JPH0533898B2 - - Google Patents

Info

Publication number
JPH0533898B2
JPH0533898B2 JP63055399A JP5539988A JPH0533898B2 JP H0533898 B2 JPH0533898 B2 JP H0533898B2 JP 63055399 A JP63055399 A JP 63055399A JP 5539988 A JP5539988 A JP 5539988A JP H0533898 B2 JPH0533898 B2 JP H0533898B2
Authority
JP
Japan
Prior art keywords
light
concentrated
irradiated
amount
signal value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63055399A
Other languages
Japanese (ja)
Other versions
JPH01228828A (en
Inventor
Yoji Marutani
Takashi Nakai
Seiji Hayano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Original Assignee
Mitsubishi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp filed Critical Mitsubishi Corp
Priority to JP63055399A priority Critical patent/JPH01228828A/en
Publication of JPH01228828A publication Critical patent/JPH01228828A/en
Publication of JPH0533898B2 publication Critical patent/JPH0533898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光及び光硬化性流動物質に用いて所
望形状の固体を形成する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical shaping method for use with light and photocurable fluid materials to form solids of desired shapes.

従来の技術及びその問題点 従来、鋳型製作時に必要とされる製品形状に対
応する模型、或いは切削加工の倣い制御用又は形
彫放電加工電極用の模型の製作は、手加工によ
り、或いはNCフライス盤等を用いたNC切削加
工により行なわれていた。しかしながら、手加工
による場合は多くの手間と熟練とを要するという
問題が存し、NC切削加工による場合は、刃物の
刃先形状変更のための交換や摩耗等を考慮した複
雑な工作プログラムを作る必要があると共に、加
工面に生じた段を除くために更に仕上げ加工を必
要とする場合があるという問題が存していた。
Conventional technology and its problems Conventionally, models corresponding to the product shape required during mold production, models for tracing control in cutting machining, or models for die-sinking electric discharge machining electrodes have been produced by hand processing or by using an NC milling machine. This was done by NC cutting using tools such as. However, when using manual machining, there is a problem in that it requires a lot of time and skill, and when using NC machining, it is necessary to create a complex machining program that takes into account replacement and wear to change the shape of the cutting edge. In addition, there is a problem in that additional finishing machining may be required to remove steps formed on the machined surface.

このような問題を解決するものとして本発明者
は、第5図に示す光学的造形法を提案している
(特開昭60−247515号、特開昭62−101408号)。該
方法の1実施態様は、光硬化性流動物質Aを容器
内に収容して該容器の上方から光照射により流動
物質A上下面に及ぶ連続した硬化部分から得られ
る深さとし、該流動物質Aの上方から凸レンズ等
の光収束器3を介して選択的に光照射を行い、該
流動物質A上下面に及ぶ硬化部分を形成し、更に
該硬化部分上に前記深さに相当する深さをなすよ
う、流動物質Aを付加し、流動物質A上方から選
択的光照射を行つて前記硬化部分から連続して上
方へ延びた硬化部分を形成し、これら流動物質A
の付加及び硬化部分の形成を繰り返して所望形状
の固体を形成するものである。第5図に示す硬化
部分Bは、前記所望形状の固体を形成する途上で
の段階的硬化が繰り返されているものである。
In order to solve this problem, the present inventor has proposed an optical modeling method shown in FIG. 5 (Japanese Patent Application Laid-Open No. 60-247515, JP-A No. 62-101408). In one embodiment of the method, the photocurable fluid material A is housed in a container, and the depth obtained from a continuous hardened portion extending to the upper and lower surfaces of the fluid material A is obtained by irradiating light from above the container, and the fluid material A is Light is selectively irradiated from above through a light converging device 3 such as a convex lens to form a hardened portion extending over the upper and lower surfaces of the fluid material A, and furthermore, a depth corresponding to the above-mentioned depth is formed on the hardened portion. The fluid material A is added thereto, selectively irradiated with light from above the fluid material A to form a hardened portion that extends continuously upward from the hardened portion, and the fluid material A
A solid having a desired shape is formed by repeating the addition of and the formation of a hardened portion. The cured portion B shown in FIG. 5 is one in which stepwise curing is repeated during the formation of a solid having the desired shape.

硬化部分を得るための前記選択的光照射は、前
記容器の支持台及び光収束器3を含めた光照射部
の一方又は双方を制御下に移動することにより行
ない得るが、いずれの場合にも、一般的に前記光
照射部と容器との相対的速度は、第4図に示すよ
うに、得ようとする硬化部分の一端を始点として
該硬化部分の一定範囲xを加速されつつ移動し、
ある程度達したのちは等速で前記硬化部分の中間
部yを移動し、そののち該硬化部分の一定範囲z
を減速されつつ他端まで移動して停止し、同様に
加速、等速移動及び減速を繰返して往復移動す
る。この場合、照射は、一定の光エネルギー量で
行なわれているので、上記の移動により、形成さ
れた硬化部分の両端部x,zは、中間部yより多
い光エネルギ照射を受けることになる。一般に、
光硬化性流動物質Aは、光照射による硬化時の収
縮性を有している。従つて、上記光エネルギ照射
量の相違から、両端部の範囲x,z及び中間部y
の収縮量の差が生じ、精度の高い造形が困難とな
り、特に第6図に示すように、硬化部分cに舌片
c′を形成する際には、該舌片c′端部に収縮量相違
による変形が発生するという問題があつた。
The selective light irradiation for obtaining a cured portion can be carried out by moving one or both of the light irradiation parts including the support of the container and the light concentrator 3 under control, but in either case. Generally, the relative speed of the light irradiation part and the container is as shown in FIG. 4, as shown in FIG.
After reaching a certain degree, move at a constant speed through the middle part y of the hardened part, and then move to a certain range z of the hardened part.
It moves to the other end while being decelerated and stops, and similarly accelerates, moves at a constant speed, and decelerates, and moves back and forth. In this case, since the irradiation is performed with a constant amount of light energy, due to the above-mentioned movement, both ends x and z of the formed cured portion are irradiated with more light energy than the middle part y. in general,
The photocurable fluid material A has shrinkage properties when cured by light irradiation. Therefore, due to the difference in the amount of light energy irradiated, the ranges x and z at both ends and the middle part y
This causes a difference in the amount of shrinkage, making it difficult to form with high precision.In particular, as shown in Figure 6, there is a tongue piece in the hardened part c.
When forming c', there was a problem in that the end of the tongue c' was deformed due to the difference in the amount of shrinkage.

本発明の目的は、上記問題点を解決し、光照射
による硬化時に収縮率相違による造形精度の低下
や変形の発生を防止し得る光学的造形法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical modeling method that solves the above-mentioned problems and can prevent deterioration of modeling accuracy and occurrence of deformation due to differences in shrinkage rate during curing by light irradiation.

問題点を解決するための手段 本発明の上記目的は、光により硬化する光硬化
性流動物質を容器内に収容し、該流動物質中に光
エネルギが点状に集中するように光を収束させて
照射を行ないつつ、該光エネルギ集中照射箇所を
前記容器に対し水平及び垂直方向に造形対象の形
状に応じて相対移動させ、形状の固体を得る光学
的造形法であつて、前記光エネルギ集中照射箇所
の移動に関する速度信号値と、光エネルギ量に関
する光強度信号値とを比較し、前記速度信号値が
大きければ集中照射光強度を強くし、前記速度信
号値が小さければ集中照射光強度を弱くして、光
照射箇所に対する光エネルギ照射総量を実質上一
定に保持しつつ前記固体形成を行うことを特徴と
する光学的造形法により達成される。
Means for Solving the Problems The above-mentioned object of the present invention is to house a photocurable fluid material that is hardened by light in a container, and to converge light so that the light energy is concentrated in a point shape in the fluid material. An optical modeling method for obtaining a shaped solid by moving the irradiation area of the concentrated light energy relative to the container in horizontal and vertical directions according to the shape of the object to be modeled, while performing irradiation with the concentrated light energy. The speed signal value related to the movement of the irradiation point and the light intensity signal value related to the amount of light energy are compared, and if the speed signal value is large, the concentrated irradiation light intensity is increased, and if the speed signal value is small, the concentrated irradiation light intensity is increased. This is achieved by an optical modeling method characterized in that the solid state is formed while the total amount of light energy irradiated to the light irradiation location is kept substantially constant.

前記光硬化性流動物質としては、光照射により
硬化する種々の物質を用いることができ、例えば
変性ポリウレタンメタクリレート、オリゴエステ
ルアクリレート、ウレタンアクリレート、エポキ
シアクリレート、感光性ポリイミド、アミノアル
キドを挙げることができる。
As the photocurable fluid substance, various substances that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd.

該光硬化性流動物質に、予め顔料、セラミツク
ス粉、金属粉等の改質用材料を混入したものを使
用してもよい。
The photocurable fluid substance may be mixed with a modifying material such as pigment, ceramic powder, metal powder, etc. in advance.

前記光としては、使用する光硬化性物質に応
じ、可視光、紫外光等種々の光を用いることがで
きる。該光は通常の光としてもよいが、レーザ光
とすることにより、エネルギーレベルを高めて造
形時間を短縮し、良好な集光性を利用して造形精
度を向上させ得るという利点を得ることができ
る。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable material used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

実施例 以下に、本発明の実施例を、添付図面を参照し
つつ説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本発明方法を実施するための装置の
1例を示す。該装置は、光硬化性流動物質Aを収
容する容器1と、該容器1を支持し水平方向及び
垂直方向に移動させうる位置制御台2と、容器1
上方からの光l2を該容器1中の流動物質A上面近
傍で点状に収束させる光収束器3と、該光収束器
3の上方に配置され光l2を該収束器3に向けて反
射する反射ミラー4と、該反射ミラー4に向けて
光l2を発する光源5とを備えている。光源5と反
射ミラー4との間には該光源5から発せられた光
Lのエネルギ量を制御するためのに透過光量可変
板6が光Lの光軸に直交するようにして配設され
ている。該透過光量可変板6は、第1図及び第2
図に示すように円形に形成され、その中心が正逆
回転可能なモータ9軸に取り付けられて回動可能
にされている。この可変板6には、第2図及び第
3図に示すように、アルミニウム等の金属蒸着層
10が、光Lを全く透過させない部分から全てを
透過させる部分までを形成するように、該可変板
6の一回転方向に漸進的に設けられており、該可
変板6の0°から360°の回転に従つて、光Lの透過
率が単調増加するようにされている。これによ
り、光Lの透過エネルギ量の加減は、該可変板6
の回動により変化する光透過率の増減により行な
われる。可変板6と反射ミラー4との間には、ハ
ーフミラー8が配置されている。該ハーフミラー
8は、可変板6を透過した光l1に対する一定割合
の極めて少量の一部光l3反射し、その反射光l3
光センサ7に照射する。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. The apparatus includes a container 1 containing a photocurable fluid material A, a position control table 2 that supports the container 1 and can move it in horizontal and vertical directions, and a container 1.
A light concentrator 3 that converges light l 2 from above into a point near the upper surface of the fluid substance A in the container 1; It includes a reflective mirror 4 that reflects light and a light source 5 that emits light l 2 toward the reflective mirror 4. A variable transmission light amount plate 6 is disposed between the light source 5 and the reflecting mirror 4 so as to be perpendicular to the optical axis of the light L in order to control the energy amount of the light L emitted from the light source 5. There is. The transmitted light quantity variable plate 6 is shown in FIGS. 1 and 2.
As shown in the figure, it is formed in a circular shape, and its center is attached to nine shafts of a motor that can rotate in forward and reverse directions, making it rotatable. As shown in FIGS. 2 and 3, this variable plate 6 has a metal vapor deposited layer 10 made of aluminum or the like formed on the variable plate 6 so as to form a part that does not transmit any light L to a part that transmits all of the light L. They are provided gradually in the direction of one rotation of the plate 6, and the transmittance of the light L increases monotonically as the variable plate 6 rotates from 0° to 360°. Thereby, the amount of transmitted energy of the light L can be adjusted by the variable plate 6.
This is done by increasing or decreasing the light transmittance, which changes with the rotation of the . A half mirror 8 is arranged between the variable plate 6 and the reflection mirror 4. The half mirror 8 reflects a very small amount of light l 3 at a constant rate with respect to the light l 1 transmitted through the variable plate 6 and irradiates the optical sensor 7 with the reflected light l 3 .

位置制御台2は、NC等の自動制御回路11か
ら送られる電気信号S1に基づき、容器1を水平及
び垂直方向に、制御下に移動させるものである。
自動制御回路11は、位置制御台2における水平
移動速度に対応した駆動速度信号S2を比較演算器
12へ送る。該比較演算器12は、光センサ7に
接続されており、該光センサ7から光l3の強度、
ひいては光l1の強度を示す信号S3が送られるよう
になつている。この比較演算器12は、速度信号
S2光強度信号S3とを対比し、位置制御台2の移動
速度信号値が小さければ、可変板6の透過光l1
ネルギ量がこれに対応して小さくなるように、ま
た該移動速度信号値が大きければ、透過光l1エネ
ルギ量がこれに対応して大きくなるように、可変
板6を回転させる信号S4をモータ9へ送る。これ
により、容器1内の光硬化性流動物質Aに対する
光エネルギ集中照射箇所の移動速度に応じて、透
過光l1のエネルギ量が調節され、その結果、照射
光l2のエネルギ量が調節されることになる。この
調節は、前記照射箇所に対する光エネルギ照射総
量が、該照射箇所の移動速度にかかわりなく、実
質上一定に保持されるように行なわれる。
The position control table 2 moves the container 1 under control in the horizontal and vertical directions based on an electric signal S1 sent from an automatic control circuit 11 such as an NC.
The automatic control circuit 11 sends a drive speed signal S 2 corresponding to the horizontal movement speed of the position control table 2 to the comparator 12 . The comparator 12 is connected to the optical sensor 7, and calculates the intensity of the light l3 from the optical sensor 7,
In turn, a signal S3 indicating the intensity of the light l1 is sent. This comparator 12 uses a speed signal
S2 is compared with the light intensity signal S3 , and if the moving speed signal value of the position control table 2 is small, the energy amount of the transmitted light l1 of the variable plate 6 is correspondingly small, and the moving speed is If the signal value is large, a signal S 4 is sent to the motor 9 to rotate the variable plate 6 such that the amount of energy of the transmitted light l 1 becomes correspondingly large. As a result, the energy amount of the transmitted light l 1 is adjusted according to the moving speed of the concentrated light energy irradiation point on the photocurable fluid material A in the container 1, and as a result, the energy amount of the irradiated light l 2 is adjusted. That will happen. This adjustment is made such that the total amount of light energy applied to the irradiation location remains substantially constant, regardless of the speed of movement of the irradiation location.

本装置を用いて所望形状の固体の造形を行うに
は、先ず光硬化性流動物質Aを、上方からの光照
射により該流動物質A上下面に及ぶ連続した硬化
部分が得られる深さとなるように容器1内に収容
し、該流動物質Aの硬化に必要なエネルギ量をも
つて光l2点状に集中するように光照射を行ないつ
つ位置制御台2により容器1を、得ようとする造
形固体の形状に対応して水平移動させる。位置制
御台2の水平移動速度は、第5図の速度変化を示
すが、上述の自動制御回路11、比較演算器1
2、光センサ7から発せられる信号S1,S2,S3
S4に基づく照射光l2のエネルギ量調節により、流
動物質Aの光エネルギ集中照射箇所に対する光エ
ネルギ照射総量が実質上一定に保持されるため、
該流動物質Aの硬化時における部分的収縮量の相
違が防止され、得られた硬化部分の変形が防止さ
れる。この硬化部分上に、更に流動物質Aを前記
深さに相当する深さをなすように付加する。付加
後は、位置制御台2の支持面を下降させて流動物
質A上面と光収束器3との距離を一定に保つ。そ
の後、前述と同様に集中光照射を選択的に行うこ
とにより、前記硬化部分上に新たにこれに連続す
る硬化部分を得ることができる。これら光硬化性
流動物質Aの付加及び硬化部分の形成を繰り返す
ことにより、所望形状の固体を形成することがで
きるが、この一連の硬化部分形成時においても、
前述と同様の調節された光照射が行われるため、
照射光エネルギ量の相違による収縮量相違が発生
せず、変形が生じない。よつて上記所望形状の造
形固体を高い精度でもつて形成することができ
る。
In order to model a solid in a desired shape using this device, first, the photo-curable fluid material A is irradiated with light from above to a depth that will result in a continuous hardened portion covering the upper and lower surfaces of the fluid material A. The fluid substance A is placed in a container 1, and the container 1 is obtained using the position control table 2 while irradiating light so as to concentrate in two points with the energy necessary for curing the fluid substance A. Move horizontally according to the shape of the solid object. The horizontal movement speed of the position control table 2 shows the speed change shown in FIG.
2. Signals S 1 , S 2 , S 3 , emitted from the optical sensor 7,
By adjusting the energy amount of the irradiation light l 2 based on S 4 , the total amount of light energy irradiated to the concentrated light energy irradiation area of the fluid material A is kept substantially constant.
Differences in the amount of local shrinkage during curing of the fluid material A are prevented, and deformation of the resulting cured portions is prevented. A fluid substance A is further added onto this hardened portion to a depth corresponding to the above-mentioned depth. After the addition, the supporting surface of the position control table 2 is lowered to keep the distance between the upper surface of the fluid material A and the light converging device 3 constant. Thereafter, by selectively performing concentrated light irradiation in the same manner as described above, it is possible to obtain a new cured portion continuous to the cured portion. By repeating the addition of the photocurable fluid material A and the formation of the cured portion, a solid having a desired shape can be formed, but even during this series of formation of the cured portion,
Due to the same controlled light irradiation as described above,
There is no difference in the amount of shrinkage due to a difference in the amount of energy of the irradiated light, and no deformation occurs. Therefore, the shaped solid having the desired shape can be formed with high precision.

なお、上記透過光エネルギ量可変板6及び該可
変板6を回動させるモータ9に替え、第4図に示
す透過光エネルギ量可変板16、及び該可変板1
6を光Lの光軸に対し直交方向へ移動させ得るリ
ニアモータ等のリニアアクチユエータ19を使用
することもできる。可変板16は長方形に形成さ
れ、その幅方向中央部に光Lが照射されるように
なつており、長手方向の一端がリニアアクチユエ
ータ19の軸に取り付けられている。この可変板
16は、長手方向一端から他端に向けて光Lを全
く透過しない部分から全てを透過する部分まで漸
進的に設けられた金属蒸着層20により、上述の
可変板6と同様に、光Lの透過量を制御するもの
である。従つて、該可変板16及びリニアアクチ
ユエータ19も、上記可変板6及びモータ9と同
様に、位置制御台2の移動速度変化に対応する透
過光を供給することができる。
Incidentally, instead of the transmitted light energy amount variable plate 6 and the motor 9 for rotating the variable plate 6, a transmitted light energy amount variable plate 16 and the variable plate 1 shown in FIG.
A linear actuator 19 such as a linear motor that can move the light beam 6 in a direction orthogonal to the optical axis of the light L can also be used. The variable plate 16 is formed in a rectangular shape, and the light L is irradiated onto the center portion in the width direction, and one end in the longitudinal direction is attached to the shaft of the linear actuator 19. This variable plate 16 has a metal vapor deposition layer 20 that is gradually provided from one longitudinal end to the other end, from a part that does not transmit any light L to a part that transmits all light L, similar to the variable plate 6 described above. This is to control the amount of light L transmitted. Therefore, like the variable plate 6 and motor 9, the variable plate 16 and the linear actuator 19 can also supply transmitted light corresponding to changes in the moving speed of the position control table 2.

また、比較演算器12に光強度信号S3を送る光
センサは、透過光エネルギ量可変板6,16によ
り反射される光を受ける位置に配置されてもよ
い。この場合、可変板6,16を透過する光l1
強度は、光センサが受ける反射光の強度と逆の増
減をなす。
Further, the optical sensor that sends the light intensity signal S3 to the comparator 12 may be placed at a position that receives the light reflected by the variable transmitted light energy amount plates 6 and 16. In this case, the intensity of the light l 1 transmitted through the variable plates 6 and 16 increases and decreases inversely to the intensity of the reflected light received by the optical sensor.

発明の効果 以上から明らかなように、本発明方法によれ
ば、光エネルギ集中照射箇所の移動に関する速度
信号値と、光エネルギ量に関する光強度信号値と
を比較し、前記速度信号値が大きければ集中照射
光強度を強くし、前記速度信号値が小さければ集
中照射強度を弱くして、光照射箇所に対する光エ
ネルギ照射総量を実質上一定に保持しつつ固体形
成を行うので、光照射による前記流動物質の硬化
時における収縮量の相違の発生を防止し、造形精
度の低下や変形を招くことなく所望形状の固体を
正確に形成することができる光学的造形法を提供
することができる。
Effects of the Invention As is clear from the above, according to the method of the present invention, the speed signal value related to the movement of the concentrated light energy irradiation point and the light intensity signal value related to the amount of light energy are compared, and if the speed signal value is large, The concentrated irradiation light intensity is increased, and if the speed signal value is small, the concentrated irradiation intensity is decreased to form a solid while keeping the total amount of light energy irradiated to the light irradiation location substantially constant, so that the flow due to light irradiation is It is possible to provide an optical modeling method that can prevent differences in the amount of shrinkage during hardening of substances, and can accurately form a solid body in a desired shape without reducing modeling accuracy or causing deformation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例にかかる光学的造形
法を実施するための装置の1例を示す該略図、第
2図はその透過光エネルギ量可変板の1例を示す
正面図、第3図は該可変板の光透過率を示すグラ
フ、第4図は透過光エネルギ量可変板の他の例を
示す斜視図、第5図は位置制御台の水平移動速度
を示すグラフ、第6図及び第7図は従来の光学的
造形法を概略的に示す説明図である。 1……容器、2……位置制御台、3……光収束
器、5……光源、6,16……透過光エネルギ量
可変板、7……光センサ、9……モータ、10,
20……金属蒸着層、11……自動制御回路、1
2……比較演算器、A……光硬化性流動物質、
L,l1,l2,l3……光。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out an optical modeling method according to an embodiment of the present invention, and FIG. 2 is a front view showing an example of a variable transmitted light energy amount plate. FIG. 3 is a graph showing the light transmittance of the variable plate, FIG. 4 is a perspective view showing another example of the variable transmitted light energy amount plate, FIG. 5 is a graph showing the horizontal movement speed of the position control table, and FIG. 7 and 7 are explanatory diagrams schematically showing a conventional optical modeling method. DESCRIPTION OF SYMBOLS 1... Container, 2... Position control stand, 3... Light converging device, 5... Light source, 6, 16... Transmitted light energy amount variable plate, 7... Optical sensor, 9... Motor, 10,
20...Metal deposition layer, 11...Automatic control circuit, 1
2... Comparison calculator, A... Photocurable fluid material,
L, l 1 , l 2 , l 3 ... light.

Claims (1)

【特許請求の範囲】[Claims] 1 光により硬化する光硬化性流動物質を容器内
に収容し、該流動物質中に光エネルギが点状に集
中するように光を収束させて照射を行ないつつ、
該光エネルギ集中照射箇所を前記容器に対し水平
及び垂直方向に造形対象の形状に応じて相対移動
させ、所望形状の固体を得る光学的造形法であつ
て、前記光エネルギ集中照射箇所の移動に関する
速度信号値と、光エネルギ量に関する光強度信号
値とを比較し、前記速度信号値が大きければ集中
照射光強度を強くし、前記速度信号値が小さけれ
ば集中照射光強度を弱くして、光照射箇所に対す
る光エネルギ照射総量を実質上一定に保持しつつ
前記固体形成を行うことを特徴とする光学的造形
法。
1. A photocurable fluid material that is hardened by light is placed in a container, and the fluid material is irradiated with convergent light so that the light energy is concentrated in a dot shape,
An optical modeling method for obtaining a solid having a desired shape by moving the point irradiated with concentrated light energy relative to the container in horizontal and vertical directions according to the shape of the object to be modeled, the method comprising: moving the point irradiated with concentrated light energy; The speed signal value is compared with the light intensity signal value related to the amount of light energy, and if the speed signal value is large, the intensity of the concentrated irradiation light is increased, and if the speed signal value is small, the intensity of the concentrated irradiation light is weakened. An optical modeling method characterized in that the solid formation is performed while the total amount of light energy irradiated to the irradiated area is held substantially constant.
JP63055399A 1988-03-08 1988-03-08 Optical shaping method Granted JPH01228828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055399A JPH01228828A (en) 1988-03-08 1988-03-08 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055399A JPH01228828A (en) 1988-03-08 1988-03-08 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH01228828A JPH01228828A (en) 1989-09-12
JPH0533898B2 true JPH0533898B2 (en) 1993-05-20

Family

ID=12997455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055399A Granted JPH01228828A (en) 1988-03-08 1988-03-08 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH01228828A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277713A (en) * 1988-09-14 1990-03-16 Hitachi Ltd Laser power adjustor
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
DE9018057U1 (en) * 1989-10-30 1994-06-23 3D Systems, Inc., Valencia, Calif. Device for improving stereolithographic construction techniques
US6001297A (en) * 1997-04-28 1999-12-14 3D Systems, Inc. Method for controlling exposure of a solidfiable medium using a pulsed radiation source in building a three-dimensional object using stereolithography
JP5524856B2 (en) * 2007-12-12 2014-06-18 スリーエム イノベイティブ プロパティズ カンパニー Method for manufacturing a structure with improved edge clarity
FR3023012B1 (en) * 2014-06-26 2017-12-01 Univ Joseph Fourier THREE DIMENSIONAL PRINTING DEVICE
JP6800679B2 (en) * 2016-09-29 2020-12-16 キヤノン株式会社 Stereolithography equipment, stereolithography method and stereolithography program
JP6833431B2 (en) 2016-09-29 2021-02-24 キヤノン株式会社 Stereolithography equipment, stereolithography method and stereolithography program
JP6786332B2 (en) 2016-09-29 2020-11-18 キヤノン株式会社 Stereolithography equipment, stereolithography method and stereolithography program
JP6849365B2 (en) 2016-09-29 2021-03-24 キヤノン株式会社 Stereolithography equipment, stereolithography method and stereolithography program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method

Also Published As

Publication number Publication date
JPH01228828A (en) 1989-09-12

Similar Documents

Publication Publication Date Title
CN1029597C (en) Target domain profiling of target optical surfaces using excimer laser photoablation
KR101155055B1 (en) Raster cutting technology for ophthalmic lenses
DE19680863B4 (en) Method for producing optical surfaces and processing machine for carrying out the method
JPH054898B2 (en)
CN101508025B (en) Processing control method of axial symmetry free-form surface of aspheric surface optical elements
JPH06504009A (en) object manufacturing equipment
JPS6340650B2 (en)
JP2001145956A (en) Apparatus and method for laminate shaping of photosetting resin three-dimensional shaped article
WO1988002677A2 (en) Method and apparatus for producing parts by selective sintering
JPH10508256A (en) Method and apparatus for treating any 3D shaped surface with a laser, especially for polishing (polishing) and polishing (texture) a workpiece and for treating the sealing surface of a die
JPH09216292A (en) Optical solidifying and shaping apparatus performing optical scanning simultaneously with re-coating
JPH0533898B2 (en)
CN108983555B (en) Processing method for improving three-dimensional micro-nano structure based on composite scanning
JPH04113828A (en) Manufacture of large-sized stereo-resin model and device therefor
JPS6237109A (en) Forming device for solid form
JPH0533901B2 (en)
JP3948835B2 (en) Stereolithography method and apparatus therefor
JPH0479828B2 (en)
CN110126101A (en) A kind of off-axis how anti-imaging system processing method
JPH11239887A (en) Method and apparatus for automatically setting laser beam machining condition
JP2613929B2 (en) Method and apparatus for forming a three-dimensional shape
JPH01237123A (en) Light flux scanning method in optical shaping method
JPH07151910A (en) Method for exposing diffraction grating
JPH091674A (en) Photo-setting molding method
JPH0533900B2 (en)