500 ㎛ 크기의 매크로 기공구조와 함께, 500 nm~5 ㎛ 마이크로 기공구조를 갖는 다공성 과립형 골충진재 제조방법을 나타낸다. 기존의 치밀형 골충진재는 비표면적이 낮고, 과립분말 표면이 치밀하여 골아세포의 부착이 제한적이며 표면에서만 흡수가 일어나므로 골재생 시간이 길어지며 자가골의 재생 점유율이 낮은 단점이 있다. 반면, 본 발명에 따라 매크로, 마이크로 이중 기공구조를 갖는 다공성 과립형 골충진재 분말을 제조하면, 매크로 기공을 통해 과립 분말 내부까지 혈관 및 골아세포가 성장 및 이동할 수 있고, 마이크로 기공구조는 골아세포의 부착이 매우 용이한 표면 거칠기 구조를 제공하며, 과립 분말 내부와 바깥이 동시에 흡수되어 결과적으로 골재생도가 매우 향상될 뿐 아니라 골융합 기간도 단축될 수 있다.The present invention relates to the production of granular bone filler used in the dental and orthopedic field by using a physical foaming method, with a macro-pore structure of 200 ~ 500 ㎛ size, having a micro pore structure of 500 nm ~ 5 ㎛ A method for producing a porous granular bone filler is shown. Conventional dense bone filler has a low specific surface area, the surface of the granule powder is dense, the adhesion of osteoblasts is limited and the absorption occurs only on the surface, so the bone regeneration time is long and the regeneration rate of autologous bone is low. On the other hand, when the porous granular bone filler powder having a macro, micro double pore structure according to the present invention, blood vessels and osteoblasts can grow and move to the inside of the granule powder through macro pores, and the micro pore structure of osteoblasts It provides a surface roughness structure that is very easy to attach, and the inside and outside of the granular powder are absorbed at the same time, resulting in significantly improved bone regeneration and shortened bone fusion period.

Description

이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 분말용 조성물 및 그 제조방법{Composition and Manufacturing method for porous calcium phosphate granules by physical foaming}Composition and preparation method for porous calcium phosphate powder for physical foaming having a double pore structure {Composition and Manufacturing method for porous calcium phosphate granules by physical foaming}

본 발명은 치과 및 정형외과 분야에서 골수복재 및 골충진재로 사용할 수 있는 매크로, 마이크로 기공구조를 갖는 다공성 인산칼슘 분말용 조성물 및 그 제조방법에 관한 것이다. The present invention relates to a composition for a porous calcium phosphate powder having a macro, micro-pore structure that can be used as a bone marrow restoration and bone filler in the field of dentistry and orthopedics and a method for producing the same.

현재 치과분야에서는 500㎛~2㎜, 정형외과에서는 3~8㎜ 크기의 과립분말을 골충진재로 사용하고 있으나, 대부분 기공이 없는 치밀형 구조이거나, 부분적인 폐기공 구조로 구성되어 있어서, 생체 내 매립 시 과립 분말 표면에만 제한적으로 골아세포의 부착이 가능하고, 표면에서만 흡수가 이루어지면서 자가골과 결합하므로 매우 제한적인 골재생 결과를 나타낸다.Currently, in the field of dentistry, granule powder of 500㎛ ~ 2㎜ and orthopedics use 3 ~ 8㎜ size as bone filling material, but it is mostly composed of dense structure without pores or partially closed hole structure. It is possible to attach osteoblasts only to the surface of the granule powder at the time of reclamation, and to combine with autologous bone while absorbing only from the surface, resulting in very limited bone regeneration.

반면, 이러한 인산칼슘 과립분말을 100~600㎛ 크기의 서로 연결된 매크로 기공 구조와, 500nm~10㎛ 크기의 마이크로 기공구조를 갖는 다공성 과립 분말 형태로 제조하면, 먼저 매크로 기공 사이로 혈관이 기공 내부까지 성장하여 내부에 부착된 골아세포에 영양분을 공급하여 과립분말 내부에서도 골아세포의 대사작용에 의해 골형성이 이루어지고, 동시에 표면의 마이크로 기공은 골아세포의 부착을 매우 향상시켜, 결과적으로 과립 분말 내부와 외부에서 동시에 골재생이 이루어질 수 있어서, 시술 후 자가골과의 골융합 시간이 매우 단축될 수 있을 뿐만 아니라, 자가골이 기공 내부까지 깊숙이 성장할 수 있어 전체적으로 자가골의 재생 점유율이 매우 향상될 수 있다.On the other hand, when the calcium phosphate granule powder is prepared in the form of porous granular powder having a macropore structure of 100 to 600㎛ size and a micropore structure of 500nm to 10㎛ size, first, blood vessels grow between the macropores to the inside of the pores. By supplying nutrients to the osteoblasts attached inside, bone formation is achieved by metabolism of osteoblasts in the granule powder, and at the same time, micropores on the surface greatly improve the adhesion of osteoblasts. Simultaneously, bone regeneration can be performed externally, and the bone fusion time with the autologous bone can be very shortened after the procedure, and the autologous bone can be deeply grown to the inside of the pore, so that the regeneration rate of the autologous bone as a whole can be greatly improved.

이러한 매크로, 마이크로 기공구조를 갖는 과립 분말은, 특히 정형외과 분야에서 환자의 골수 또는 골수 줄기세포와 합성뼈 과립분말을 혼합하여 사용하는 조직공학적 골재생 시술에서 매우 유용한 기술이라 할 수 있다. Such granular powder having macro and micro pore structures is a very useful technique in histological bone regeneration procedures using a mixture of bone marrow or bone marrow stem cells and synthetic bone granule powder of a patient, especially in the orthopedic field.

그러나, 종래의 인산칼슘 과립분말 제조방법을 살펴보면, 우선 인산칼슘계 치밀형 블록을 제조하고 이를 분쇄하고 분급하여 500㎛~8mm 크기의 과립분말을 제조하거나, 인산칼슘 블록을 제조할 때 대한민국 공개특허 제88-000066호와 같이 고분자 결합제, 전분, 왁스 등 기타 휘발성 물질을 혼합하여 성형한 후 열처리 과정에서 휘발성 물질이 휘발함으로써 폐기공을 형성시키는 방법을 사용하고 있다.However, looking at the conventional method for preparing calcium phosphate granule powder, first, preparing a calcium phosphate-based dense block, pulverizing and classifying the same, to prepare a granule powder having a size of 500 μm to 8 mm, or to prepare a calcium phosphate block As in No. 88-000066, a method of forming a waste hole by mixing and molding a polymer binder, starch, wax, and other volatile materials and then volatilizing the volatile material in the heat treatment process is used.

이러한 경우, 기공이 서로 연결된 개기공 형태의 과립분말을 제조하기 어렵고, 또한 전체적으로는 기공율이 향상될 수 있으나, 자가골과의 골융합 및 골아세포 부착은 표면에서만 가능하고, 내부 폐기공은 자가골과의 골융합이 전혀 이루어질 수 없으므로, 생체 내 이식 후 계속 합성 물질이 이물질로 남게 되므로, 골재생 효율의 저하와 함께 자가골 점유율이 매우 낮은 단점이 있다.In this case, it is difficult to prepare the granule powder in the form of open pores connected to the pores, and the porosity can be improved as a whole, but bone fusion and osteoblast adhesion with the autologous bone are possible only on the surface, and the internal waste hole is bone fusion with the autologous bone. Since this can not be done at all, since the synthetic material remains as a foreign material after transplantation in vivo, there is a disadvantage in that the autogenous bone occupancy rate is very low with the decrease in bone regeneration efficiency.

또한, 이러한 과립 분말의 다른 제조 방법으로 폴리우레탄 스펀지에 인산칼슘 페이스트를 피복하여 열처리함으로써 기공이 연결된 인산칼슘 블록을 제조할 수 있으나, 분쇄 후 분급과정을 거치면 과립 형태가 아닌 침상형의 으스러진 분말로 얻어지므로 과립형태의 골충진재로 사용하기에는 부적합하다.In addition, another method of manufacturing the granular powder is to prepare a calcium phosphate block with pores by coating the calcium phosphate paste on a polyurethane sponge and heat-treating it. It is not suitable for use as a granule bone filler.

상기한 바와 같은 문제점을 해결하기 위한 본 발명의 목적은, 물리적 발포법에 의해 매크로, 마이크로 기공구조를 갖는 골충진재 분말을 제조하여, 분말의 내부와 외부에서 동시에 골재생이 이루어져 생체 내 이식 후 빠른 골융합 효과와 함께 자가골의 성장 및 재생 점유율이 기존의 치밀형 골충진재보다 매우 향상될 수 있도록 하는 데 있다.An object of the present invention for solving the problems as described above, by producing a bone filler powder having a macro, micro-pore structure by the physical foaming method, the bone regeneration at the same time inside and outside the powder is made fast after implantation in vivo Along with the bone fusion effect, the growth and regeneration rate of autologous bone can be significantly improved compared to the conventional dense bone filler.

상기한 목적을 달성하기 위한 본 발명의 특징은, 고분자수지 또는 모노머와 계면활성제와 발포제를 수계 인산칼슘 슬러리에 첨가하여 슬러리의 표면장력을 낮추고 다중 블레이드로 상기한 슬러리를 회전시켜 거품을 발생시키는 단계, 상기한 바와 같이 거품이 발생된 슬러리를 몰드에 주입하고 상기 고분자수지 또는 모노머의 중합을 이용한 인산칼슘 슬러리 거품을 그대로 경화하는 단계, 경화된 다공질 과립체를 고온에서 열처리하여 소결하는 단계로 구성된다. A feature of the present invention for achieving the above object is to add a polymer resin or a monomer, a surfactant and a blowing agent to the aqueous calcium phosphate slurry to lower the surface tension of the slurry and to rotate the slurry with multiple blades to generate bubbles , As described above, injecting the foamed slurry into a mold and curing the foamed calcium phosphate slurry using the polymerization of the polymer resin or monomer as it is, and sintering the cured porous granules by heat treatment at high temperature. .

상기에서 인산칼슘 분말의 함량은 슬러리 총 중량에 대하여 10~60중량%가 바람직하고, 상기한 고분자수지 또는 모노머는 수분에 대하여 비가역적 중합 공정을 하는 것을 사용한다.The content of the calcium phosphate powder is preferably 10 to 60% by weight based on the total weight of the slurry, the polymer resin or monomer is used to perform an irreversible polymerization process for water.

또한, 상기한 인산칼슘 슬러리 거품을 경화하는 방법은, 아조계, 페록사이드계에서 선택되는 1 종 이상을 중합개시제 또는 설페이트계와 아민계 중에서 선택되는 1종 이상의 중합 촉매를 하나 혹은 그 이상 사용하여 슬러리 총중량에 대하여 0.5~5 중량% 첨가하여 공기 내지 질소, 아르곤과 같은 불활성 가스 분위기에서 60~100℃에서 30분~4시간 동안 열중합 하거나, 상온에서 경화한다.In addition, the method for curing the foamed calcium phosphate slurry by using one or more polymerization catalysts selected from a polymerization initiator or a sulfate-based and an amine-based one or more selected from azo or peroxide. 0.5 to 5% by weight based on the total weight of the slurry is thermally polymerized at 60 to 100 ° C. for 30 minutes to 4 hours in an inert gas atmosphere such as air to nitrogen or argon, or cured at room temperature.

또한, 소결단계에서는 1~5℃/min의 속도로 승온하여, 1000~1350℃에서 30분~4시간 동안 열처리함으로써 최종 다공성 인산칼슘 과립분말이 얻어진다. In addition, in the sintering step, the final porous calcium phosphate granule powder is obtained by heating at a rate of 1 to 5 ° C./min and heat-treating at 1000 to 1350 ° C. for 30 minutes to 4 hours.

상기에서 계면활성제는 표면장력을 낮추고, 임펠러로 교반하는 과정에서 인산칼슘 슬러리 거품을 제조할 수 있고, 여기에 중합개시제 또는 중합 촉매를 첨가하고 중합하면 인산칼슘 슬러리 거품의 기공구조를 그대로 유지하면서 고체 형태로 제조할 수 있다.In the above surfactant, the surface tension is lowered, and the calcium phosphate slurry foam can be prepared in the process of stirring with an impeller, and when the polymerization initiator or the polymerization catalyst is added thereto and the polymerization is carried out, the pore structure of the calcium phosphate slurry foam is maintained as it is. It may be prepared in the form.

이러한 중합 및 경화과정에서 슬러리를 몰드에 투입하여 중합 및 경화한 후, 열처리를 통해서 생성된 블록을 분쇄하여 분급함으로써 500 ㎛~8 mm 크기의 인산칼슘 다공성 과립분말을 제조할 수 있으며, 또한, 상기한 몰드를 내부가 구형의 형태로 가공된 과립형 플라스틱 몰드를 사용할 경우, 몰드로부터 분리하고 열처리하는 과정만으로 구형의 매크로, 마이크로 기공 구조의 과립분말을 제조할 수 있다.In the polymerization and curing process, the slurry is put into a mold to polymerize and cure, and then, the blocks produced through heat treatment are pulverized and classified to prepare a porous calcium phosphate granule powder having a size of 500 μm to 8 mm. When using a granular plastic mold in which a mold is processed into a spherical shape, a granular powder having a spherical macro and micro-pore structure can be prepared only by separating and heat treating the mold.

이상과 같은 본 발명에 의하면, 간단한 중합공정에 의해 다양한 형태 및 크기의 과립분말을 얻을 수 있으며, 매크로, 마이크로 연결 기공 구조 또한 동시에 구현할 수 있다. According to the present invention as described above, granule powders of various shapes and sizes can be obtained by a simple polymerization process, and macro, micro-connected pore structures can be simultaneously implemented.

더욱이 발포법 중에서 물리적 회전 교반에 의한 발포법은 손쉽게 거품을 형성할 수 있으며, 고분자수지 또는 모노머의 중합에 의해 슬러리 거품을 그 형태 그대로 경화할 수 있어 매우 유용하다.Moreover, the foaming method by physical rotary stirring in the foaming method can be easily formed foam, it is very useful because the slurry foam can be cured as it is by polymerization of a polymer resin or monomer.

또한, 기존의 치밀형 골충진재의 제한적 골융합 특성에 비해, 본 발명에 따른 다공성 골충진재는 매크로 기공을 통하여 과립 분말 내부로 골아세포의 이동 및 부착이 가능하고, 또한 혈관의 성장으로 인해 과립 분말 내부에서도 골아세포의 증식 및 골재생이 가능하며, 마이크로 기공 표면은 골아세포의 부착에 용이한 표면 거칠기를 제공하여 골아세포의 부착을 향상시키며, 결과적으로 과립 분말의 내부와 외부에서 동시에 골재생이 이루어져 생체 내 이식 후 빠른 골융합 효과와 함께 자가골의 성장 및 재생 점유율이 기존의 치밀형 골충진재보다 매우 향상되는 효과가 있다.In addition, compared to the limited bone fusion characteristics of the conventional dense bone filler, the porous bone filler according to the present invention is capable of moving and attaching osteoblasts into the granule powder through the macropores, and also inside the granule powder due to the growth of blood vessels Also, osteoblast proliferation and bone regeneration are possible, and the micropore surface provides easy surface roughness for attachment of osteoblasts, thereby improving the adhesion of osteoblasts, and consequently, bone regeneration is simultaneously performed inside and outside the granule powder. After in vivo transplantation, the bone growth and regeneration rate of the autogenous bones together with the rapid bone fusion effect is significantly improved than the conventional dense bone filler.

도 1은 본 발명에 따른 매크로, 마이크로 이중 기공 구조를 갖는 다공성 인산칼슘 과립분말을 주사전자현미경으로 각각 50배와 5만배로 확대한 사진.
도 2는 HA 및 BCP(60%HA-40%β-TCP)를 블록형태로 발포하고 소성한 후 분쇄 전 모습을 30배로 확대한 사진.
도 3은 BCP (60%HA-40%β-TCP), β-TCP, CPP (calcium polyphosphate)를 블록형태로 발포하고 소성하여 분쇄한 과립분말의 모습을 나타내는 사진.
1 is a magnified photograph of a porous calcium phosphate granule powder having a macro, micro double pore structure according to the present invention 50 times and 50,000 times with a scanning electron microscope, respectively.
Figure 2 is a photograph of a 30-fold enlarged state before crushing after sintering and firing HA and BCP (60% HA-40% β-TCP) in the form of a block.
Figure 3 is a photograph showing the appearance of granulated powder pulverized by foaming and calcining BCP (60% HA-40% β-TCP), β-TCP, CPP (calcium polyphosphate) in the form of a block.

이하 본 발명의 실시예를 살펴본다.Hereinafter, an embodiment of the present invention will be described.

본 발명에 따른 과립분말 제조방법은, 조성물 총 중량을 기준으로 하여 20~80 중량%의 증류수에 0.1~5 중량%의 분산제를 첨가하여 교반하는 과정; 주 결합제로서 조성물 총 중량을 기준으로 1~15 중량%의 고분자 수지 또는 모노머를 첨가하고 교반하는 과정; 조성물 총 중량을 기준으로 0.2~5 중량%의 계면활성제를 첨가하고 교반하여 안정한 에멀젼 용액을 제조하는 과정; 보조결합제로서 폴리비닐알코올 혹은 셀룰로오스계열 화합물을 조성물 총 중량을 기준으로 1~5 중량% 첨가하고 교반하는 과정; 조성물 총 중량을 기준으로 0.5~5 중량%의 발포제를 첨가하고 교반하는 과정; 조성물 총 중량을 기준으로 10~60 중량%의 인산칼슘계 분말을 첨가하여 분산하는 과정; 조성물 총 중량을 기준으로 중합개시제 또는 중합 촉매를 0.5~5중량% 첨가하는 과정; 이중 내지 다중 블레이드로 구성된 임펠러로 10~300 rpm의 회전 속도로 교반하여 인산칼슘 슬러리 거품을 발생시키는 과정; 폴리에틸렌 또는 폴리프로필렌 몰드에 인산칼슘 슬러리 거품을 주입하고 중합, 경화하는 과정; 경화된 다공성 인산칼슘 성형체를 1000~1350℃에서 열처리하는 과정을 통하여 매크로, 마이크로 이중 기공구조를 갖는 다공성 인산칼슘 분말을 제조한다. Granule powder production method according to the present invention, based on the total weight of the composition, the process of stirring by adding 0.1 to 5% by weight of a dispersant to 20 to 80% by weight of distilled water; Adding and stirring 1 to 15% by weight of a polymer resin or a monomer based on the total weight of the composition as the main binder; Preparing a stable emulsion solution by adding and stirring 0.2-5% by weight of the surfactant based on the total weight of the composition; Adding 1 to 5 wt% of a polyvinyl alcohol or cellulose-based compound as a co-binder based on the total weight of the composition and stirring; Adding and stirring 0.5 to 5 wt% of a blowing agent based on the total weight of the composition; Adding and dispersing 10 wt% to 60 wt% of calcium phosphate powder based on the total weight of the composition; Adding 0.5 to 5% by weight of a polymerization initiator or a polymerization catalyst based on the total weight of the composition; A process of generating calcium phosphate slurry bubbles by stirring at a rotational speed of 10 to 300 rpm with an impeller composed of double to multiple blades; Injecting calcium phosphate slurry into a polyethylene or polypropylene mold, polymerizing and curing; Through the process of heat-treating the cured porous calcium phosphate molded body at 1000 ~ 1350 ℃ to prepare a porous calcium phosphate powder having a macro, micro double pore structure.

상기에서 수계 분산제는, 폴리카르복실산암모늄염, 폴리아크릴산암모늄염, 폴리메틸메타크릴레이트 중합체에서 선택되는 1 종 이상을 사용한다.The above-mentioned aqueous dispersing agent uses 1 or more types chosen from a polycarboxylic acid ammonium salt, poly ammonium polyacrylate salt, and a polymethylmethacrylate polymer.

그리고, 물리적 교반에 의해 거품을 발생시키기 위해서는 인산칼슘 분말의 함량이 중요하다. In addition, the content of calcium phosphate powder is important to generate bubbles by physical stirring.

인산칼슘의 분말의 함량이 10~30 중량%, 좀 더 바람직하게는 10~20 중량%인 경우와 같이 낮을 때는 슬러리의 점도가 낮고 유동성이 우수하므로 임펠러에 의한 물리적 교반 과정에 의해 쉽게 거품을 발생시킬 수 있다. 이 경우, 기공율은 매우 증가하지만, 너무 낮은 분말 고형분 함량에 의해 성형 및 열처리 후에도 강도가 저하되는 단점이 있다. When the content of calcium phosphate powder is low, such as 10 to 30% by weight, more preferably 10 to 20% by weight, the viscosity of the slurry is low and fluidity is high, so bubbles are easily generated by the physical stirring process by the impeller. You can. In this case, the porosity is very increased, but there is a disadvantage that the strength is lowered even after molding and heat treatment due to the powder solid content that is too low.

분말함량이 70~80 중량%인 경우, 높은 분말 고형분 함량에 의해 강도는 충분히 높지만, 폐기공이 주로 형성되며 기공율이 매우 저하된다. When the powder content is 70 to 80% by weight, the strength is sufficiently high by the high powder solid content, but the waste pores are mainly formed and the porosity is very low.

따라서 적합한 인산칼슘 분말의 고형분 함량이 필요하며, 본 발명에 따라 인산칼슘 분말은 30~60 중량%, 좀 더 바람직하게는 40~50 중량%가 적합하다.Therefore, a solid content of a suitable calcium phosphate powder is required, and according to the present invention, the calcium phosphate powder is suitably 30 to 60% by weight, more preferably 40 to 50% by weight.

그리고 상기한 인산칼슘 분말은 하이드록시아파타이트 (hydroxyapatite), 알파 트리칼슘포스페이트 (α-tricalcium phosphate), 베타 트리칼슘포스페이트 (β-tricalcium phosphate), 수산화아파타이트와 베타 트리칼슘 포스페이트의 혼합체인 이중상 칼슘포스페이트 (biphasic calcium phosphate), 칼슘메타포스페이트 (calcium metaphosphate), 칼슘폴리포스페이트 (calcium polyphosphate), 테트라칼슘포스페이트 (tetracalcium phosphate), 칼슘파이로포스페이트 (calcium pyrophosphate), 디칼슘포스페이트 디하이드레이트 (dicalcium phosphate dihydrate), 디칼슘포스페이트 무수물 (dicalcium phosphate anhydrous), 모노칼슘포스페이트 모노하이드레이트 (monocalcium phosphate monohydrate), SiO2-CaO-P2O5계 바이오글라스, SiO2-CaO-P2O5-B2O3계 바이오글라스, SiO2-CaO-P2O5-Na2O계 바이오글라스, SiO2-CaO-P2O5-K2O계 바이오글라스, SiO2-CaO-P2O5-Li2O계 바이오글라스, SiO2-CaO-P2O5-MgO계 바이오글라스, 기타 SiO2-CaO-P2O5계 기본조성에 B2O3, Na2O, K2O, Li2O, MgO 중에서 선택되는 1 종 이상을 혼합한 복합 바이오글라스 조성물 중에서 선택되는 1 종 이상을 선택하여 사용한다.The calcium phosphate powder is hydroxyapatite, alpha tricalcium phosphate, beta tricalcium phosphate, beta tricalcium phosphate, biphasic calcium phosphate which is a mixture of apatite hydroxide and beta tricalcium phosphate ( biphasic calcium phosphate, calcium metaphosphate, calcium polyphosphate, calcium polyphosphate, tetracalcium phosphate, calcium pyrophosphate, dicalcium phosphate dihydrate, dicalcium phosphate dihydrate Calcium phosphate anhydrous, monocalcium phosphate monohydrate, SiO 2 -CaO-P 2 O 5 based bioglass, SiO 2 -CaO-P 2 O 5 -B 2 O 3 based bioglass , SiO 2 -CaO-P 2 O 5 -Na 2 O -based bioglass, SiO 2 -CaO-P 2 O 5 -K 2 O based bio Ras, SiO 2 -CaO-P 2 O 5 -Li 2 O -based bioglass, SiO 2 -CaO-P 2 O 5 -MgO -based bioglass or other SiO 2 -CaO-P 2 O 5 B 2 based on base compositions One or more selected from among the composite bioglass compositions mixed with one or more selected from O 3 , Na 2 O, K 2 O, Li 2 O, and MgO is used.

그리고, 인산칼슘 슬러리로 거품을 용이하게 발생시키려면 슬러리의 표면장력을 낮추어야 하는데, 이를 위해서 적합한 계면활성제를 사용할 수 있으며, 그 예로는 polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyothylene stearyl ether, polyoxyethylene oleic ether, polyoxyethylene branched decyl ether, polyoxyethylene tridecyl ether, polyoxyethylene sorbitan monooleate, polyoxyethylene lauryl amine, polyoxyethylene stearyl amine, polyoxyethylene oleic amine, polyoxyethylene tallow amine, sodium lauryl sulfate, sodium laureth sultate 중에서 선택되는 1 종 이상을 슬러리 총중량에 대하여 0.2~5 중량%를 첨가함으로써 표면장력을 낮추어 임펠러에 의한 교반시 용이하게 슬러리 거품을 형성할 수 있다.In addition, in order to easily generate bubbles with calcium phosphate slurry, it is necessary to lower the surface tension of the slurry, and suitable surfactants can be used for this purpose, for example, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyothylene stearyl ether, polyoxyethylene oleic ether, polyoxyethylene branched decyl ether, polyoxyethylene tridecyl ether, polyoxyethylene sorbitan monooleate, polyoxyethylene lauryl amine, polyoxyethylene stearyl amine, polyoxyethylene oleic amine, polyoxyethylene tallow amine, sodium lauryl sulfate, sodium laureth sultate By adding 0.2 to 5% by weight based on the total weight of the slurry or more, it is possible to lower the surface tension and to easily form the slurry bubbles during stirring by the impeller.

또한, 물리적 교반에 의해서 거품을 형성시킨 다음, 이 인산칼슘 슬러리 거품을 그대로 경화하기 위해서는 고분자 내지 모노머의 비가역적 중합 공정이 필요하다. In addition, in order to form the foam by physical stirring, and then to cure the calcium phosphate slurry foam as it is, an irreversible polymerization process of the polymer or monomer is required.

이는 수계 결합제인 폴리비닐알코올 내지 셀룰로오스계 결합제는 증류수에서 가수분해하여 용해하는데, 수분에 대해서 가역적 반응을 거치므로, 건조 후에 수분과 접촉하면 다시 재용해되는 단점이 있으므로 비가역적 중합 공정이 필요하다. This is an aqueous binder of polyvinyl alcohol to cellulose-based binder is hydrolyzed and dissolved in distilled water, and because it undergoes a reversible reaction to water, there is a disadvantage in that it is redissolved again after contact with water after drying, an irreversible polymerization process is required.

이를 위한 고분자 수지로서, epoxyacrylate, epoxymethdiacrylate, diurethane dimethacrylate, aliphatic urethane diacrylate, urethane acrylate, aliphatic urethane methacrylate, aliphatic urethane diacrylate, silicone acrylate, silocone diacrylate, silocone hexaacrylate, polyester acrylate, polyester triacrylate, polyester tetraacrylate, polyester hexaacrylate, polyester urethane acrylate, polyether acrylate, polyether tetraacrylate, polyether urethane acrylate, melamine resin, trichloromelamine, polymelamine-co-formaldehyde, hexakismethoxymethyl melamine, butylated melamine, isobutylated melamine, isobutylated urea melamine, trinaphthylmethyl melamine 중에서 선택되는 1 종 이상을 사용한다.For this purpose, epoxyacrylate, epoxymethdiacrylate, diurethane dimethacrylate, aliphatic urethane diacrylate, urethane acrylate, aliphatic urethane methacrylate, aliphatic urethane diacrylate, silicone acrylate, silocone diacrylate, silocone hexaacrylate, polyester acrylate, polyester triacrylate, polyester tetraacrylate, polyester hexaacrylate, polyester At least one selected from urethane acrylate, polyether acrylate, polyether tetraacrylate, polyether urethane acrylate, melamine resin, trichloromelamine, polymelamine-co-formaldehyde, hexakismethoxymethyl melamine, butylated melamine, isobutylated melamine, isobutylated urea melamine, and trinaphthylmethyl melamine.

또한, 상기한 고분자 수지 외에도 모노머의 비가역적 중합 공정을 이용할 수 있으며, 이러한 목적을 위한 모노머로서, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, hydroxyehtyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, allyl methacrylate, ethylene glycol dimethacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, hexandiol diacrylate, hexandiol dimethacrylate, trimethylopropane trimethacrylate, ethyl-3-ethoxy acrylate, triethylene glycol dimethacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, ethylene diacrylate, ethyl-3-amino-3-ethoxy acrylate, tert-butyl acrylate, trimethylsilyl methacrylate, tripropylene glycol diacrylate, hexafluoroisopropyl acrylate, hexafluoroisopropyl methacrylate, phenyl methacrylate, tetraethylene glycol diacrylate, polyehtylene glycol phenyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethylene glycol dicyclopentenyl ether acrylate, ethylene glycol dicyclopentenyl ether methacrylate, sodium acrylate, sodium methacrylate, tridecyl methacrylate, hexyl acrylate, hexyl methacrylate, isodecyl acrylate, isodecyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, benzyl 2-ethyl acrylate, ethyl 2-N-propyl acrylate, benzyl 2-N-propyl acrylate, zinc acrylate, butanediol diacrylate, butanediol dimethacrylate, vinyl acrylate, vinyl methacrylate, N-(Hydroxymethyl) Acrylamide, N,N'-Methylene-bisacrylamide에서 선택되는 1 종 이상의 모노머를 사용한다.In addition to the above-described polymer resin, a monomer irreversible polymerization process can be used. As a monomer for this purpose, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, hydroxyehtyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, allyl methacrylate, ethylene glycol dimethacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, hexandiol diacrylate, hexandiol dimethacrylate, trimethylopropane trimethacrylate, ethyl-3-ethoxy acrylate, triethylene glycol dimethacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, ethoxyethyl acrylate, ethoxyethyl acrylate ethylhexyl acrylate, ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, ethylene diacrylate, ethyl-3-amino-3-ethoxy acrylate, tert-butyl acrylate, trimethylsilyl methacrylate, tripropylene glycol diacrylate, hexafluoroisopropyl acrylate, hexafluoroisopropyl methacrylate, phenyl methacry late, tetraethylene glycol diacrylate, polyehtylene glycol phenyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethylene glycol dicyclopentenyl ether acrylate, ethylene glycol dicyclopentenyl ether methacrylate, sodium acrylate, sodium methacrylate, tridecyl methacrylate, hexyl acrylate, hexyl methacrylate, isodecyl acrylate , isodecyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, benzyl 2-ethyl acrylate, ethyl 2-N-propyl acrylate, benzyl 2-N-propyl acrylate, zinc acrylate, butanediol diacrylate, butanediol dimethacrylate, vinyl acrylate, vinyl methacrylate, N- ( Hydroxymethyl) At least one monomer selected from Acrylamide, N, N'-Methylene-bisacrylamide is used.

상기한 발포용 슬러리의 보조 결합제로 폴리비닐알코올과 셀룰로오스 화합물을 사용할 수 있으며, 이러한 보조 결합제는 계면활성제 첨가하에 고분자 수지 또는 모노머와 함께 분산된 인산칼슘 분말을 균일하게 피복하여 입자간 결합을 도울 수 있다. Polyvinyl alcohol and a cellulose compound may be used as an auxiliary binder of the above-mentioned foaming slurry, and such an auxiliary binder may uniformly coat calcium phosphate powder dispersed with a polymer resin or a monomer under the addition of a surfactant to assist interparticle bonding. have.

이러한 폴리비닐알코올 또는 셀룰로오스 화합물은 먼저, 별도의 증류수에 상기 증류수 총중량에 대하여 폴리비닐알코올과 셀룰로오스 화합물 5~10 중량%를 용해하여 준비하고, 이렇게 준비된 용액을 슬러리 총중량에 대하여 1~5 중량%를 첨가한다.The polyvinyl alcohol or cellulose compound is prepared by first dissolving 5 to 10 wt% of polyvinyl alcohol and cellulose compound with respect to the total weight of the distilled water in a separate distilled water, and preparing the solution 1 to 5 wt% based on the total weight of the slurry. Add.

상기에서 폴리비닐알코올의 분자량은 1,500~25,000의 범위에서 선택되고, 셀룰로오스 화합물은 메틸셀룰로오스, 메틸에틸셀룰로오스, 하이드록시메틸셀룰로오스, 하이드록시에틸셀룰로오스, 하이드록시프로필셀룰로오스, 하이드록시프로필메틸셀룰로오스, 하이드록시프로필에틸셀룰로오스, 카르복시셀룰로오스, 카르복시메틸셀룰로오스, 카르복시에틸셀룰로오스 중에서 선택되는 1 종 이상을 사용한다.The molecular weight of the polyvinyl alcohol is selected from the range of 1,500 ~ 25,000, the cellulose compound is methyl cellulose, methyl ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxy One or more types selected from propylethyl cellulose, carboxycellulose, carboxymethyl cellulose and carboxyethyl cellulose are used.

그리고, 상기한 발포제는 polyglycol ether (nonionic) surfactants (Tergitol®), Polyethylene glycol trimethylnonyl ether (Tergitol®TMN), alkylphenylpolyethylene glycol (Tergitol®NP), Triton® 시리즈 중에서 선택되는 1 종 이상을 사용한다.In addition, the blowing agent is used at least one selected from polyglycol ether (nonionic) surfactants (Tergitol ® ), polyethylene glycol trimethylnonyl ether (Tergitol ® TMN), alkylphenylpolyethylene glycol (Tergitol ® NP), Triton ® series.

그리고, 상기한 인산칼슘 슬러리 거품을 경화하는 방법은 아조계, 페록사이드계에서 선택되는 1 종 이상을 중합개시제로 사용하여 선택된 고분자 수지 결합제 중량의 0.1~5중량%를 첨가하여 공기 내지 질소, 아르곤과 같은 불활성 가스 분위기에서 60~100℃에서 30분~4시간 동안 열중합 한다. In addition, the method for curing the foam of the calcium phosphate slurry is air to nitrogen, argon by adding 0.1 to 5% by weight of the polymer resin binder selected by using at least one selected from azo-based and peroxide-based polymerization initiators. Thermal polymerization at 60 ~ 100 30 minutes to 4 hours in an inert gas atmosphere such as.

중합 촉매로서, 설페이트계와 아민계를 활용하여 선택된 고분자 수지 결합제 중량의 0.1~5 중량% 사용하여 상온에서 30분~4시간 경화한다. As the polymerization catalyst, it is cured at room temperature for 30 minutes to 4 hours using 0.1 to 5% by weight of the weight of the polymer resin binder selected using a sulfate-based and an amine-based.

이때, 설페이트계로서, ammonium persulfate, ammonium peroxodisulfate, sodium persulfate, sodium peroxodisulfate, potassium persulfate, potassium peroxodisulfate 중에서 선택되는 1 종 이상을 사용하고, 아민계로서, N,N,N′,N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetraamine, (2-methylbutyl)amine, bis(2-ethylhexyl)amine, bis(2-methoxyethyl)amine, bis(4-bromophenyl)amine, pentadecafluorotriethylamine, trans-3-(tert-butyldimethylsilyloxy)-N,N-dimethyl-1,3-butadien-1-amine, methoxypolyethylene glycol amine, bis(2-hydroxypropyl)amine, bis(3-aminopropyl)amine, bis(hexamethylene)triamine, bis[3-(trimethoxysilyl)propyl]amine, diethanolamine, N,N-diethyl(trimethylsilylmethyl)amine, N-allyl-N,N-bis(trimethylsilyl)amine, N-benzyloxycarbonyl-(isopropoxymethyl)amine 중에서 선택되는 1 종 이상을 사용한다.In this case, at least one selected from ammonium persulfate, ammonium peroxodisulfate, sodium persulfate, sodium peroxodisulfate, potassium persulfate, and potassium peroxodisulfate as the sulfate type, and as the amine type, N, N, N ′, N′-tetramethylethylenediamine, diethylenetriamine , triethylenetetraamine, (2-methylbutyl) amine, bis (2-ethylhexyl) amine, bis (2-methoxyethyl) amine, bis (4-bromophenyl) amine, pentadecafluorotriethylamine, trans-3- (tert-butyldimethylsilyloxy) -N, N- dimethyl-1,3-butadien-1-amine, methoxypolyethylene glycol amine, bis (2-hydroxypropyl) amine, bis (3-aminopropyl) amine, bis (hexamethylene) triamine, bis [3- (trimethoxysilyl) propyl] amine, diethanolamine Use at least one selected from N, N-diethyl (trimethylsilylmethyl) amine, N-allyl-N, N-bis (trimethylsilyl) amine and N-benzyloxycarbonyl- (isopropoxymethyl) amine.

상기한 공정에 의해 경화된 다공성 분말 성형체는 1~5℃/min의 속도로 승온하여, 1000~1350℃에서 30분~4시간 동안 열처리함으로써 최종 다공성 인산칼슘 다공성 분말이 얻어진다.The porous powder compact cured by the above process is heated at a rate of 1 to 5 ° C./min, and heat treated at 1000 to 1350 ° C. for 30 minutes to 4 hours to obtain a final porous calcium phosphate porous powder.

한편, 상기한 분말 제조 과정에서 사용되는 몰드는 블록형 몰드를 사용하여 열처리 후 분쇄하고 체에 걸러서 분말을 제조할 수도 있고, 몰드를 과립형 몰드를 사용하면 열처리를 통해서 과립형 분말을 얻을 수 있다.
On the other hand, the mold used in the powder manufacturing process may be pulverized after the heat treatment using a block-type mold and sieved to prepare a powder, or by using a granular mold mold can be obtained a granular powder through heat treatment. .

이상과 같은 특징을 갖는 본 발명의 실시예를 하기에서 첨부된 도면을 참조하여 보다 상세하게 살펴본다. 단, 하기 실시예는 발명을 예시하는 것일 뿐, 본 발명이 명시한 실시예에 의하여 국한되는 것은 아니다.An embodiment of the present invention having the above characteristics will be described in more detail with reference to the accompanying drawings. However, the following examples are merely to illustrate the invention, not limited to the examples specified in the present invention.

<실시예><Examples>

20~80 중량%, 좀 더 바람직하게는, 20~50 중량%의 증류수에 분산제로서 폴리카르복실산암모늄염 0.1~1 중량%를 첨가하여 교반하였다. 보조결합제로서 별도의 증류수에 폴리비닐알코올을 10중량% 첨가하여 용해시켜 준비한 폴리비닐알코올 수화용액을 슬러리 총중량기준으로 3~5 중량% 첨가하거나, 별도의 증류수에 하이드록시프로필메틸셀룰로오스를 10중량% 첨가하여 용해시켜 준비한 준비된 하이드록시프로필메틸셀룰로오스 수화용액을 슬러리 총중량기준 3~5 중량% 첨가하고 교반하였다.20 to 80% by weight, more preferably, 0.1 to 1% by weight of polycarboxylic acid ammonium salt as a dispersant was added to 20 to 50% by weight of distilled water and stirred. A polyvinyl alcohol hydration solution prepared by adding and dissolving 10% by weight of polyvinyl alcohol in a separate distilled water as an auxiliary binder is added in an amount of 3 to 5% by weight based on the total weight of the slurry, or 10% by weight of hydroxypropylmethylcellulose in separate distilled water. The prepared hydroxypropylmethylcellulose hydrated solution prepared by adding and dissolving was added 3 to 5% by weight based on the total weight of the slurry and stirred.

표면장력을 낮추고 고분자 주결합제를 수계에서 안정한 에멀전 상태로 만들기 위해, 계면활성제로서 polyoxyethylene sorbitan monooleate를 0.5~2 중량% 추가적으로 첨가하여 교반하였고, 그 다음, 고분자 수지의 주결합제로서 urethane acrylate를 5~10 중량% 첨가하였고, 모노머 주결합제로서 butyl acrylate를 3~5 중량% 추가적으로 첨가하고 교반하였으며, 이어서, 중합개시제로서 벤조일페록사이드를 슬러리 총중량을 기준으로 0.5~2 중량%를 첨가하고 교반하였다. 인산칼슘계 분말 중 하나로서 하이드록시아파타이트 분말을 슬러리 총중량을 기준으로 30~50 중량% 추가적으로 첨가하고 균일한 분산을 위해 교반함으로써 발포용 하이드록시아파타이트 슬러리를 제조하였다.In order to lower the surface tension and make the polymer main binder in a stable emulsion state in water, 0.5 to 2 wt% of polyoxyethylene sorbitan monooleate was added as a surfactant, followed by stirring. Then, urethane acrylate was added as a main binder of the polymer resin 5 to 10 Wt% was added, butyl acrylate was additionally added and stirred in an amount of 3 to 5% by weight as the monomer main binder, and then benzoyl peroxide as a polymerization initiator was added and stirred in an amount of 0.5 to 2% by weight based on the total weight of the slurry. The hydroxyapatite slurry for foaming was prepared by additionally adding hydroxyapatite powder as one of the calcium phosphate powders by 30 to 50% by weight based on the total weight of the slurry and stirring for uniform dispersion.

3중날 블레이드로 50~100 rpm의 속도로 회전하면서 슬러리 거품을 형성하였다.Slurry bubbles were formed while rotating at a speed of 50-100 rpm with a triple blade.

중합촉매로서 0.5~2중량%의 potassium sulfate와 0.5~2중량%의 triethylenetetraamine을 각각 첨가하고 천천히 교반하였다.0.5 to 2% by weight of potassium sulfate and 0.5 to 2% by weight of triethylenetetraamine were added as a polymerization catalyst and stirred slowly.

상기와 같은 방법으로 최종 준비된 하이드록시아파타이트 거품을, 2~8 mm 직경의 반구형 홈이 반복적으로 가공된 폴리프로필렌 재질의 몰드에 주입하고, 다시 동일한 몰드를 위에 덮고 5~15 분에 걸쳐 상온에서 방치함으로써 경화하였다.The hydroxyapatite foam finally prepared by the above method is injected into a mold made of polypropylene with a hemispherical groove of 2 to 8 mm diameter repeatedly processed, and the same mold is covered thereon and left at room temperature for 5 to 15 minutes. It hardened by it.

몰드에서 꺼낸 구형 발포 과립 성형체는 5℃/min의 속도로 승온하여 1000~1350 ℃에서 30분~4시간에 걸쳐 열처리하여 매크로, 마이크로 기공 구조를 갖는 다공성 하이드록시아파타이트 과립분말을 제조하였으며, 구체적인 조성은 표 1의 실시예1 내지 3과 같으며, 실시예 4 내지 6은 상기한 인산칼슘의 종류를 다르게 한 것이다.Spherical foam granules taken out of the mold was heated at a rate of 5 ℃ / min and heat-treated at 1000 ~ 1350 ℃ for 30 minutes to 4 hours to prepare a porous hydroxyapatite granule powder having a macro, micro-pore structure, specific composition Is the same as Examples 1 to 3 of Table 1, Examples 4 to 6 is different from the type of calcium phosphate described above.

Figure 112010027980876-pat00001
Figure 112010027980876-pat00001

상기 실시예 1은 너무 묽어서 매크로 기공 사이의 골격이 매우 가늘어지고, 실시예 3은 분말 함량이 너무 높아서 기공이 많이 막히며, 실시예 2의 분말은 도 1에 나타내며, 실시예 4 내지 6의 분말 사진은 도 2 내지 도 3에 나타내는데, 도 2는 HA 및 BCP (60%HA-40%β-TCP)를 블록형태로 발포하고 소성한 후 분쇄 전 모습을 30배로 확대한 사진이고, 도 3은 BCP (60%HA-40%β-TCP), β-TCP, CPP (calcium polyphosphate)를 블록형태로 발포하고 소성하여 분쇄한 과립분말의 모습을 나타낸 사진이다.Example 1 is too thin so that the skeleton between the macro pores is very thin, Example 3 is too high powder content of the pores are clogged, the powder of Example 2 is shown in Figure 1, Examples 4 to 6 Powder photographs are shown in Figures 2 to 3, Figure 2 is a photograph of an enlarged 30 times before crushing after sintering and firing HA and BCP (60% HA-40% β-TCP) in the form of blocks, Figure 3 Is a photograph showing the granulated powder pulverized by foaming and firing BCP (60% HA-40% β-TCP), β-TCP, and CPP (calcium polyphosphate) in a block form.

도 2에서 (a)는 HA를 이용한 분말의 사진이고 (b)는 BCP를 이용한 분말의 사진이며, 도 3에서 (a)는 BCP를 이용한 분말의 사진이고, (b)는 β-TCP, (c)는 CPP를 이용한 분말의 사진이다.In Figure 2 (a) is a photograph of the powder using HA, (b) is a photograph of the powder using BCP, (a) is a photograph of the powder using BCP, (b) is β-TCP, ( c) is a photograph of the powder using CPP.

이러한 본 발명에 의하여 제조된 다공성 과립분말의 기공크기는, 매크로 기공은 50~700 ㎛, 마이크로 기공은 500nm~10㎛의 크기를 갖는다.The pore size of the porous granule powder prepared according to the present invention, the macro pore has a size of 50 ~ 700 ㎛, micro pores of 500nm ~ 10㎛.

Claims (11)

슬러리 총 중량에 대하여,
20~50 중량%의 증류수와,
0.1~5 중량%의 수계 분산제와,
0.2~5 중량%의 계면활성제,
1~15 중량%의 주결합제 고분자 수지 또는 모노머,
1~5 중량%의 보조결합제로서 폴리비닐알코올 또는 셀룰로오스계열 화합물,
0.5~5 중량%의 발포제,
0.5~5 중량%의 중합개시제 또는 중합촉매,
40~50 중량%의 인산칼슘 분말을 포함하여 구성되며,
100~600㎛ 크기의 서로 연결된 매크로 기공 구조와 500nm~10㎛ 크기의 마이크로 기공구조를 갖는 과립분말을 형성하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물.
Regarding the total weight of the slurry,
20-50% by weight of distilled water,
0.1-5% by weight of an aqueous dispersant,
0.2-5% by weight of surfactant,
1 to 15% by weight of the main binder polymer resin or monomer,
Polyvinyl alcohol or cellulose-based compound as an auxiliary binder of 1 to 5% by weight,
0.5-5% by weight of blowing agent,
0.5-5% by weight of polymerization initiator or polymerization catalyst,
40 to 50 wt% calcium phosphate powder,
A composition for porous foamed calcium phosphate granular powder for physical foaming having a double pore structure, wherein the granular powder has a macroporous structure connected to each other having a size of 100 to 600 μm and a micro pore structure having a size of 500 nm to 10 μm.
제 1항에 있어서, 상기한 분산제는, 폴리카르복실산암모늄염, 폴리아크릴산암모늄염, 폴리메틸메타크릴레이트 중합체에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. The porous phosphoric acid for physical foaming according to claim 1, wherein the dispersant comprises at least one selected from polycarboxylic acid ammonium salts, polyammonium ammonium salts, and polymethyl methacrylate polymers. Calcium granule powder composition. 제 1항에 있어서, 상기한 계면활성제는, polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyothylene stearyl ether, polyoxyethylene oleic ether, polyoxyethylene branched decyl ether, polyoxyethylene tridecyl ether, polyoxyethylene sorbitan monooleate, polyoxyethylene lauryl amine, polyoxyethylene stearyl amine, polyoxyethylene oleic amine, polyoxyethylene tallow amine, sodium lauryl sulfate, sodium laureth sultate 중에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. The method of claim 1, wherein the surfactant is polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyothylene stearyl ether, polyoxyethylene oleic ether, polyoxyethylene branched decyl ether, polyoxyethylene tridecyl ether, polyoxyethylene sorbitan monooleate granular powder of porous calcium phosphate for physical foaming having a double pore structure using at least one selected from polyoxyethylene lauryl amine, polyoxyethylene stearyl amine, polyoxyethylene oleic amine, polyoxyethylene tallow amine, sodium lauryl sulfate and sodium laureth sultate Composition. 제 1항에 있어서, 상기한 주결합제 고분자 수지는, epoxyacrylate, epoxymethdiacrylate, diurethane dimethacrylate, aliphatic urethane diacrylate, urethane acrylate, aliphatic urethane methacrylate, aliphatic urethane diacrylate, silicone acrylate, silocone diacrylate, silocone hexaacrylate, polyester acrylate, polyester triacrylate, polyester tetraacrylate, polyester hexaacrylate, polyester urethane acrylate, polyether acrylate, polyether tetraacrylate, polyether urethane acrylate, melamine resin, trichloromelamine, polymelamine-co-formaldehyde, hexakismethoxymethyl melamine, butylated melamine, isobutylated melamine, isobutylated urea melamine, trinaphthylmethyl melamine 중에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. The method of claim 1, wherein the main binder polymer resin, epoxyacrylate, epoxymethdiacrylate, diurethane dimethacrylate, aliphatic urethane diacrylate, urethane acrylate, aliphatic urethane methacrylate, aliphatic urethane diacrylate, silicone acrylate, silocone diacrylate, silocone hexaacrylate, polyester acrylate, polyester triacrylate polyester tetraacrylate, polyester hexaacrylate, polyester urethane acrylate, polyether acrylate, polyether tetraacrylate, polyether urethane acrylate, melamine resin, trichloromelamine, polymelamine-co-formaldehyde, hexakismethoxymethyl melamine, butylated melamine, isobutylated melamine, isobutylated urea melamine, trinaphthylmethyl melamine Composition for porous calcium phosphate granular powder for physical foaming having a double pore structure, characterized in that at least one species is used. 제 1항에 있어서, 상기한 주결합제 고분자 모노머는, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, hydroxyehtyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, allyl methacrylate, ethylene glycol dimethacrylate, hydroxyethyl methacrylate, glycidyl methacrylate, hexandiol diacrylate, hexandiol dimethacrylate, trimethylopropane trimethacrylate, ethyl-3-ethoxy acrylate, triethylene glycol dimethacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, lauryl acrylate, lauryl methacrylate, ethylene diacrylate, ethyl-3-amino-3-ethoxy acrylate, tert-butyl acrylate, trimethylsilyl methacrylate, tripropylene glycol diacrylate, hexafluoroisopropyl acrylate, hexafluoroisopropyl methacrylate, phenyl methacrylate, tetraethylene glycol diacrylate, polyehtylene glycol phenyl ether acrylate, 2-hydroxy-3-phenoxypropyl acrylate, ethylene glycol dicyclopentenyl ether acrylate, ethylene glycol dicyclopentenyl ether methacrylate, sodium acrylate, sodium methacrylate, tridecyl methacrylate, hexyl acrylate, hexyl methacrylate, isodecyl acrylate, isodecyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, benzyl 2-ethyl acrylate, ethyl 2-N-propyl acrylate, benzyl 2-N-propyl acrylate, zinc acrylate, butanediol diacrylate, butanediol dimethacrylate, vinyl acrylate, vinyl methacrylate, N-(Hydroxymethyl) Acrylamide, N,N'-Methylene-bisacrylamide에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. According to claim 1, wherein the main binder polymer monomer is methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, hydroxyehtyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, allyl methacrylate, ethylene glycol dimethacrylate, hydroxyethyl methacrylate , glycidyl methacrylate, hexandiol diacrylate, hexandiol dimethacrylate, trimethylopropane trimethacrylate, ethyl-3-ethoxy acrylate, triethylene glycol dimethacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, ethoxyethyl acrylate, ethoxyethyl methacrylate, ethylhexyl acrylate, ethylhexyl methacrylate, lauacrylate , ethylene diacrylate, ethyl-3-amino-3-ethoxy acrylate, tert-butyl acrylate, trimethylsilyl methacrylate, tripropylene glycol diacrylate, hexafluoroisopropyl acrylate, hexafluoroisopropyl methacrylate, phenyl methacrylate, tetraethylene glycol diacrylate, polyehtylene glycol phenyl ether acrylate, 2-hydric oxy-3-phenoxypropyl acrylate, ethylene glycol dicyclopentenyl ether acrylate, ethylene glycol dicyclopentenyl ether methacrylate, sodium acrylate, sodium methacrylate, tridecyl methacrylate, hexyl acrylate, hexyl methacrylate, isodecyl acrylate, isodecyl methacrylate, cyclohexyl methacrylate, benzyl 2-methacrylate, benzyl 2-ethylacrylate Choose from acrylate, ethyl 2-N-propyl acrylate, benzyl 2-N-propyl acrylate, zinc acrylate, butanediol diacrylate, butanediol dimethacrylate, vinyl acrylate, vinyl methacrylate, N- (Hydroxymethyl) Acrylamide, N, N'-Methylene-bisacrylamide Composition for porous calcium phosphate granular powder for physical foaming having a double pore structure, characterized in that it is used one or more. 제 1항에 있어서, 상기한 보조결합제는, 폴리비닐알코올, 메틸셀룰로오스, 메틸에틸셀룰로오스, 하이드록시메틸셀룰로오스, 하이드록시에틸셀룰로오스, 하이드록시프로필셀룰로오스, 하이드록시프로필메틸셀룰로오스, 하이드록시프로필에틸셀룰로오스, 카르복시셀룰로오스, 카르복시메틸셀룰로오스, 카르복시에틸셀룰로오스 중에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. The method of claim 1, wherein the co-binder, polyvinyl alcohol, methyl cellulose, methyl ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl ethyl cellulose, A composition for porous calcium phosphate granular powder for physical foaming, characterized in that at least one selected from carboxycellulose, carboxymethyl cellulose and carboxyethyl cellulose is used. 제 1항에 있어서, 상기한 발포제는 polyglycol ether (nonionic) surfactants (Tergitol®), Polyethylene glycol trimethylnonyl ether (Tergitol®TMN), alkylphenylpolyethylene glycol (Tergitol®NP), Triton® 시리즈 중에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. According to claim 1, wherein the blowing agent is used at least one selected from polyglycol ether (nonionic) surfactants (Tergitol ® ), polyethylene glycol trimethylnonyl ether (Tergitol ® TMN), alkylphenylpolyethylene glycol (Tergitol ® NP), Triton ® series Composition for porous foam calcium phosphate granule powder for physical foaming having a double pore structure. 제 1항에 있어서, 설페이트계와 아민계의 반응에 의한 중합 촉매는, 설페이트계로서, ammonium persulfate, ammonium peroxodisulfate, sodium persulfate, sodium peroxodisulfate, potassium persulfate, potassium peroxodisulfate 중에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하고, 아민계로서, N,N,N′,N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetraamine, (2-methylbutyl)amine, bis(2-ethylhexyl)amine, bis(2-methoxyethyl)amine, bis(4-bromophenyl)amine, pentadecafluorotriethylamine, trans-3-(tert-butyldimethylsilyloxy)-N,N-dimethyl-1,3-butadien-1-amine, methoxypolyethylene glycol amine, bis(2-hydroxypropyl)amine, bis(3-aminopropyl)amine, bis(hexamethylene)triamine, bis[3-(trimethoxysilyl)propyl]amine, diethanolamine, N,N-diethyl(trimethylsilylmethyl)amine, N-allyl-N,N-bis(trimethylsilyl)amine, N-benzyloxycarbonyl-(isopropoxymethyl)amine 중에서 선택되는 1 종 이상을 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. The method of claim 1, wherein the polymerization catalyst by the reaction between the sulfate system and the amine system, as the sulfate system, at least one selected from ammonium persulfate, ammonium peroxodisulfate, sodium persulfate, sodium peroxodisulfate, potassium persulfate, potassium peroxodisulfate As an amine type, N, N, N ′, N′-tetramethylethylenediamine, diethylenetriamine, triethylenetetraamine, (2-methylbutyl) amine, bis (2-ethylhexyl) amine, bis (2-methoxyethyl) amine, bis (4 -bromophenyl) amine, pentadecafluorotriethylamine, trans-3- (tert-butyldimethylsilyloxy) -N, N-dimethyl-1,3-butadien-1-amine, methoxypolyethylene glycol amine, bis (2-hydroxypropyl) amine, bis (3-aminopropyl ) amine, bis (hexamethylene) triamine, bis [3- (trimethoxysilyl) propyl] amine, diethanolamine, N, N-diethyl (trimethylsilylmethyl) amine, N-allyl-N, N-bis (trimethylsilyl) amine, N-benzyloxycarbonyl- (isopropoxymethyl) amine is characterized by using at least one selected from Composition for physically foaming porous calcium phosphate granule powder having a double pore structure. 제 1항에 있어서, 상기한 인산칼슘 분말은, 하이드록시아파타이트 (hydroxyapatite), 알파 트리칼슘포스페이트 (α-tricalcium phosphate), 베타 트리칼슘포스페이트 (β-tricalcium phosphate), 수산화아파타이트와 베타 트리칼슘 포스페이트의 혼합체인 이중상 칼슘포스페이트 (biphasic calcium phosphate), 칼슘메타포스페이트 (calcium metaphosphate), 칼슘폴리포스페이트 (calcium polyphosphate), 테트라칼슘포스페이트 (tetracalcium phosphate), 칼슘파이로포스페이트 (calcium pyrophosphate), 디칼슘포스페이트 디하이드레이트 (dicalcium phosphate dihydrate), 디칼슘포스페이트 무수물 (dicalcium phosphate anhydrous), 모노칼슘포스페이트 모노하이드레이트 (monocalcium phosphate monohydrate), SiO2-CaO-P2O5계 바이오글라스, SiO2-CaO-P2O5-B2O3계 바이오글라스, SiO2-CaO-P2O5-Na2O계 바이오글라스, SiO2-CaO-P2O5-K2O계 바이오글라스, SiO2-CaO-P2O5-Li2O계 바이오글라스, SiO2-CaO-P2O5-MgO계 바이오글라스, 기타 SiO2-CaO-P2O5계 기본조성에 B2O3, Na2O, K2O, Li2O, MgO 중에서 선택되는 1 종 이상을 혼합한 복합 바이오글라스 조성물 중에서 선택되는 1 종 이상을 선택하여 사용하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말용 조성물. The method of claim 1, wherein the calcium phosphate powder is hydroxyapatite, alpha tricalcium phosphate, beta tricalcium phosphate, beta tricalcium phosphate, apatite hydroxide and beta tricalcium phosphate. Biphasic calcium phosphate, calcium metaphosphate, calcium polyphosphate, tetracalcium phosphate, calcium pyrophosphate, and dicalcium phosphate dihydrate dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, monocalcium phosphate monohydrate, SiO 2 -CaO-P 2 O 5 based bioglass, SiO 2 -CaO-P 2 O 5 -B 2 O 3 based bioglass, SiO 2 -CaO-P 2 O 5 -Na 2 O -based bioglass, SiO 2 -CaO-P 2 O 5 -K 2 O In the bio-glass, SiO 2 -CaO-P 2 O 5 -Li 2 O -based bioglass, SiO 2 -CaO-P 2 O 5 -MgO -based bioglass or other SiO 2 -CaO-P 2 O 5 based basic composition B 2 O 3 , Na 2 O, K 2 O, Li 2 O, having a double pore structure characterized in that at least one selected from a composite bioglass composition mixed with at least one selected from MgO Composition for porous calcium phosphate granule powder for physical foaming. 슬러리 총 중량에 대하여, 20~50 중량%의 증류수와, 0.1~5 중량%의 수계 분산제와, 0.2~5 중량%의 계면활성제, 1~15 중량%의 주결합제 고분자 수지 또는 모노머, 1~5 중량%의 보조결합제로서 폴리비닐알코올 또는 셀룰로오스계열 화합물, 0.5~5 중량%의 발포제, 0.5~5 중량%의 중합개시제 또는 중합촉매, 40~50 중량%의 인산칼슘 분말을 임펠러로 교반하여 거품을 발생시키는 인산칼슘 슬러리 제조단계,
상기한 바와 같이 거품이 발생된 인산칼슘 슬러리를 몰드에 주입하고 상기 고분자수지 또는 모노머의 중합을 이용한 인산칼슘 슬러리 거품을 상온~100℃의 온도에서 중합, 경화하는 단계,
경화된 다공성 인산칼슘 성형체를 1000~1350℃에서 열처리하여 소결하는 단계를 포함하여 구성되어,
100~600㎛ 크기의 서로 연결된 매크로 기공 구조와 500nm~10㎛ 크기의 마이크로 기공구조를 갖는 과립분말을 형성하는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말 제조 방법.
20-50% by weight of distilled water, 0.1-5% by weight of aqueous dispersant, 0.2-5% by weight of surfactant, 1-15% by weight of main binder polymer resin or monomer, 1-5 A foam was formed by stirring the polyvinyl alcohol or cellulose-based compound, 0.5 to 5% by weight of blowing agent, 0.5 to 5% by weight of polymerization initiator or polymerization catalyst, and 40 to 50% by weight of calcium phosphate powder as impregnated binder by weight. Calcium phosphate slurry producing step,
Injecting the foamed calcium phosphate slurry into the mold as described above, and curing and curing the foamed calcium phosphate slurry using polymerization of the polymer resin or monomer at a temperature of room temperature to 100 ° C,
It comprises a step of sintering the cured porous calcium phosphate molded body by heat treatment at 1000 ~ 1350 ℃,
A method for preparing porous calcium phosphate granule powder for physical foaming having a double pore structure, wherein the granular powder has a macroporous structure of 100 to 600 μm in size and a micro pore structure of 500 nm to 10 μm in size.
제 10항에 있어서, 상기한 인산칼슘 슬러리 제조단계는 슬러리 총 중량에 대하여 20~50 중량%의 증류수와 0.1~5 중량%의 수계 분산제와 0.2~5 중량%의 계면활성제를 첨가하여 수용액을 제조하고,
1~15 중량%의 주결합제 고분자 수지 또는 모노머를 첨가하고 교반하여 에멀전 용액을 제조하며,
보조결합제로서 폴리비닐알코올 또는 셀룰로오스계열 화합물을 1~5 중량% 추가적으로 첨가하고 교반하고,
0.5~5 중량%의 발포제와 0.5~5 중량%의 중합개시제 또는 중합촉매를 추가적으로 첨가하고 교반하며,
40~50 중량%의 인산칼슘 분말을 첨가하고 교반하여 거품을 발생시키는 것을 특징으로 하는 이중 기공구조를 갖는 물리적 발포용 다공질 인산칼슘 과립분말 제조 방법.
The method of claim 10, wherein the calcium phosphate slurry is prepared by adding 20 to 50% by weight of distilled water, 0.1 to 5% by weight of an aqueous dispersant and 0.2 to 5% by weight of surfactant based on the total weight of the slurry. and,
1-15% by weight of the main binder polymer resin or monomer is added and stirred to prepare an emulsion solution,
1 to 5% by weight of polyvinyl alcohol or a cellulose compound is additionally added as a co-binder and stirred,
0.5-5% by weight of blowing agent and 0.5-5% by weight of polymerization initiator or polymerization catalyst are further added and stirred,
A method for producing porous calcium phosphate granule powder for physical foaming having a double pore structure, wherein 40 to 50% by weight of calcium phosphate powder is added and stirred to generate bubbles.
KR1020100040354A 2010-04-29 2010-04-29 Composition and Manufacturing method for porous calcium phosphate granules by physical foaming KR101268408B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100040354A KR101268408B1 (en) 2010-04-29 2010-04-29 Composition and Manufacturing method for porous calcium phosphate granules by physical foaming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100040354A KR101268408B1 (en) 2010-04-29 2010-04-29 Composition and Manufacturing method for porous calcium phosphate granules by physical foaming

Publications (2)

Publication Number Publication Date
KR20110120784A KR20110120784A (en) 2011-11-04
KR101268408B1 true KR101268408B1 (en) 2013-05-31

Family

ID=45391885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100040354A KR101268408B1 (en) 2010-04-29 2010-04-29 Composition and Manufacturing method for porous calcium phosphate granules by physical foaming

Country Status (1)

Country Link
KR (1) KR101268408B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487775B1 (en) 2013-07-30 2015-01-29 군산대학교산학협력단 Artificial bones containing nano β-TPC and preparation method thereof
KR101712555B1 (en) 2015-10-27 2017-03-07 주식회사 썬메디칼 Porous scaffold compositions for tissue engineering and process for preparing thereof
KR101767458B1 (en) * 2016-02-16 2017-08-11 서울대학교산학협력단 Ceramics with multi pore structure and method for manufacturing the same using spray pyrolysis and gas forming method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345794B1 (en) * 2012-02-17 2013-12-27 한국화학연구원 Fabrication method for tricalcium phosphate using pore forming agent, and the tricalcium phosphate thereby
CN102911674A (en) * 2012-10-26 2013-02-06 武汉科技大学 Stable multilayer-film structural foaming agent and preparation method thereof
KR101493752B1 (en) * 2013-11-18 2015-02-17 고려대학교 산학협력단 Macro and micro porous synthetic wedge and manufacturing method comprising the same
KR101569119B1 (en) * 2013-11-25 2015-11-13 한국세라믹기술원 Porous body having advanced machinability and the manufacturing and machining method of the same
CN115227719A (en) * 2022-07-18 2022-10-25 西南交通大学 Calcium-phosphorus nano enzyme with excellent peroxidase activity
CN115645611B (en) * 2022-11-15 2023-09-08 西安理工大学 High-strength self-expansion composite bone cement with osteogenic activity and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302567A (en) 1999-04-13 2000-10-31 Toshiba Ceramics Co Ltd Calcium phosphate porous sintered compact and its production
JP2003201161A (en) 2001-12-27 2003-07-15 Ngk Spark Plug Co Ltd Calcium phosphate hardened body, calcium phosphate porous body and method of producing the same
JP2008063215A (en) * 2006-08-10 2008-03-21 Covalent Materials Corp Calcium phosphate-based porous sintered body and manufacturing method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302567A (en) 1999-04-13 2000-10-31 Toshiba Ceramics Co Ltd Calcium phosphate porous sintered compact and its production
JP2003201161A (en) 2001-12-27 2003-07-15 Ngk Spark Plug Co Ltd Calcium phosphate hardened body, calcium phosphate porous body and method of producing the same
JP2008063215A (en) * 2006-08-10 2008-03-21 Covalent Materials Corp Calcium phosphate-based porous sintered body and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487775B1 (en) 2013-07-30 2015-01-29 군산대학교산학협력단 Artificial bones containing nano β-TPC and preparation method thereof
KR101712555B1 (en) 2015-10-27 2017-03-07 주식회사 썬메디칼 Porous scaffold compositions for tissue engineering and process for preparing thereof
KR101767458B1 (en) * 2016-02-16 2017-08-11 서울대학교산학협력단 Ceramics with multi pore structure and method for manufacturing the same using spray pyrolysis and gas forming method

Also Published As

Publication number Publication date
KR20110120784A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
KR101268408B1 (en) Composition and Manufacturing method for porous calcium phosphate granules by physical foaming
US6479418B2 (en) Porous ceramic body
Potoczek et al. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose
Sánchez-Salcedo et al. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering
Liu et al. Selective laser sintering of a hydroxyapatite-silica scaffold on cultured MG63 osteoblasts in vitro
CN106946586B (en) Porous biological ceramic scaffold and preparation method thereof
JPWO2003035576A1 (en) Calcium phosphate porous sintered body, production method thereof, artificial bone and tissue engineering scaffold using the same
GB2348872A (en) Calcium phosphate porous sintered body and production thereof
CN101716369B (en) Preparation method for calcium polyphosphate-tricalcium phosphate bone bracket
KR101230704B1 (en) Manufacturing method and apparatus for porous calcium phosphate scaffolds
CN114630685A (en) Calcium carbonate composition for medical use, related composition for medical use, and method for producing same
CN105963789B (en) A kind of preparation method of bone tissue engineering stent material
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
CN104771782A (en) Bone repair material beta-tricalcium phosphate and preparation method thereof
CN113582680B (en) Hydroxyapatite ceramic and preparation method and application thereof
TWI275386B (en) Methods for preparing medical implants from calcium phosphate cement and medical implants
KR101397043B1 (en) Preparation Method of Porous Bone Substitutes
JPWO2005039544A1 (en) Calcium phosphate ceramics porous body and method for producing the same
KR20180054379A (en) Method for preparation of bone filler having cells and drug and bone filler prepared thereby
KR101493752B1 (en) Macro and micro porous synthetic wedge and manufacturing method comprising the same
WO2013035690A1 (en) Porous body and method for producing porous body
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
KR101413541B1 (en) Method for manufacturing a three-dimensional scaffold
JP5793045B2 (en) Method for producing ceramic porous body
JP5783864B2 (en) Bioabsorbable implant and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160516

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190522

Year of fee payment: 7