JPH0533102A - High speed tool steel excellent in grindability and having high hardness - Google Patents

High speed tool steel excellent in grindability and having high hardness

Info

Publication number
JPH0533102A
JPH0533102A JP19140791A JP19140791A JPH0533102A JP H0533102 A JPH0533102 A JP H0533102A JP 19140791 A JP19140791 A JP 19140791A JP 19140791 A JP19140791 A JP 19140791A JP H0533102 A JPH0533102 A JP H0533102A
Authority
JP
Japan
Prior art keywords
hardness
tool steel
speed tool
less
high speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19140791A
Other languages
Japanese (ja)
Inventor
Koichi Sudo
興一 須藤
Tamiki Yanagisawa
民樹 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP19140791A priority Critical patent/JPH0533102A/en
Publication of JPH0533102A publication Critical patent/JPH0533102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To combine a hardness of >=hRC69 with high toughness by regulating the contents of W, Mo, V, C, Si, Cr, and N in a high speed tool steel to specific values, respectively. CONSTITUTION:The steel is a high speed tool steel having a composition which consists of 0.64-1.74% C, 0.02-0.33% Si, 0.1-0.5% Mn, 3-5% Cr, 3-10% Mo, <=10% W, 1-2% V, 5-15% Co, <=0.06% N, and the balance essentially Fe and where the following quantitative relations are satisfied among alloy components. (A): 14<=Weg<=24, where Weg=2[Mo%]+[W%], (B): Weg-10<=10[V%]<=Weg-4, (C): 11[DELTAC%]+4[Si%]>=-0.68, (D): 50[DELTAC%]+250]Si%]<=72.5, (E) -0.18<=DELTAC%<=+0.10, where DELTAC%=C%-Ceg, Ceg=0.06[Cr%]+0.063[Mo%]+0.033[W%]+0.2[V%], (F): F>=7.30, where F=-0.90[Mo%][C%]+0.45[W %]@{9146/28]C%]+2.4[C%]+0.84[Mo%]+0.92[W%]+2[V%-1]<1/2>+5.45[Si%]+32.7 [N%], (G): L>=20.55,where L=12.2[Mo%]-10.4[Mo%]<2>-3[W%]+7[V %]-25Si].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高速度工具鋼、とくに切
削の困難な硬い材料を加工する工具をつくるための高速
度工具鋼であって、工具製造の際の研削が容易な工具鋼
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high speed tool steel, and more particularly to a high speed tool steel for producing a tool for machining a hard material which is difficult to cut, and which is easy to grind during tool manufacturing. .

【0002】[0002]

【従来の技術】機械加工の対象とする材料のうち、HR
C40を越える高硬度プレハードン材や、炭化物を多量
に含む型材など、難削材とよばれる切削加工の困難なも
のが増えている。 これに対応して切削工具の硬度を高
めたり耐摩耗性を向上させるために、工具材料として、
SKH57系の高V−高Co高速度工具鋼や、AISI
−M41〜M42級の高C−含Co鋼が使用されてい
る。
2. Description of the Related Art Among materials to be machined, HR
The number of hard-to-cut materials called difficult-to-cut materials such as high-hardness pre-hardened materials exceeding C40 and mold materials containing a large amount of carbide is increasing. Corresponding to this, in order to increase the hardness of the cutting tool and improve wear resistance, as a tool material,
SKH57 series high V-high Co high speed tool steel and AISI
-M41 to M42 grade high C-Co containing steel is used.

【0003】しかし、前者は研削性が低く、刃付に当っ
て研磨焼けが生じやすく、焼けによる軟化でせっかくの
高硬度が生かされないことが多い。 また後者は、研削
性についてはあまり問題がないが、靭性が不足でチッピ
ングや折損を起しやすく、それを避けるため硬さを低く
して使用せざるを得ない場合が多い。
However, the former has a low grindability and is liable to be burnt by polishing when it is attached to a blade, and the softness caused by burning often fails to take advantage of its high hardness. Further, the latter has little problem in grindability, but lacks in toughness and is apt to cause chipping and breakage, and in order to avoid it, it is unavoidable that the hardness is lowered before use.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
したような高速度工具鋼の技術の現状を打破し、適正な
熱処理によりHRC69〜70の高い硬度を実現し、か
つ被研削性がすぐれていて研磨焼けを生じることがな
く、従って高硬度を生かすことができ、靭性も高い高速
度工具鋼を提供することにある。
The object of the present invention is to break the current state of the art of high speed tool steel as described above, to achieve a high hardness of HRC69 to 70 by proper heat treatment, and to improve the grindability. An object of the present invention is to provide a high-speed tool steel which is excellent and does not cause polishing and burning, and therefore can utilize high hardness and high toughness.

【0005】[0005]

【課題を解決するための手段】本発明の被研削性にすぐ
れた高硬度高速度工具鋼は、基本的には、C:0.64
〜1.74%、Si:0.02〜0.33%、Mn:
0.10〜0.50%、Cr:3.0〜5.0%、M
o:3.0〜10.0%、W:10.0%以下、V:
1.0〜2.0%およびCo:5.0〜15.0%を含
有し、N:0.060%以下であり、残部が実質上Fe
からなる合金組成を有する高速度工具鋼であって、合金
成分の間で下記の量的関係が満たされるものを A)14≦Weq≦24 ただし Weq=2[Mo%]+[W%] B)Weq−10≦10[V%]≦Weq−4 C)11[ΔC%]+4[Si%]≧−0.68 D)50[ΔC%]+250[Si%]≦72.5 E)−0.18≦ΔC%≦+0.10 ただし ΔC%=C%−Ceq Ceq=0.06[Cr%]+0.063[Mo%]+0.033[W%] +0.2[V%] F)F≧7.30 ただし F=−0.90[Mo%][C%]−0.45[W%][C%] +2.4[C%]+0.84[Mo%]+0.92[W%] +2[V%−1]1/2+5.45[Si%]+32.7[N%] G)L≧20.55 ただし L=12.2[Mo%]−10.4[Mo%]2−3[W%]+7[V%] −25[Si%] 適正焼入れ後、最大硬さが得られる高温焼戻し温度より
少なくとも20℃高い焼戻し温度で焼戻しして、HRC
69以上の高硬度にしたことを特徴とする。
The high hardness and high speed tool steel excellent in grindability of the present invention is basically C: 0.64.
~ 1.74%, Si: 0.02-0.33%, Mn:
0.10 to 0.50%, Cr: 3.0 to 5.0%, M
o: 3.0 to 10.0%, W: 10.0% or less, V:
1.0 to 2.0% and Co: 5.0 to 15.0% are contained, N: 0.060% or less, and the balance is substantially Fe.
A high speed tool steel having an alloy composition consisting of: A) 14 ≦ Weq ≦ 24 where Weq = 2 [Mo%] + [W%] B ) Weq-10 ≦ 10 [V%] ≦ Weq-4 C) 11 [ΔC%] + 4 [Si%] ≧ −0.68 D) 50 [ΔC%] + 250 [Si%] ≦ 72.5 E) − 0.18 ≦ ΔC% ≦ + 0.10 However, ΔC% = C% −Ceq Ceq = 0.06 [Cr%] + 0.063 [Mo%] + 0.033 [W%] + 0.2 [V%] F) F ≧ 7.30 However, F = −0.90 [Mo%] [C%] − 0.45 [W%] [C%] + 2.4 [C%] + 0.84 [Mo%] + 0.92 [ W%] +2 [V% -1 ] 1/2 +5.45 [Si%] + 32.7 [N%] G) L ≧ 20.55 proviso L = 12.2 [M %] - 10.4 [Mo%] 2 -3 [W%] + 7 [V%] -25 [Si%] after proper quenching, tempering at least 20 ° C. higher tempering temperature than the high temperature tempering temperature maximum hardness is obtained And then HRC
It is characterized by having a high hardness of 69 or more.

【0006】この工具鋼は、上記した基本的な合金組成
に加えて、下記の任意に添加する合金元素のグループの
一方または両方を含有する合金組成を有していてもよ
い: I)REM:0.60%以下、Y:2.0%以下、Z
r:2.0%およびHf:2.0%からえらんだ1種ま
たは2種、および II)Ni:2.0%以下、Cu:1.0%以下および
B:0.05%からえらんだ1種または2種以上。
This tool steel may have, in addition to the basic alloy composition described above, an alloy composition containing one or both of the following optionally added groups of alloying elements: I) REM: 0.60% or less, Y: 2.0% or less, Z
1 or 2 selected from r: 2.0% and Hf: 2.0%, and II) Ni: 2.0% or less, Cu: 1.0% or less and B: 0.05% 1 type or 2 or more types.

【0007】[0007]

【作用】本発明の高速度工具鋼は、鋼中の炭化物のうち
バナジウムの炭化物VCが被研削性に対して最も大きな
影響を与えることに着目し、その微細化を意図して完成
したものである。 VCは硬質であるため工具に耐摩耗
性を与える重要な役割を果すが、一方で一次炭化物(晶
出炭化物)が巨大になりやすく、巨大にしてしまうと被
研削性が損われる。
The high-speed tool steel of the present invention was completed with the intention of refining, focusing on the fact that vanadium carbide VC among the carbides in the steel has the greatest effect on the grindability. is there. Since VC is hard, it plays an important role in imparting wear resistance to tools, but on the other hand, primary carbides (crystallized carbides) tend to become huge, and if they become huge, grindability is impaired.

【0008】工具鋼を溶製したとき、凝固に当って晶出
する共晶炭化物をM2C型にしておくと、この炭化物は
Vが固溶しやすいから、鍛造や圧延時の加熱によって、
2C→M6C+MC(VC)の反応により微細なVCを
析出させることが可能なはずである。 言い換えれば、
一次VCが晶出せず、すべてのVCが上記の炭化物変換
反応で析出するVCであるようにすれば、被研削性が向
上することが期待できる。 発明者らは、このような期
待を実現すべく、一次VCの晶出限界を検討した。 そ
の結果、それはV量およびW当量Weq=2[Mo%]
+[W%]と密接な関係があり、それらの値が前記した
条件を満たせば、一次VCが晶出しないことがわかっ
た。
When the eutectic carbide that crystallizes upon solidification when the tool steel is melted is made into the M 2 C type, V easily dissolves in this carbide, so that when heating during forging or rolling,
It should be possible to precipitate fine VC by the reaction of M 2 C → M 6 C + MC (VC). In other words,
If the primary VC does not crystallize and all VCs are VCs precipitated in the above carbide conversion reaction, it is expected that the grindability is improved. The inventors examined the crystallization limit of primary VC in order to realize such expectations. As a result, it is V amount and W equivalent Weq = 2 [Mo%]
It has been found that there is a close relationship with + [W%], and if those values satisfy the above-mentioned conditions, the primary VC does not crystallize.

【0009】すなわち、Weqは十分な切削性能を得る
のに必要な炭化物量を確保するために14%以上としな
ければならず、一方、熱間加工性を損わないよう24%
までとすべきである(前記条件A)。 V量は、まず耐
摩耗性を得、前記の式M2C→M6C+MCの反応を起す
に必要な最少量として1.0%の下限があり、かつ耐摩
耗性にとって必要なVC量を確保する条件として10
[V%]≧Weq−10があり、次に、一次VCが晶出
しない限度として2.0%の上限と、10[V%]≦W
eq−4が定められた(前記条件B)。 これを図示す
れば図1のとおりであって、WeqとV量とは図1の斜
線の領域になければならない。
That is, Weq must be 14% or more in order to secure the amount of carbide necessary to obtain sufficient cutting performance, while 24% so as not to impair hot workability.
Up to the above (condition A above). The amount of V has a lower limit of 1.0% as the minimum amount necessary for obtaining wear resistance and causing the reaction of the above formula M 2 C → M 6 C + MC, and the amount of VC required for wear resistance is 10 to secure
[V%] ≧ Weq-10, and then the upper limit of 2.0% as a limit for preventing primary VC from crystallizing and 10 [V%] ≦ W.
eq-4 has been defined (the condition B). This is illustrated in FIG. 1, and the Weq and the V amount must be in the shaded area in FIG.

【0010】難削材を加工するための工具鋼は、いうま
でもなく高い硬度をもたなければならず、本発明では、
適正な焼入れ焼戻しにより到達するレベルを、HRC6
9〜70に置いた。 適正な焼入れ焼戻しとは、炭化物
を十分に固溶させて、焼戻し時の残留オーステナイトの
分解や炭化物の析出硬化により高い硬さを生じ、結晶粒
の粗大化や溶融相の現出など、いわゆる過熱組織による
極端な靭性低下のない焼入れ温度を選択し、かつ、図2
に示したような焼戻し硬さ曲線において最大硬さを得ら
れる温度(図2における温度A)より、少なくとも20
℃高い温度、図2の斜線の領域で焼き戻しを行なうこと
である。 このような温度で焼戻す理由は、真空または
ガス雰囲気での焼戻しにおいては操業条件が低温度側へ
バラつきやすく、その結果生じる硬さ低下や組織の不安
定さを避けるという、実際上の動機にもとづくものであ
る。 ただし、温度Aより過度に高い温度で焼戻すと、
折角の高硬度を減殺することになるから、そのようなこ
とのないよう操業を管理しなければならない。
Needless to say, the tool steel for processing difficult-to-cut materials must have high hardness.
The level reached by proper quenching and tempering is HRC6
Placed at 9-70. Appropriate quenching and tempering means that so-called overheating, such as coarsening of crystal grains and appearance of molten phase, is caused by sufficient solid solution of carbide and decomposition of retained austenite during tempering and precipitation hardening of carbide. Select a quenching temperature that does not cause an extreme decrease in toughness due to the structure, and
From the temperature (temperature A in FIG. 2) at which the maximum hardness can be obtained in the tempering hardness curve as shown in FIG.
That is, tempering is performed at a temperature higher by 0 ° C. in the shaded area in FIG. The reason for tempering at such a temperature is that when tempering in a vacuum or gas atmosphere, the operating conditions tend to fluctuate toward the lower temperature side, and the practical motivation is to avoid the resulting decrease in hardness and instability of the structure. It is based on it. However, if tempered at a temperature excessively higher than temperature A,
Since the high hardness of the corner will be diminished, the operation must be controlled to prevent such a situation.

【0011】炭素量およびケイ素量についていえば、焼
戻し硬さHRC69〜70を確保するため焼入時の固溶
C量や炭化物生成量を増大する必要から、まず高C量を
採用する。 この高C化とは、含有C量とC当量Ceq
=0.06[Cr%]+0.063[Mo%]+0.0
33[W%]+0.2[V%]との差、ΔC%=[C
%]−Ceqを増大させることである。 鋼中のSiは
鋼中の炭化物M6C中に固溶するため、Siを増大する
ことはCを増大することと同様の効果がある。C量とS
i量との関係について検討した結果、前記のWeqの範
囲内で焼戻し硬さHRC69以上を確保するには、11
[ΔC%]+4[Si%]≧−0.68(前記条件C)
をみたすべきことを見出した。
Regarding the amount of carbon and the amount of silicon, a high amount of C is first adopted because it is necessary to increase the amount of solid solution C and the amount of carbide produced during quenching in order to secure the tempering hardness HRC69 to 70. This increase in C means the content C and C equivalent Ceq.
= 0.06 [Cr%] + 0.063 [Mo%] + 0.0
33 [W%] + 0.2 [V%] difference, ΔC% = [C
%]-To increase Ceq. Since Si in steel forms a solid solution in the carbide M 6 C in steel, increasing Si has the same effect as increasing C. C amount and S
As a result of studying the relationship with the amount of i, in order to secure a tempering hardness of HRC69 or higher within the range of the above Weq, 11
[ΔC%] + 4 [Si%] ≧ −0.68 (condition C)
I found what I should do.

【0012】ところで、高C化および高Si化は工具の
靭性低下につながるので、この点の対策を考えなければ
ならない。 出願人は、高C化により低下する靭性を低
Si化によって補うことをさきに提案したが、難削材の
加工や切削作業の無人化に耐える切削工具を提供するに
は、それでもなお靭性が不足である。 実際的な限界と
しては、靭性を抗折力(試験片3×5×30mm、支点
間20mmの三点曲げ試験による)であらわしたときに
2800MPaを確保することであり、HRC69以上
でこの靭性を実現するには、50[ΔC%]+250
[Si%]≦72.5(前記条件D)をみたすことが必
要である。
By the way, since an increase in C and an increase in Si lead to a reduction in the toughness of the tool, it is necessary to consider a measure against this point. The applicant has previously proposed that the toughness that decreases with the increase in C is supplemented with the decrease in Si, but to provide a cutting tool that can withstand the machining of difficult-to-cut materials and the unmanned cutting work, the toughness is still There is a shortage. The practical limit is to ensure 2800 MPa when the toughness is expressed by transverse rupture strength (test piece 3 × 5 × 30 mm, three-point bending test with 20 mm between fulcrums), and this toughness is HRC69 or higher. To realize, 50 [ΔC%] + 250
It is necessary to satisfy [Si%] ≦ 72.5 (the above condition D).

【0013】ΔCの値は、これが増大してある限界を越
えると、焼入時の残留オーステナイト量が過大になり、
逆に焼戻し硬さの低下が始まる。 この限界は0.10
%である。 ΔCとSiの量の関係を示せば図3のとお
りであって、縦軸と3本の直線で囲まれた四角形の内部
を採用することになる。 この図からさらに、Siの上
限値0.33%が導き出される。
If the value of ΔC increases and exceeds a certain limit, the amount of retained austenite during quenching becomes excessive,
Conversely, tempering hardness begins to decrease. This limit is 0.10
%. The relationship between ΔC and the amount of Si is shown in FIG. 3, and the inside of a quadrangle surrounded by the vertical axis and three straight lines is adopted. From this figure, the upper limit value of Si of 0.33% is further derived.

【0014】Siは、靭性の点からは低い量であること
が好ましいが、本来は脱酸剤であって、低すぎると精錬
中に溶鋼の酸素ポテンシャルが高くなって清浄度が低下
することがあるので、下限値として0.02%を設け
た。 従って、Si量は0.02〜0.33%の範囲と
なる。 ΔCおよびSiに関する図3においては、前記
の四角形の内部でさらに斜線を施した領域を使用する。
ΔCは、図3における2本の直線の交点で最小とな
る。 この値は−0.18%であるから、前記したΔC
量の範囲−0.18〜+0.10%が与えられる。
Si is preferably a low amount from the viewpoint of toughness, but it is originally a deoxidizing agent, and if it is too low, the oxygen potential of the molten steel becomes high during refining and the cleanliness decreases. Therefore, 0.02% was set as the lower limit. Therefore, the Si amount is in the range of 0.02 to 0.33%. In FIG. 3 relating to ΔC and Si, a hatched region is used inside the quadrangle.
ΔC is minimum at the intersection of the two straight lines in FIG. Since this value is −0.18%, the above ΔC
A quantity range of -0.18 to + 0.10% is given.

【0015】このようにしてΔCが与えられると、C量
はΔC+Ceqであるから、Ceqの最大および最小を
与えるCr,Mo,WおよびVの値を前記の範囲からえ
らんで計算することにより、C:0.64〜1.74%
の範囲が定められる。
When ΔC is given in this way, the amount of C is ΔC + Ceq. Therefore, by calculating the values of Cr, Mo, W and V which give the maximum and minimum of Ceq from the above range, C : 0.64 to 1.74%
The range of is defined.

【0016】W量とMo量のバランスについて説明する
と、さきに述べたように炭化物の転換反応を利用して共
晶炭化物を微細化することが肝要なところ、これを実現
するためには前記のF≧7.30(条件F)をみたすこ
とが必要である。また、凝固時に骨状の巨大な炭化物が
晶出することを防ぐには、やはり前記したL≦20.5
5(条件G)がみたされなければならない。 これらの
関係は、図4および図5にみる結果から帰納的に得られ
たものであって、図4(V=1.3%の場合)において
も図5(V=1.5%の場合)においても、曲線Fおよ
びLによって囲まれた斜線の領域にあってはじめて羽毛
状の共晶炭化物が析出し、それが前記の炭化物転換反応
を行なって、粒状のM6Cと微細VCとを析出させる。
図4の白丸、図5の黒丸は、代表的な合金組成をそれ
ぞれあらわしている。
Explaining the balance between the W content and the Mo content, it is essential to make the eutectic carbide fine by utilizing the conversion reaction of the carbide as described above. In order to realize this, the above is mentioned. It is necessary to satisfy F ≧ 7.30 (condition F). Further, in order to prevent crystallization of huge bone-like carbides during solidification, the above L ≦ 20.5 is also used.
5 (Condition G) must be met. These relationships are obtained by induction from the results shown in FIGS. 4 and 5, and even in FIG. 4 (V = 1.3%), FIG. 5 (V = 1.5%). ), Feather-like eutectic carbides precipitate only in the hatched region surrounded by the curves F and L, and the carbide conversion reaction described above is performed to generate granular M 6 C and fine VC. Precipitate.
White circles in FIG. 4 and black circles in FIG. 5 represent typical alloy compositions.

【0017】Nは、F≧7.30の条件をみたすために
は、若干存在した方が好都合であるが、含有量が多くな
るとVCを粗大化させる傾向がみられるから、0.06
%の限界を置いた。
To satisfy the condition of F ≧ 7.30, it is convenient for N to be present in a small amount, but if the content is large, it tends to coarsen VC, so 0.06
Put a limit of%.

【0018】Crは、焼入性確保のため3.0%以上添
加する。 多量に過ぎると硬さが低下し、鍛造性も不良
になるから8.0%を上限とする。
Cr is added in an amount of 3.0% or more in order to secure hardenability. If the amount is too large, the hardness decreases and the forgeability becomes poor, so the upper limit is 8.0%.

【0019】Mnは脱酸脱硫剤として、また焼入性を高
める成分として、0.1%以上添加する。 0.5%の
上限は、熱間加工性の低下を理由に置いたものである。
Mn is added as a deoxidizing and desulfurizing agent and a component for improving hardenability, and is added in an amount of 0.1% or more. The upper limit of 0.5% is set because of the deterioration of hot workability.

【0020】Coは、熱処理後の硬さを向上させる成分
であって、効果は5%以上で顕著であるが、次第に飽和
してくるので、15%以内の添加に止める。
Co is a component for improving the hardness after heat treatment, and the effect is remarkable at 5% or more, but since it gradually becomes saturated, addition is limited to within 15%.

【0021】上記の必須成分に加えて任意に添加するこ
とのできる合金成分の作用と組成範囲の限定理由は、つ
ぎのとおりである。 I)REM,Y,Zr,Hf 鋼中の不純物SおよびPと結合し、熱間加工性および靭
性を向上させる。また、Nと結合してVCの微細化にも
役立つ。 多量に過ぎると鋼の清浄度を害し、靭性もか
えって低下するから、REMは0.60%、Y,Zrお
よびHfは2.0%を上限とした。
The reasons for limiting the action and composition range of alloying components that can be added in addition to the above essential components are as follows. I) REM, Y, Zr, Hf Combines with impurities S and P in steel to improve hot workability and toughness. Further, it is also useful for miniaturization of VC by combining with N. If the amount is too large, the cleanliness of the steel will be impaired and the toughness will rather deteriorate, so the upper limit was 0.60% for REM and 2.0% for Y, Zr and Hf.

【0022】II)Ni,Cu,B NiおよびCuは基地を強化して強度および靭性を高
め、Bは焼入性を高めるから、Niは2.0%以下、C
uは1.0%以下、Bは0.05%以下の範囲で、添加
するのもよい。 この限度を超えて添加しても、効果は
それ以上にならない。
II) Ni, Cu, B Ni and Cu strengthen the matrix to enhance strength and toughness, and B enhances hardenability. Therefore, Ni is 2.0% or less, C
It is also possible to add u in the range of 1.0% or less and B in the range of 0.05% or less. Addition beyond this limit has no further effect.

【0023】[0023]

【実施例】下記の組成(重量%、残部Fe)の合金を溶
製した。 比較例は、既知のモリブデン系高速度工具鋼
のひとつである。
Example An alloy having the following composition (weight%, balance Fe) was melted. The comparative example is one of known molybdenum-based high speed tool steels.

【0024】 実施例No.1 実施例No.2 比 較 例 C 1.11 1.20 1.14 Si 0.18 0.14 0.59 Mn 0.30 0.29 0.31 Cr 4.19 4.28 3.92 Mo 6.24 5.88 8.61 W 6.00 7.04 2.09 V 1.27 1.54 1.75 Co 7.95 7.93 7.96 N 0.028 0.031 0.022 ΔC 0.013 0.032 −0.05 Weq 18.48 18.80 19.31 熱間圧延ののちVCの晶出状況をしらべたところ、実施
例2例はともに微細な二次晶が認められ、期待した炭化
物転換反応が起ったことがわかった。 一方、比較例で
は巨大な炭化物が生成していた。
Example No. 1 Example No. 2 ratio Comparative example C 1.11 1.20 1.14 Si 0.18 0.14 0.59 Mn 0.30 0.29 0.31 Cr 4.19 4.28 3.92 Mo 6.24 5. 88 8.61 W 6.00 7.04 2.09 V 1.27 1.54 1.75 Co 7.95 7.93 7.96 N 0.028 0.031 0.022 ΔC 0.013 0. 032-0.05 Weq 18.48 18.80 19.31 After hot rolling, the crystallization state of VC was examined. As a result, fine secondary crystals were observed in both Example 2 and expected carbide conversion reaction. I found out that happened. On the other hand, in the comparative example, a huge carbide was formed.

【0025】実施例No.1およびNo.2、ならびに
比較例の供試材につき、1200℃または1220℃の
焼入れののち、500〜580℃の種々の温度で焼戻し
をして、硬さを測定した。 その結果を、それぞれ図6
および図7に示す。
Example No. 1 and No. With respect to the test materials of 2 and Comparative Example, after quenching at 1200 ° C. or 1220 ° C., tempering was performed at various temperatures of 500 to 580 ° C., and hardness was measured. The results are shown in Fig. 6 respectively.
And shown in FIG.

【0026】次に、実施例において硬さがHRC69以
上の条件をみたした熱処理条件、すなわち焼入れ120
0℃−焼戻し540,560または580℃のものにつ
いて、靭性のめやすとして抗折力を測定した。 そのデ
ータを硬さとの関係において示せば、図8のとおりであ
る。
Next, in the embodiment, the heat treatment condition which satisfies the condition that the hardness is HRC69 or more, that is, the quenching 120
For 0 ° C.-tempering 540, 560 or 580 ° C., the transverse rupture strength was measured as a measure of the toughness. The data is shown in FIG. 8 in relation to hardness.

【0027】最後に、研削性をつぎの試験条件によって
しらべた。 試験片サイズ:10×10×50mm 試験機:ならい研削盤 砥石:WA−120 送り:0.02mm/ストローク 切込み:0.3mm×5回 砥石周速:1370m/mm 研削油:なし(乾式) 研削比はつぎのとおりであって、実施例はともに目標
とする値15を超えていた。 実施例No.1 実施例No.2 比較例(MH64) 硬さ 69.0 69.2 68.6 研削比 16.0 15.2 13.9
Finally, the grindability was evaluated according to the following test conditions.
checked. Specimen size: 10 × 10 × 50mm Testing machine: Profile grinding machine Grindstone: WA-120 Feed: 0.02 mm / stroke Depth of cut: 0.3 mm x 5 times Grinding wheel peripheral speed: 1370 m / mm Grinding oil: None (dry type)   The grinding ratios are as follows, and the examples are target
The value of 15 was exceeded.         Example No. 1    Example No. Two    Comparative example (MH64) Hardness 69.0 69.2 68.6 Grinding ratio 16.0 15.2 13.9

【0028】[0028]

【発明の効果】本発明の高速度工具鋼は、硬さがHRC
69以上のレベルを確保し、それと高い靭性とを両立さ
せたものである。 この工具鋼は被研削性がすぐれてい
て研磨焼けの心配がないから、高い硬さを生かして耐摩
耗性のよい工具を与えることができる。 従ってこの材
料は、エンドミルをはじめとする種々の用途に好適であ
る。
The high speed tool steel of the present invention has a hardness of HRC.
A level of 69 or higher is ensured, and high toughness is achieved at the same time. Since this tool steel has excellent grindability and does not worry about polishing and burning, it is possible to provide a tool having good wear resistance by utilizing high hardness. Therefore, this material is suitable for various applications such as end mills.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の高速度工具鋼における成分組成の限
定理由を説明する目的で示した図であって、V量とWe
qとの関係を示すグラフ。
FIG. 1 is a diagram shown for the purpose of explaining the reasons for limiting the composition of components in the high-speed tool steel of the present invention, in which V content and We
The graph which shows the relationship with q.

【図2】 本発明の高速度工具鋼の熱処理条件を説明す
る目的で示した、焼戻し硬さ曲線のグラフ。
FIG. 2 is a graph of a tempering hardness curve shown for the purpose of explaining heat treatment conditions of the high speed tool steel of the present invention.

【図3】 図1と同様な目的で示した図であって、ΔC
とSi量との関係を示すグラフ。
3 is a diagram for the same purpose as FIG. 1, showing ΔC
Is a graph showing the relationship between Si and the amount of Si.

【図4】 高速度工具鋼におけるMo量とW量の関係に
よって、一次晶出する共晶炭化物の形状がどのように異
なるかを示すグラフ。
FIG. 4 is a graph showing how the shape of primary-crystallized eutectic carbide differs depending on the relationship between the Mo content and the W content in the high-speed tool steel.

【図5】 図4と同様のグラフ。FIG. 5 is a graph similar to FIG.

【図6】 本発明の実施例のデータであって、焼入れ焼
戻し後の硬さを示すグラフ。
FIG. 6 is a graph showing the hardness after quenching and tempering, which is data of Examples of the present invention.

【図7】 図6と同様のグラフ。FIG. 7 is a graph similar to FIG.

【図8】 本発明の実施例のデータであって、硬さと抗
折力の関係を示すグラフ。
FIG. 8 is a graph showing the relationship between hardness and transverse rupture strength, which is data of Examples of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.64〜1.74%、Si:0.
02〜0.33%、Mn:0.10〜0.50%、C
r:3.0〜5.0%、Mo:3.0〜10.0%、
W:10.0%以下、V:1.0〜2.0%およびC
o:5.0〜15.0%を含有し、N:0.060%以
下であり、残部が実質上Feからなる合金組成を有する
高速度工具鋼であって、合金成分の間で下記の量的関係
が満たされるものを、 A)14≦Weq≦24 ただし Weq=2[Mo%]+[W%] B)Weq−10≦10[V%]≦Weq−4 C)11[ΔC%]+4[Si%]≧−0.68 D)50[ΔC%]+250[Si%]≦72.5 E)−0.18≦ΔC%≦+0.10 ただし ΔC%=C%−Ceq Ceq=0.06[Cr%]+0.063[Mo%]+0.033[W%] +0.2[V%] F)F≧7.30 ただし F=−0.90[Mo%][C%]−0.45[W%][C%] +2.4[C%]+0.84[Mo%]+0.92[W%] +2[V%−1]1/2+5.45[Si%]+32.7[N%] G)L≧20.55 ただし L=12.2[Mo%]−10.4[Mo%]2−3[W%]+7[V%] −25[Si%] 適正焼入れ後、最大硬さが得られる高温焼戻し温度より
少なくとも20℃高い焼戻し温度で焼戻しして、HRC
69以上の高硬度にしたことを特徴とする被研削性にす
ぐれた高硬度高速度工具鋼。
1. C: 0.64 to 1.74%, Si: 0.
02-0.33%, Mn: 0.10-0.50%, C
r: 3.0 to 5.0%, Mo: 3.0 to 10.0%,
W: 10.0% or less, V: 1.0 to 2.0% and C
A high-speed tool steel containing o: 5.0 to 15.0%, N: 0.060% or less, and the balance being substantially Fe. A) 14 ≦ Weq ≦ 24 where Weq = 2 [Mo%] + [W%] B) Weq-10 ≦ 10 [V%] ≦ Weq-4 C) 11 [ΔC% ] +4 [Si%] ≧ −0.68 D) 50 [ΔC%] + 250 [Si%] ≦ 72.5 E) −0.18 ≦ ΔC% ≦ + 0.10 However, ΔC% = C% −Ceq Ceq = 0.06 [Cr%] + 0.063 [Mo%] + 0.033 [W%] + 0.2 [V%] F) F ≧ 7.30 However, F = −0.90 [Mo%] [C%] -0.45 [W%] [C%] +2.4 [C%] +0.84 [Mo%] +0.92 [W%] +2 [V% -1] 1/2 + 5.45 [Si%] + 32.7 [N%] G) L ≧ 20.55 However, L = 12.2 [Mo%]-10.4 [Mo%] 2-3 [W%] + 7 [V% -25 [Si%] After proper quenching, tempering is performed at a tempering temperature that is at least 20 ° C higher than the high tempering temperature at which the maximum hardness is obtained, and then HRC
High hardness and high speed tool steel with excellent grindability, characterized by having a hardness of 69 or higher.
【請求項2】 合金が、前記組成に加えて、REM:
0.60%以下、Y:2.0%以下、Zr:2.0%以
下、およびHf:2.0%以下からえらんだ1種または
2種以上を含有する請求項1の高硬度高速度工具鋼。
2. The alloy comprises, in addition to the above composition, REM:
High hardness and high speed according to claim 1, containing one or more selected from 0.60% or less, Y: 2.0% or less, Zr: 2.0% or less, and Hf: 2.0% or less. Tool steel.
【請求項3】 合金が、前記組成に加えて、Ni:2.
0%以下、Cu:1.0%以下、およびB:0.05%
以下からえらんだ1種または2種以上を含有する請求項
1または2の高硬度高速度工具鋼。
3. The alloy comprises Ni: 2.
0% or less, Cu: 1.0% or less, and B: 0.05%
The high hardness and high speed tool steel according to claim 1 or 2, which contains one or more selected from the following.
JP19140791A 1991-07-31 1991-07-31 High speed tool steel excellent in grindability and having high hardness Pending JPH0533102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19140791A JPH0533102A (en) 1991-07-31 1991-07-31 High speed tool steel excellent in grindability and having high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19140791A JPH0533102A (en) 1991-07-31 1991-07-31 High speed tool steel excellent in grindability and having high hardness

Publications (1)

Publication Number Publication Date
JPH0533102A true JPH0533102A (en) 1993-02-09

Family

ID=16274094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19140791A Pending JPH0533102A (en) 1991-07-31 1991-07-31 High speed tool steel excellent in grindability and having high hardness

Country Status (1)

Country Link
JP (1) JPH0533102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150068912A (en) * 2013-12-12 2015-06-22 뵐러 에델슈탈 게엠베하 운트 코 카게 Method for manufacture objects consisting of iron-cobalt-molybdenum/wolfram-nitrogen-alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150068912A (en) * 2013-12-12 2015-06-22 뵐러 에델슈탈 게엠베하 운트 코 카게 Method for manufacture objects consisting of iron-cobalt-molybdenum/wolfram-nitrogen-alloys

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US3850621A (en) High-speed tool steels
JPH0717986B2 (en) Alloy tool steel
US4302248A (en) High manganese non-magnetic steel with excellent weldability and machinability
EP0452526B1 (en) High fatigue strength metal band saw backing material
JPH11350065A (en) Non-refining steel for hot forging excellent in machinability
JP2005336553A (en) Hot tool steel
JPS61213350A (en) High-speed tool steel having superior grindability
JPH02182867A (en) Powdered tool steel
JP2760001B2 (en) High speed tool steel
JP2960496B2 (en) Cold tool steel
JPH0533102A (en) High speed tool steel excellent in grindability and having high hardness
JP2004091840A (en) Steel for metal mold with excellent machinability and polishability
US1998957A (en) Ferrous alloy
JPH05171373A (en) Powder high speed tool steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
US5102479A (en) High strength non-heat refining free cutting steels
JPH025813B2 (en)
JPH05163551A (en) Powder high-speed tool steel
JP2560760B2 (en) High speed tool steel
JP2001192762A (en) High toughness non-heat treated steel for hot forging
JPS62211354A (en) Manufacture of high-speed tool steel
JPH08158017A (en) Production of cutting tool for gear cutting
JP3922691B2 (en) Free-cutting steel
JP2716441B2 (en) High speed tool steel