JPH05331696A - Iron-based electroplating method - Google Patents

Iron-based electroplating method

Info

Publication number
JPH05331696A
JPH05331696A JP14034892A JP14034892A JPH05331696A JP H05331696 A JPH05331696 A JP H05331696A JP 14034892 A JP14034892 A JP 14034892A JP 14034892 A JP14034892 A JP 14034892A JP H05331696 A JPH05331696 A JP H05331696A
Authority
JP
Japan
Prior art keywords
ions
iron
anode
plating
iridium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14034892A
Other languages
Japanese (ja)
Inventor
Hirohiko Sakai
裕彦 堺
Masatoshi Iwai
正敏 岩井
Hiroaki Nakano
博昭 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14034892A priority Critical patent/JPH05331696A/en
Publication of JPH05331696A publication Critical patent/JPH05331696A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Abstract

PURPOSE:To perform a high quality plating at a high plating current efficiency by using an electrode having an iridium oxide covering layer as an insoluble anode and performing an iron electroplating at a high anode current density, thereby suppressing the energazing-oxidization of Fe<2+> ions. CONSTITUTION:The iron-based electroplating is performed by using an insoluble and in a sulfuric acid-acidic electrolytic plating bath. In such a case, the electrode formed by providing an iridium oxide-contg. covering layer provided on a conductive substrate, such as titanium, is used as the insoluble anode and simultaneously the anode current density is kept to >=50A/dm<2>. Thus, the rate of energazing-oxidization of the Fe<2+> ions can be maintained at a low level and the increase in the Fe<3+> ions can be suppress. Consequently, the replenishing of the Fe<2+> ions and the reduction load of the Fe<3+> ions are reduced, thereby enabling the reduction in cost and the accurate control of the plating liquid as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄系電気めつき方法に関
し、詳しくは、めつき浴中のFe2+イオンの通電酸化を
抑制することができる鉄系電気めつき方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based electroplating method, and more particularly to an iron-based electroplating method capable of suppressing the electro-oxidation of Fe 2+ ions in a plating bath.

【0002】[0002]

【産業上の利用分野】例えば従来の鉛系の不溶性陽極を
用いる鉄系電気めつきにおいては、めつき浴中のFe2+
イオンが陽極反応の一つであるFe2+→Fe3++e-
る反応によつて通電酸化されて、めつき浴中に次第にF
3+が増加する。このように、めつき浴中にFe3+イオ
ンが増加すると、めつき電流効率及びめつき品質が低下
し、作業性を著しく損なう。
[Field of Industrial Application] For example, in iron-based electroplating using a conventional lead-based insoluble anode, Fe 2+ in the plating bath is used.
Ions are electro-oxidized by a reaction of Fe 2+ → Fe 3+ + e −, which is one of the anodic reactions, and gradually become F 2 in the plating bath.
e 3+ increases. As described above, when Fe 3+ ions increase in the plating bath, the plating current efficiency and the plating quality deteriorate, and workability is significantly impaired.

【0003】従来の鉄系電気めつき方法においても、め
つき浴中のFe3+イオンは、Fe2+イオンの供給のため
に、金属鉄を溶解させる際に一部還元されて、減少す
る。しかし、従来の鉄系電気めつき方法においては、上
述したようなFe3+イオンの通電酸化量が多いために、
Fe3+イオン濃度を低下させるためには、金属鉄を過剰
に溶解させなければならず、Fe2+及びFe3+イオン濃
度の制御が容易でなく、また、コスト的にも不利であ
る。
Also in the conventional iron-based electroplating method, Fe 3+ ions in the plating bath are partially reduced and reduced when the metallic iron is dissolved due to the supply of Fe 2+ ions. .. However, in the conventional iron-based electroplating method, there is a large amount of Fe 3+ ion conduction oxidation as described above,
In order to reduce the Fe 3+ ion concentration, it is necessary to excessively dissolve metallic iron, which makes it difficult to control the Fe 2+ and Fe 3+ ion concentrations and is disadvantageous in terms of cost.

【0004】安定した鉄系電気めつきを行なうために
は、Fe3+イオンを低濃度に、また、Fe2+イオン濃度
を一定の濃度範囲に管理しなければならないが、そのた
めには、Fe2+イオンの通電酸化量を少なくする必要が
ある。
In order to carry out stable iron-based electroplating, it is necessary to control the Fe 3+ ion concentration to be low and the Fe 2+ ion concentration to be within a certain concentration range. It is necessary to reduce the amount of electro-oxidation of 2+ ions.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記した鉄
系電気めつきにおける従来の問題を解決するためになさ
れたものであつて、めつき浴中のFe2+イオンの通電酸
化を抑制した鉄系電気めつき方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems in iron-based electric plating, and suppresses the electric oxidation of Fe 2+ ions in the plating bath. It is an object of the present invention to provide a ferrous electric plating method.

【0006】[0006]

【課題を解決するための手段】本発明による鉄系電気め
つき方法は、導電性基体上に酸化イリジウム系の被覆層
を設けてなる電極を不溶性陽極として用いると共に、陽
極電流密度を50A/dm2 以上とすることによつて、
めつき浴中のFe2+イオンの通電酸化を抑制することを
特徴とする。
In the iron-based electroplating method according to the present invention, an electrode having an iridium oxide-based coating layer on a conductive substrate is used as an insoluble anode, and the anode current density is 50 A / dm. By setting it to 2 or more,
It is characterized by suppressing the electric oxidation of Fe 2+ ions in the plating bath.

【0007】本発明においては、不溶性陽極として、導
電性基体上に酸化イリジウム系の被覆層を設けてなる電
極を用いる。導電性基体としては、例えば、チタン、タ
ンタル、ジルコニウム、ニオブ等の金属又はこれらから
選ばれる2種以上の金属の合金が用いられる。また、酸
化イリジウム系の被覆層としては、酸化イリジウムのみ
からなる被覆層でもよいが、酸化イリジウムに白金、タ
ンタル、ルテニウム、パラジウム、チタン、コバルト等
の金属又は化合物の1種又は2種以上を適量添加してな
るものであつてもよい。このような酸化イリジウム系の
被覆層(以下、酸化イリジウム電極という。)の形状
は、板状、メツシユ状、穿孔板状等、いずれでもよい。
In the present invention, an electrode having an iridium oxide-based coating layer on a conductive substrate is used as the insoluble anode. As the conductive substrate, for example, a metal such as titanium, tantalum, zirconium, niobium, or an alloy of two or more kinds of metals selected from these is used. Further, the iridium oxide-based coating layer may be a coating layer made of only iridium oxide, but iridium oxide may be used in an appropriate amount with one or more metals or compounds such as platinum, tantalum, ruthenium, palladium, titanium and cobalt. It may be added. The shape of such an iridium oxide-based coating layer (hereinafter referred to as an iridium oxide electrode) may be any of a plate shape, a mesh shape, a perforated plate shape, and the like.

【0008】図1に鉄−亜鉛めつき時の浴中のFe3+
オン濃度の時間的変化を示す。めつき条件は次のとおり
である。 FeSO4・7H2O: 400g/l ZnSO4・7H2O: 10g/l H2SO4 : 10g/l 陽極電流密度 : 70A/dm2 不溶性電極として、従来の鉛系合金を用いた場合と、本
発明に従つて、酸化イリジウム電極を用いた場合とを比
較すれば、めつき時のFe3+イオン濃度変化に明らかに
差異がある。即ち、本発明に従つて、酸化イリジウム電
極を用いることによつて、浴中のFe3+イオン濃度の増
加が抑制されている。
FIG. 1 shows the change over time in the Fe 3+ ion concentration in the bath during iron-zinc plating. The plating conditions are as follows. FeSO 4 .7H 2 O: 400 g / l ZnSO 4 .7H 2 O: 10 g / l H 2 SO 4 : 10 g / l Anode current density: 70 A / dm 2 When using a conventional lead-based alloy as an insoluble electrode In comparison with the case of using an iridium oxide electrode according to the present invention, there is a clear difference in the change in Fe 3+ ion concentration during plating. That is, according to the present invention, the use of the iridium oxide electrode suppresses the increase in the Fe 3+ ion concentration in the bath.

【0009】図2にFe2+イオンの通電酸化率を示す。
めつき条件は次のとおりである。 FeSO4・7H2O: 400g/l ZnSO4・7H2O: 10g/l H2SO4 : 10g/l Fe3+ :6000ppm 陽極電流密度 : 70A/dm2 また、Fe2+イオンの通電酸化率は、1×104 クーロ
ンの電気量にて5.79gのFe3+イオンが生成する場合
を100%とした。
FIG. 2 shows the electro-oxidation rate of Fe 2+ ions.
The plating conditions are as follows. FeSO 4 .7H 2 O: 400 g / l ZnSO 4 .7H 2 O: 10 g / l H 2 SO 4 : 10 g / l Fe 3+ : 6000 ppm Anode current density: 70 A / dm 2 Also, electric oxidation of Fe 2+ ions The rate was defined as 100% when 5.79 g of Fe 3+ ions were generated at an electric charge of 1 × 10 4 coulombs.

【0010】Fe2+イオンの通電酸化率は、陽極とし
て、従来の鉛系合金を用いる場合、75%であるのに対
して、本発明に従つて、酸化イリジウム電極を用いた場
合、60%である。このように、陽極として、酸化イリ
ジウム電極を用いることによつて、Fe2+イオンの通電
酸化率が低くなる理由は、必ずしも明らかではないが、
不溶性電極を用いた鉄系電気めつきの陽極反応には、 Fe2+→Fe3++e- … (1) H2O→2H+ +(1/2)O2 +2e- … (2) の二つがあり、これらが相互に競合しているところ、陽
極に酸化イリジウム電極を用いた場合には、上記のう
ち、(2) の反応が起こりやすいのがその理由であろう。
事実、純亜鉛めつき液中における酸化イリジウム電極上
の酸素発生電位は、図3に示すように、鉛系合金電極上
のそれよりもかなり低い。即ち、酸化イリジウム電極上
では、低い過電圧にて上記(2) の反応が起こるために、
鉄系電気めつきにおいては、相対的に(1) の反応が少な
くなるものと考えられる。
The electro-oxidation rate of Fe 2+ ions is 75% when a conventional lead alloy is used as the anode, whereas it is 60% when an iridium oxide electrode is used according to the present invention. Is. As described above, it is not always clear why the use of the iridium oxide electrode as the anode lowers the current oxidation rate of Fe 2+ ions.
The anode reaction of the iron-based electric plated using an insoluble electrode, Fe 2+ → Fe 3+ + e - ... (1) H 2 O → 2H + + (1/2) O 2 + 2e - ... second (2) The reason for this is that when these electrodes compete with each other, the reaction of (2) above tends to occur when an iridium oxide electrode is used as the anode.
In fact, the oxygen evolution potential on the iridium oxide electrode in pure zinc plating solution is much lower than that on the lead-based alloy electrode, as shown in FIG. That is, on the iridium oxide electrode, since the reaction of (2) above occurs at a low overvoltage,
It is considered that the reaction of (1) is relatively reduced in iron-based electroplating.

【0011】次に、図4にFe2+イオンの通電酸化率と
陽極電流密度との関係を示すように、陽極電流密度が5
0A/dm2 よりも小さいときは、陽極に酸化イリジウ
ム電極を用いても、Fe2+イオンの通電酸化率がかなり
高い。その理由としては、前述した陽極反応(1) 及び
(2) を比較すれば、(2) の方が反応電位が高いために、
低い陽極過電圧(即ち、低い陽極電流密度)の場合、陽
極電位が(2) の反応電位に達せず、(1) の反応のみが生
じる。たとえ、陽極電位が(2) の反応電位に達しても、
陽極過電圧(陽極電流密度)が低いときは、(1) の反応
が優先的に起こるのであろう。かくして、陽極電流密度
は高いのが好ましく、本発明によれば、陽極電流密度を
50A/dm2 以上とすることによつて、Fe2+イオン
の通電酸化率を低く抑えることができる。
Next, as shown in FIG. 4, which shows the relationship between the current oxidation rate of Fe 2+ ions and the anode current density, the anode current density is 5
When it is less than 0 A / dm 2 , even when an iridium oxide electrode is used as the anode, the current-induced oxidation rate of Fe 2+ ions is considerably high. The reason is that the anodic reaction (1) and
Comparing (2), the reaction potential of (2) is higher,
In the case of low anode overvoltage (that is, low anode current density), the anode potential does not reach the reaction potential of (2), and only the reaction of (1) occurs. Even if the anode potential reaches the reaction potential of (2),
When the anode overvoltage (anode current density) is low, the reaction (1) may occur preferentially. Thus, it is preferable that the anode current density is high, and according to the present invention, by setting the anode current density to 50 A / dm 2 or more, the current oxidation rate of Fe 2+ ions can be suppressed low.

【0012】本発明において、鉄系電気めつき浴は、硫
酸浴とする。めつき層は、鉄系であれば、何ら限定され
るものではなく、例えば、鉄−亜鉛、鉄−リン、鉄−ニ
ツケル等を挙げることができる。
In the present invention, the iron-based electric plating bath is a sulfuric acid bath. The plating layer is not limited as long as it is iron-based, and examples thereof include iron-zinc, iron-phosphorus, and iron-nickel.

【0013】[0013]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。陽極としてチタンに酸化イリジウム系被覆を施して
なる電極を用い、下記に示す組成を有するめつき浴中に
て、電流密度130A/dm2 、めつき流速1.2m/
秒、ストリツプ速度80m/分にて、鉄−亜鉛電気めつ
きを行なつた。めつき浴組成 FeSO4・7H2O: 400g/l ZnSO4・7H2O: 10g/l H2SO4 : 10g/l Fe3+ : 7g/l 浴温 : 60℃ Fe2+イオンの通電酸化率を表1に示す。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. Using an electrode made of titanium coated with iridium oxide as an anode, a current density of 130 A / dm 2 and a plating flow rate of 1.2 m / in a plating bath having the composition shown below.
Iron-zinc electroplating was performed at a stripping speed of 80 m / min for 2 seconds. Plated bath composition FeSO 4 · 7H 2 O: 400g / l ZnSO 4 · 7H 2 O: 10g / l H 2 SO 4: 10g / l Fe 3+: 7g / l Bath temperature: 60 ° C. Fe 2+ energized ions The oxidation rate is shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】このように、本発明の方法によれば、不
溶性陽極として導電性基体上に酸化イリジウム系の被覆
層を設けてなる電極を用いると共に、陽極電流密度を5
0A/dm2 以上とすることによつて、めつき浴中のF
2+イオンの通電酸化を有効に抑制し、めつき液中のF
3+イオンの増加を抑制することができるので、Fe2+
イオンの補給、Fe3+イオンの還元負荷を軽減すること
ができ、かくして、コストの低減、めつき液管理を正確
にすることができる。
As described above, according to the method of the present invention, an electrode having an iridium oxide-based coating layer on a conductive substrate is used as an insoluble anode, and the anode current density is 5%.
By setting it to 0 A / dm 2 or more, F in the plating bath is increased.
Effectively suppresses electro-oxidation of e 2+ ions, and reduces F in the plating solution.
Since it is possible to suppress the increase of e 3+ ions, Fe 2+
The supply of ions and the reduction load of Fe 3+ ions can be reduced, thus reducing the cost and controlling the plating solution accurately.

【0016】[0016]

【図面の簡単な説明】[Brief description of drawings]

【図1】は、めつき時の浴中のFe3+イオン濃度の経時
変化を示すグラフである。
FIG. 1 is a graph showing changes with time in Fe 3+ ion concentration in a bath during plating.

【図2】は、陽極として、鉛−スズ系合金電極及び酸化
イリジウム電極をそれぞれ用いた場合のFe2+イオンの
通電酸化率を示すグラフである。
FIG. 2 is a graph showing a current oxidation rate of Fe 2+ ions when a lead-tin alloy electrode and an iridium oxide electrode are used as an anode.

【図3】は、純亜鉛めつき液中における陽極の酸素発生
電位を示すグラフである。
FIG. 3 is a graph showing an oxygen generation potential of an anode in a pure zinc plating solution.

【図4】は、Fe2+イオンの通電酸化率と陽極電流密度
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the electro-oxidation rate of Fe 2+ ions and the anode current density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基体上に酸化イリジウム系の被覆層
を設けてなる電極を不溶性陽極として用いると共に、陽
極電流密度を50A/dm2 以上とすることによつて、
めつき浴中のFe2+イオンの通電酸化を抑制することを
特徴とする鉄系電気めつき方法。
1. An electrode comprising an iridium oxide-based coating layer provided on a conductive substrate is used as an insoluble anode, and the anode current density is 50 A / dm 2 or more.
An iron-based electroplating method, which comprises suppressing the electro-oxidation of Fe 2+ ions in the plating bath.
JP14034892A 1992-06-01 1992-06-01 Iron-based electroplating method Pending JPH05331696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14034892A JPH05331696A (en) 1992-06-01 1992-06-01 Iron-based electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14034892A JPH05331696A (en) 1992-06-01 1992-06-01 Iron-based electroplating method

Publications (1)

Publication Number Publication Date
JPH05331696A true JPH05331696A (en) 1993-12-14

Family

ID=15266743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14034892A Pending JPH05331696A (en) 1992-06-01 1992-06-01 Iron-based electroplating method

Country Status (1)

Country Link
JP (1) JPH05331696A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4159C1 (en) * 2010-10-25 2012-10-31 Государственный Университет Молд0 Process for electrochemical regeneration of the oxidized iron plating electrolyte
MD4229C1 (en) * 2012-02-16 2013-12-31 Государственный Университет Молд0 Device and method for analytical control of the content of iron(III) ions in the iron plating electrolyte and plant for electrochemical regeneration of iron plating electrolyte with automatic control
CN111864124A (en) * 2020-09-02 2020-10-30 合肥福纳科技有限公司 Preparation method of quantum dot light-emitting device and quantum dot light-emitting device
WO2023100381A1 (en) 2021-12-02 2023-06-08 ディップソール株式会社 Method and system for electroplating article with metal
KR20230092886A (en) 2021-12-02 2023-06-26 딥솔 가부시키가이샤 Method and system for electroplating articles with metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4159C1 (en) * 2010-10-25 2012-10-31 Государственный Университет Молд0 Process for electrochemical regeneration of the oxidized iron plating electrolyte
MD4229C1 (en) * 2012-02-16 2013-12-31 Государственный Университет Молд0 Device and method for analytical control of the content of iron(III) ions in the iron plating electrolyte and plant for electrochemical regeneration of iron plating electrolyte with automatic control
CN111864124A (en) * 2020-09-02 2020-10-30 合肥福纳科技有限公司 Preparation method of quantum dot light-emitting device and quantum dot light-emitting device
CN111864124B (en) * 2020-09-02 2023-03-21 合肥福纳科技有限公司 Preparation method of quantum dot light-emitting device and quantum dot light-emitting device
WO2023100381A1 (en) 2021-12-02 2023-06-08 ディップソール株式会社 Method and system for electroplating article with metal
KR20230092886A (en) 2021-12-02 2023-06-26 딥솔 가부시키가이샤 Method and system for electroplating articles with metal

Similar Documents

Publication Publication Date Title
JP4404871B2 (en) Electroplating bath
US7943032B2 (en) Anode used for electroplating
JP2003503598A5 (en)
Hrussanova et al. Electrochemical properties of Pb–Sb, Pb–Ca–Sn and Pb–Co 3 O 4 anodes in copper electrowinning
US5234572A (en) Metal ion replenishment to plating bath
JPH05331696A (en) Iron-based electroplating method
US3793165A (en) Method of electrodeposition using catalyzed hydrogen
US4445980A (en) Copper electroplating procedure
Hoare Oxygen overvoltage on bright palladium in acid solutions
EP0376447A1 (en) Electrode for electrochemical use
JP2010265519A (en) Tin ion feeder
JPH0355555B2 (en)
JPH06146052A (en) Production of metallic foil by electrolysis
JPS5815550B2 (en) Method for manufacturing coated lead dioxide electrode
JP2623267B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JPS6116358B2 (en)
JPH0355558B2 (en)
JP2000054181A (en) Method for electrolytically refining copper
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
JPH1136099A (en) Plating device and plating method thereby
JPS5871391A (en) Method for electroplating steel wire for welding in copper sulfate bath
JPH09111492A (en) Method for continuously and electroplating metallic sheet
JPH0413436B2 (en)
JPH05230682A (en) Electrolytic electrode
JPH0841695A (en) Reduction of ferric ion in plating solution