JPH025813B2 - - Google Patents
Info
- Publication number
- JPH025813B2 JPH025813B2 JP15415581A JP15415581A JPH025813B2 JP H025813 B2 JPH025813 B2 JP H025813B2 JP 15415581 A JP15415581 A JP 15415581A JP 15415581 A JP15415581 A JP 15415581A JP H025813 B2 JPH025813 B2 JP H025813B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- major axis
- hardness
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 44
- 239000010959 steel Substances 0.000 claims description 44
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 229910052748 manganese Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims 7
- 229910001315 Tool steel Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010137 moulding (plastic) Methods 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102220259718 rs34120878 Human genes 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、プラスチツク成形金型用鋼の改良に
関する。
The present invention relates to improvements in steel for plastic forming molds.
一般に成形用工具鋼は、高い靭性と耐摩耗性を
もつべきことはいうまでもないが、プラスチツク
成形金型用鋼においては、被削性をはじめとする
加工性もすぐれていることが必要である。
従来、鋼の被削性を向上させるために、S,
Se,Te,あるいはBi,Caなどの元素を添加する
ことが行なわれている。これらは、靭性にとつて
はマイナスにはたらくので、その含有量は適切に
えらばなければならない。Sは最も代表的な被削
性改善元素であつて、主としてMnS系の介在物
を形成してこの目的をはたす。しかし、この硫化
物系介在物はその形態が問題であつて、加工によ
り一定方向に延伸された形で存在すると、材料の
機械的性質の異方性を高くし、好ましくない。
Generally, it goes without saying that tool steel for forming should have high toughness and wear resistance, but steel for plastic forming molds also needs to have excellent workability including machinability. be. Conventionally, in order to improve the machinability of steel, S,
Addition of elements such as Se, Te, Bi, and Ca is being carried out. Since these have a negative effect on toughness, their content must be selected appropriately. S is the most typical machinability improving element, and serves this purpose mainly by forming MnS-based inclusions. However, the shape of these sulfide-based inclusions is a problem, and if they exist in a form stretched in a certain direction due to processing, they will increase the anisotropy of the mechanical properties of the material, which is undesirable.
本発明の目的は、上記のような事情にかんが
み、被削性改善元素としてSを含有する工具鋼に
おいて、すぐれた靭性を達成しながらも靭性を中
心とする機械的特性の異方性が低い材料、とくに
プラスチツク成形金型用鋼を提供することにあ
る。
In view of the above circumstances, an object of the present invention is to provide a tool steel containing S as an element for improving machinability, which achieves excellent toughness while exhibiting low anisotropy in mechanical properties centered on toughness. The object of the present invention is to provide materials, particularly steel for plastic molds.
このような要望をみたす本発明のプラスチツク
成形金型用鋼は、後記するような工具鋼として必
要な合金元素とともに、S:0.035〜0.40%およ
びZr:0.001〜0.5%を含有し、残余が実質的にFe
からなる組成を有し、鋼中に存在する長径2μ以
上の硫化物系介在物のうち、少なくとも80%が長
短径化10以下であつて、Zr(C,N)の占める面
積率が0.4%以下であり、硬さがHRC18以上であ
ることを特徴とする。
工具鋼として必要な合金元素とその添加量につ
いて記せば、代表的にはつぎのようなグループが
挙げられる。
(1) C:0.40〜1.5%、Si:0.10〜2.5%および
Mn:0.1〜2.5%
この合金成分を含有する代表的な鋼は、
S55Cである。
(2) C:0.30〜0.60%、Si:0.10〜2.0%、Mn:
0.1〜2.0%、Cr:0.2〜2.0%およびMo:0.05〜
1.0%
この組成をもつ鋼は、SCM440である。
(3) C:0.20〜0.50%、Si:0.10〜2.0%、Mn:
0.10〜2.5%、Cr:1.5〜3.5%、Mo:0.10〜1.5
%およびV:0.01〜0.50%
いわゆる「Cr−Mo−V鋼」の一部が、これ
に該当する。
(4) C:0.30〜0.90%、Si:0.10〜1.5%、Mn:
0.10〜1.5%、Cr:6.5〜15%、Mo:0.01〜1.50
%およびV:0.01〜1.0%
「Cr−Mo−V鋼」の他の一部が、この組成
を有する。
(5) C:0.95〜2.0%、Si:0.10〜2.0%、Mn:
0.10〜2.5%、Cr:9.0〜15%、Mo:0.20〜1.5%
およびV:0.01〜1.0%
これはSKD11鋼の組成である。
(6) C:0.10〜0.25%、Si:0.10〜1.0%、Mn:
0.40〜2.0%、Ni:2.0〜4.0%、Mo:0.05〜1.0
%、Cu:0.50〜1.5%およびAl:0.50〜1.5%
いわゆる「3Ni−1Cu−Al鋼」が、これに属
する。
(7) C:0.10%以下、Si:0.30%以下、Mn:0.30
%以下、Ni:10.0〜25%、Cr:7.0%以下、
Mo:3.0〜15%、Co:5.0〜25%、Al:0.01〜
1.0%、Ti:1.0%以下、B:0.20%以下および
Ca:0.10%以下
「マルエージ鋼」がこれに該当する。
The steel for plastic molding molds of the present invention, which satisfies these demands, contains S: 0.035-0.40% and Zr: 0.001-0.5%, with the remainder being substantially Fe
Among the sulfide inclusions with a major axis of 2 μ or more existing in the steel, at least 80% have a major axis of 10 or less, and the area ratio occupied by Zr (C, N) is 0.4%. It is characterized by a hardness of HRC18 or higher. The following groups are representative of the alloying elements necessary for tool steel and their addition amounts: (1) C: 0.40-1.5%, Si: 0.10-2.5% and
Mn: 0.1-2.5% Typical steels containing this alloy component are:
It is S55C. (2) C: 0.30-0.60%, Si: 0.10-2.0%, Mn:
0.1~2.0%, Cr: 0.2~2.0% and Mo: 0.05~
1.0% Steel with this composition is SCM440. (3) C: 0.20-0.50%, Si: 0.10-2.0%, Mn:
0.10~2.5%, Cr: 1.5~3.5%, Mo: 0.10~1.5
% and V: 0.01 to 0.50% Some of the so-called "Cr-Mo-V steels" fall under this category. (4) C: 0.30-0.90%, Si: 0.10-1.5%, Mn:
0.10~1.5%, Cr: 6.5~15%, Mo: 0.01~1.50
% and V: 0.01 to 1.0% Other parts of "Cr-Mo-V steel" have this composition. (5) C: 0.95-2.0%, Si: 0.10-2.0%, Mn:
0.10~2.5%, Cr: 9.0~15%, Mo: 0.20~1.5%
and V: 0.01-1.0% This is the composition of SKD11 steel. (6) C: 0.10-0.25%, Si: 0.10-1.0%, Mn:
0.40~2.0%, Ni: 2.0~4.0%, Mo: 0.05~1.0
%, Cu: 0.50-1.5% and Al: 0.50-1.5% The so-called "3Ni-1Cu-Al steel" belongs to this category. (7) C: 0.10% or less, Si: 0.30% or less, Mn: 0.30
% or less, Ni: 10.0 to 25%, Cr: 7.0% or less,
Mo: 3.0~15%, Co: 5.0~25%, Al: 0.01~
1.0%, Ti: 1.0% or less, B: 0.20% or less, and
Ca: 0.10% or less “Marage steel” falls under this category.
一般に被削性と靭性とは両立し難い特性であ
り、両方ともすぐれた工具鋼をつくることは、こ
れまで困難とされていた。発明者らは、適量の被
削性改善元素Sに加えて特定量のZrを併用する
ことによつて、硫化物系介在物の形態を調節する
ことを企てて研究した結果、Zrの存在にともな
つて必然的に生成するZr(C,N)が被削性を大
いに損なうことを知り、その量を規制することに
よつて、被削性と靭性の両方ともすぐれた工具鋼
を実現することができた。
Sの含有量0.005〜0.40%は、主として所期の
被削性改善効果が得られる限度と、鋼の清浄度と
の調和により決定されるが、Zr量との関連もあ
る。
Zrの添加量0.001〜0.5%の下限は、前述の硫化
物系介在物の形態調節の作用が認められる最少限
度であり、上限は、Zr(C,N)多量の生成にも
とづく被削性および熱間加工性の低下を避ける見
地からの値である。どちらも、前記のS量との関
連において決定された。
硫化物系介在物の形態についていえば、これが
鋼の機械的性質の異方性に大いに影響することは
知られているが、工具鋼とくに型用鋼の実用特性
とくに靭性との関係は未知であつたので、発明者
らは多数の実験により詳細に調査した。その結
果、硫化物系介在物のうち長径2μ以上の大型の
ものが強度異方性を左右すること、大型であつて
も長短径比が10以内で極端に展伸されていないな
らば実質上悪影響はないこと、そしてこのような
大型であまり長くない硫化物系介在物が全硫化物
系介在物中の個数にして80%以上の大勢を占めて
いれば、実用上望ましい等方性が実現することを
見出したわけである。
鋼中の硫化物系介在物(主としてMnS)が加
工により展伸されてひも状になりやすいことはす
でに知られているが、Zrを含有する鋼において
は、ZrがMnS中に固溶し、その結果、硫化物系
介在物は比較的よく球形に保たれることを発明者
らは見出した。上記したような硫化物系介在物の
形態は、S:0.005〜0.4%とZr:0.001〜0.5%の
範囲内の、両者の適切な添加量の組み合わせによ
つて実現する。適切な量比は、実験により容易に
決定できる。
Zr(C,N)すなわちZrの炭化物および窒化物
は、きわめて硬いものであるから切削バイトの刃
先を著しく摩耗させ、上述のとおり被削性を損
う。実用上許容できる限度は、鋼材の切断面にお
けるその面積率にして0.40%であることが、発明
者らの研究により明らかになつた。
Zrを添加して利用した上でZr(C,N)の面積
率を低く抑えるには、鋼の溶製に当つてこれら炭
窒化物の生成を避けるよう配慮すべきである。
Zrは活性の強い金属であつて、N,C,Oとく
にNと結合しやすいから、添加時に大気中のN2
と反応しないよう、ArをキヤリアガスとするZr
粉末のランスインジエクシヨンのような添加手段
をとることが推奨される。
そのほかの工具鋼として必要な添加元素が本発
明のプラスチツク成形金型用鋼において果たすそ
れぞれの役割は、従来の工具鋼に関して知られて
いるところと基本的に異なるものではないが、本
発明の特徴との関連において以下に説明する。
C: 工具鋼とくに型用鋼としての硬さおよび耐
摩耗性を確保するため、使用目的に応じて含有
量をえらぶ。過大な存在は靭性を低下させる。
Si: 溶製時の脱酸効果に加えて、基地の強化に
役立つので、本発明の鋼には比較的多量に含有
させる。ただし、多すぎれば靭性と高温での軟
化抵抗性を低下させ、地疵を多くする。また、
被削性にとつても好ましくない。
Mn: 溶製時の脱酸・脱硫効果のほか、焼入性
の向上に有効であり、これも本発明では比較的
多量に使用する。限界を与えるものは、被削性
の低下と、結晶性の粗大化に起因する靭性の低
下である。
Ni: 基地の強靭化と焼入性の確保に効果的で
あり、鋼の用途に応じて必要量添加する。しか
し、被削性の点からは限度がある。
Cr: 基地を強化し、焼入性、耐摩耗性、耐酸
化性の確保に役立つから、これも使用目的によ
り積極的に加える。靭性と被削性の両方への悪
影響が、実用上の限度を画する。
Co: やはり基地の強化、高温での軟化抵抗性
を与える上で有効である。もつとも、あまり多
く添加すると靭性が低くなり、また経済的にも
不利になる。
Mo,WおよびV: これらはいずれも強力な炭
化物形成元素であつて、耐摩耗性、熱処理硬さ
および高温での焼きもどし軟化抵抗性を得るの
に有用である。これも多量の添加は、靭性を低
下させるとともに製造を困難にし、被削性の点
からも実用性を失なわせる。
Cu: 析出硬化を助長し、耐摩耗性の確保に有
効である。しかし多量の存在は、靭性にとつて
好ましくない。
Al: 溶製時の脱酸剤としてはたらくほか、結
晶粒の微細化を通して靭性を向上させ、また析
出硬化による熱処理硬さと耐摩耗性の確保に有
効である。しかし、あまり多量に加えると地疵
が多くなるので、おのずから限度がある。
Ti: 結晶粒を微細化し、靭性を高める。ただ
し、Alと同様に過大な存在な地疵の増加を招
くばかりか、かえつて靭性をも損なう。
本発明の鋼は、上記の各組成においてすでに被
削性のよいことが利点であるが、さらに高度の被
削性を望む場合には、所定量のSに加えて、
Pb:0.30%以下、Se:0.30%以下、Bi:0.30%以
下、Te:0.15%以下およびCa:0.01%以下の1
種または2種以上を含有させることができる。
In general, machinability and toughness are properties that are difficult to coexist, and it has been difficult until now to create tool steel that is excellent in both. The inventors conducted research on controlling the morphology of sulfide-based inclusions by using a specific amount of Zr in addition to an appropriate amount of the machinability-improving element S, and found that the presence of Zr Knowing that Zr (C, N), which is inevitably generated with the process, greatly impairs machinability, by regulating its amount, we were able to create a tool steel with excellent machinability and toughness. We were able to. The S content of 0.005 to 0.40% is determined mainly by the limit at which the desired machinability improvement effect can be obtained and the cleanliness of the steel, but it is also related to the Zr content. The lower limit of the addition amount of Zr of 0.001 to 0.5% is the minimum limit at which the above-mentioned effect of controlling the shape of sulfide-based inclusions is recognized, and the upper limit is the minimum limit for improving machinability and This value is from the standpoint of avoiding a decrease in hot workability. Both were determined in relation to the amount of S mentioned above. Regarding the morphology of sulfide inclusions, it is known that they greatly affect the anisotropy of the mechanical properties of steel, but their relationship with the practical properties of tool steels, especially mold steels, especially toughness, is unknown. Therefore, the inventors conducted a detailed investigation through numerous experiments. As a result, it was found that among the sulfide inclusions, large ones with a major axis of 2 μ or more affect the strength anisotropy, and even if they are large, if the major axis ratio is within 10 and they are not extremely elongated, If there is no negative effect, and if such large and not very long sulfide inclusions account for 80% or more of the total sulfide inclusions, then practically desirable isotropy can be achieved. I found out what to do. It is already known that sulfide-based inclusions (mainly MnS) in steel are easily stretched and become string-like during processing, but in steel containing Zr, Zr dissolves in MnS and As a result, the inventors found that the sulfide inclusions were relatively well maintained in a spherical shape. The form of the sulfide-based inclusions as described above is achieved by combining the appropriate addition amounts of S: 0.005 to 0.4% and Zr: 0.001 to 0.5%. Appropriate quantitative ratios can be easily determined by experiment. Zr(C,N), that is, carbides and nitrides of Zr, are extremely hard and cause significant wear to the cutting edge of the cutting tool, impairing machinability as described above. The inventors' research has revealed that the practically acceptable limit is 0.40% in terms of the area ratio on the cut surface of the steel material. In order to keep the area ratio of Zr (C, N) low while adding and utilizing Zr, care should be taken to avoid the formation of these carbonitrides when melting steel.
Zr is a highly active metal and easily bonds with N, C, and O, especially N, so when it is added, it eliminates N 2 in the atmosphere.
Zr using Ar as a carrier gas to avoid reaction with
Addition methods such as powder lance injection are recommended. The respective roles played by other additive elements necessary for tool steel in the steel for plastic forming molds of the present invention are not fundamentally different from those known for conventional tool steels, but the characteristics of the present invention are This will be explained below in connection with. C: In order to ensure the hardness and wear resistance of tool steel, especially mold steel, the content is selected depending on the purpose of use. Excessive presence reduces toughness. Si: In addition to having a deoxidizing effect during melting, Si is useful for strengthening the matrix, so it is contained in a relatively large amount in the steel of the present invention. However, if the amount is too high, the toughness and resistance to softening at high temperatures will be reduced, leading to more scratches on the ground. Also,
It is also unfavorable for machinability. Mn: In addition to deoxidizing and desulfurizing effects during melting, Mn is also effective in improving hardenability, and is also used in a relatively large amount in the present invention. The limitations are a decrease in machinability and a decrease in toughness due to coarsening of crystallinity. Ni: Effective in strengthening the matrix and ensuring hardenability, it is added in the required amount depending on the purpose of the steel. However, there is a limit in terms of machinability. Cr: It strengthens the base and helps ensure hardenability, wear resistance, and oxidation resistance, so it is also added more actively for the purpose of use. The negative effects on both toughness and machinability define practical limits. Co: Still effective in strengthening the base and providing resistance to softening at high temperatures. However, if too much is added, the toughness will decrease and it will also be economically disadvantageous. Mo, W and V: These are all strong carbide forming elements and are useful for providing wear resistance, heat treat hardness and resistance to temper softening at high temperatures. Addition of a large amount also reduces toughness, makes manufacturing difficult, and impractical in terms of machinability. Cu: Promotes precipitation hardening and is effective in ensuring wear resistance. However, the presence of a large amount is unfavorable for toughness. Al: In addition to acting as a deoxidizing agent during melting, it improves toughness through grain refinement, and is effective in ensuring heat treatment hardness and wear resistance through precipitation hardening. However, if too much is added, it will cause more scratches on the ground, so there is naturally a limit. Ti: Refines crystal grains and increases toughness. However, like Al, it not only causes an increase in ground defects, which are excessively present, but also impairs toughness. The steel of the present invention has the advantage that it already has good machinability in each of the above compositions, but if even higher machinability is desired, in addition to a predetermined amount of S,
Pb: 0.30% or less, Se: 0.30% or less, Bi: 0.30% or less, Te: 0.15% or less, and Ca: 0.01% or less.
A species or two or more species can be included.
第1表に示す合金組成の鋼を溶製した。(数値
は重量%であつて、残部は実質的にFeである。)
これらは、既存の工具鋼と、それを基本組成とし
S量およびZr量を調整した本発明の鋼とからな
る。
各供試材に対して所要の熱処理を施し、硬さを
はかり、硫化物系介在物の形状とZr(C,N)の
面積率とをしらべるとともに、衝撃値の縦横比を
測定した。次に、各供試材から実用金型を製作
し、その加工性を評価した。
以上の結果をまとめて、第2表に示す。評価
は、実用金型製作時の加工のしやすさと加工所要
時間(たとえば被削性では、切削している時間+
工具交換や切粉処理のための時間)を総合したも
のであつて、生産性の値は、同じ加工作業に要す
る時間を比較し、比較例(2種あるときは代表的
な方)のそれを1としたときに、実施例では同じ
時間内にどのくらい作業がはかどるかという比で
示した。
第2表にみるとおり、本発明の実施例は比較例
にくらべて、、機械的性質の異方性が低く、加工
性に関しては被削性はもちろん、鏡面仕上げ性、
シボ加工性ともすぐれており、プラスチツク成形
金型材料に対する要求をみたしている。加工性が
よいのは硫化物系介在物のうち比較的球状に近い
ものが大部分を占めているからであつて、介在物
が展伸されていると、一定の仕上げまでに要する
時間が長くなるばかりか、鏡面加工やシボ加工を
行なつたときにキズとしてあらわれる可能性が高
い。
Steel having the alloy composition shown in Table 1 was melted. (The numerical value is weight %, and the remainder is essentially Fe.)
These are composed of the existing tool steel and the steel of the present invention, which has the basic composition of the existing tool steel and has adjusted the amount of S and Zr. Each specimen was subjected to the required heat treatment, its hardness was measured, the shape of sulfide inclusions and the area ratio of Zr (C, N) were examined, and the aspect ratio of the impact value was measured. Next, practical molds were made from each sample material and their workability was evaluated. The above results are summarized in Table 2. The evaluation is the ease of machining and the required machining time (for example, for machinability, cutting time +
The productivity value is the total amount of time required for changing tools and processing chips, and the productivity value is calculated by comparing the time required for the same machining operation and calculating the value of the comparative example (if there are two types, the representative one). In the example, it is expressed as a ratio of how much work can be done within the same amount of time when 1 is taken as 1. As shown in Table 2, the examples of the present invention have lower anisotropy of mechanical properties than the comparative examples, and in terms of machinability, mirror finish,
It has excellent texturability and meets the requirements for plastic mold materials. The reason why workability is good is because most of the sulfide inclusions are relatively spherical, and if the inclusions are stretched, it takes a long time to reach a certain finish. Not only that, but there is a high possibility that they will appear as scratches when mirror finishing or texture processing is performed.
【表】【table】
【表】【table】
【表】【table】
本発明のプラスチツク成形金型用鋼は、硫化物
系介在物の形態を規制することによつて、靭性を
中心とする機械的性質の異方性を低くするととも
に、Zr(C,N)の面積率を一定限度以下に抑え
ることによつて、被削性をはじめとする加工性を
向上させることができた。
従つてこの鋼は、プラスチツク成形金型用鋼と
してすぐれた材料である。
The steel for plastic molding molds of the present invention reduces the anisotropy of mechanical properties centered on toughness by regulating the morphology of sulfide inclusions, and also reduces the anisotropy of mechanical properties such as toughness. By keeping the area ratio below a certain limit, it was possible to improve machinability and other machinability. Therefore, this steel is an excellent material for plastic molds.
Claims (1)
Mn:0.10〜2.5%とともに、S:0.035〜0.40%お
よびZr:0.001〜0.5%を含有し、残余が実質的に
Feからなる組成を有し、鋼中に存在する長径2μ
以上の硫化物系介在物のうち少なくとも80%が長
短径比10以下であつて、Zr(C,N)の占める面
積率が0.4%以下であり、硬さがHRC18以上であ
ることを特徴とするプラスチツク成形金型用鋼。 2 C:0.30〜0.60%、Si:0.10〜2.0%、Mn:
0.1〜2.0%、Cr:0.2〜2.0%およびMo:0.05〜1.0
%とともに、S:0.035〜0.40%およびZr:0.001
〜0.5%を含有し、残余が実質的にFeからなる組
成を有し、鋼中に存在する長径2μ以上の硫化物
系介在物のうち少なくとも80%が長短径比10以下
であつて、Zr(C,N)の占める面積率が0.4%以
下であり、硬さがHRC18以上であることを特徴
とするプラスチツク成形金型用鋼。 3 C:0.20〜0.50%、Si:0.10〜2.0%、Mn:
0.10〜2.5%、Cr:1.5〜3.5%、Mo:0.10〜1.5%
およびV:0.01〜0.50%とともに、S:0.035〜
0.40%およびZr:0.001〜0.5%を含有し、残余が
実質的にFeからなる組成を有し、鋼中に存在す
る長径2μ以上の硫化物系介在物のうち少なくと
も80%が長短径比10以下であつて、Zr(C,N)
の占める面積率が0.4%以下であり、硬さが
HRC18以上であることを特徴とするプラスチツ
ク成形金型用鋼。 4 C:0.30〜0.90%、Si:0.10〜1.5%、Mn:
0.10〜1.5%、Cr:6.5〜15%、Mo:0.01〜1.50%
およびV:0.01〜1.0%とともに、S:0.035〜
0.40%およびZr:0.001〜0.5%を含有し、残余が
実質的にFeからなる組成を有し、鋼中に存在す
る長径2μ以上の硫化物系介在物のうち少なくと
も80%が長短径比10以下であつて、Zr(C,N)
の占める面積率が0.4%以下であり、硬さが
HRC18以上であることを特徴とするプラスチツ
ク成形金型用鋼。 5 C:0.95〜2.0%、Si:0.10〜2.0%、Mn:
0.10〜2.5%、Cr:9.0〜15%、Mo:0.20〜1.5%お
よびV:0.01〜1.0%とともに、S:0.035〜0.40
%およびZr:0.001〜0.5%を含有し、残余が実質
的にFeからなる組成を有し、鋼中に存在する長
径2μ以上の硫化物系介在物のうち少なくとも80
%が長短径比10以下であつて、Zr(C,N)の占
める面積率が0.4%以下であり、硬さがHRC18以
上であることを特徴とするプラスチツク成形金型
用鋼。 6 C:0.10〜0.25%、Si:0.10〜1.0%、Mn:
0.40〜2.0%、Ni:2.0〜4.0%、Mo:0.05〜1.0%、
Cu:0.50〜1.5%およびAl:0.50〜1.5%とともに、
S:0.035〜0.40%およびZr:0.001〜0.5%を含有
し、残余が実質的にFeからなる組成を有し、鋼
中に存在する長径2μ以上の硫化物系介在物のう
ち少なくとも80%が長短径比10以下であつて、
Zr(C,N)の占める面積率が0.4%以下であり、
硬さがHRC18以上であることを特徴とするプラ
スチツク成形金型用鋼。 7 C:0.10%以下、Si:0.30%以下、Mn:0.30
%以下、Ni:10.0〜25%、Cr:7.0%以下、Mo:
3.0〜15%、Co:5.0〜25%、Al:0.01〜1.0%、
Ti:1.0%以下、B:0.20%以下およびCa:0.10
%以下とともに、S:0.035〜0.40%およびZr:
0.001〜0.5%を含有し、残余が実質的にFeからな
る組成を有し、鋼中に存在する長径2μ以上の硫
化物系介在物のうち少なくとも80%が長短径比10
以下であつて、Zr(C,N)の占める面積率が0.4
%以下であり、硬さがHRC18以上であることを
特徴とするプラスチツク成形金型用鋼。[Claims] 1 C: 0.40-1.5%, Si: 0.10-2.5% and
Contains Mn: 0.10-2.5%, S: 0.035-0.40% and Zr: 0.001-0.5%, with the remainder being substantially
Has a composition consisting of Fe and exists in steel with a long diameter of 2μ
At least 80% of the above sulfide inclusions have a length ratio of 10 or less, an area ratio occupied by Zr (C, N) of 0.4% or less, and a hardness of HRC 18 or more. Steel for plastic molds. 2 C: 0.30-0.60%, Si: 0.10-2.0%, Mn:
0.1~2.0%, Cr: 0.2~2.0% and Mo: 0.05~1.0
With %, S: 0.035-0.40% and Zr: 0.001
~0.5%, with the remainder essentially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 or less, and A steel for plastic molds, characterized in that the area ratio occupied by (C, N) is 0.4% or less, and the hardness is HRC 18 or more. 3 C: 0.20-0.50%, Si: 0.10-2.0%, Mn:
0.10~2.5%, Cr: 1.5~3.5%, Mo: 0.10~1.5%
and V: 0.01~0.50%, S: 0.035~
0.40% and Zr: 0.001 to 0.5%, with the remainder substantially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 Below, Zr(C,N)
The area ratio occupied by is 0.4% or less, and the hardness is
A steel for plastic molds characterized by an HRC of 18 or higher. 4 C: 0.30-0.90%, Si: 0.10-1.5%, Mn:
0.10~1.5%, Cr: 6.5~15%, Mo: 0.01~1.50%
and V: 0.01~1.0%, S: 0.035~
0.40% and Zr: 0.001 to 0.5%, with the remainder substantially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10 Below, Zr(C,N)
The area ratio occupied by is 0.4% or less, and the hardness is
A steel for plastic molds characterized by an HRC of 18 or higher. 5 C: 0.95-2.0%, Si: 0.10-2.0%, Mn:
0.10-2.5%, Cr: 9.0-15%, Mo: 0.20-1.5% and V: 0.01-1.0%, S: 0.035-0.40
% and Zr: 0.001 to 0.5%, with the remainder substantially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2μ or more present in the steel.
%, the length ratio is 10 or less, the area ratio occupied by Zr (C, N) is 0.4% or less, and the steel has a hardness of HRC 18 or more. 6 C: 0.10-0.25%, Si: 0.10-1.0%, Mn:
0.40~2.0%, Ni: 2.0~4.0%, Mo: 0.05~1.0%,
Along with Cu: 0.50~1.5% and Al: 0.50~1.5%,
Contains S: 0.035 to 0.40% and Zr: 0.001 to 0.5%, with the remainder consisting essentially of Fe, and at least 80% of the sulfide inclusions with a major diameter of 2μ or more present in the steel. The length to breadth ratio is 10 or less,
The area ratio occupied by Zr (C, N) is 0.4% or less,
A steel for plastic molds characterized by a hardness of HRC18 or higher. 7 C: 0.10% or less, Si: 0.30% or less, Mn: 0.30
% or less, Ni: 10.0 to 25%, Cr: 7.0% or less, Mo:
3.0~15%, Co: 5.0~25%, Al: 0.01~1.0%,
Ti: 1.0% or less, B: 0.20% or less, and Ca: 0.10
% or less, S: 0.035-0.40% and Zr:
0.001 to 0.5%, with the remainder substantially consisting of Fe, and at least 80% of the sulfide inclusions with a major axis of 2 μ or more present in the steel have a major axis ratio of 10
or less, and the area ratio occupied by Zr (C, N) is 0.4
% or less and a hardness of HRC18 or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15415581A JPS5855553A (en) | 1981-09-29 | 1981-09-29 | Tool steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15415581A JPS5855553A (en) | 1981-09-29 | 1981-09-29 | Tool steel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26904389A Division JPH02138439A (en) | 1989-10-18 | 1989-10-18 | Tool steel for tool for forming |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5855553A JPS5855553A (en) | 1983-04-01 |
JPH025813B2 true JPH025813B2 (en) | 1990-02-06 |
Family
ID=15578040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15415581A Granted JPS5855553A (en) | 1981-09-29 | 1981-09-29 | Tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855553A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6075549A (en) * | 1983-09-20 | 1985-04-27 | Hitachi Metals Ltd | Free-cutting alloy tool steel |
JPS60184666A (en) * | 1984-02-29 | 1985-09-20 | Mitsubishi Heavy Ind Ltd | Material for cutting edge |
JPS60211052A (en) * | 1984-04-03 | 1985-10-23 | Hitachi Ltd | Cr-mo steel having superior machinability and its manufacture |
JPS6160863A (en) * | 1984-08-31 | 1986-03-28 | Kobe Steel Ltd | Steel for hot working tool having superior resistance to thermal fatigue and temper softening |
JPH02138439A (en) * | 1989-10-18 | 1990-05-28 | Daido Steel Co Ltd | Tool steel for tool for forming |
WO2001066814A1 (en) * | 2000-03-06 | 2001-09-13 | Nippon Steel Corporation | Steel excellent in suitability for forging and cutting |
-
1981
- 1981-09-29 JP JP15415581A patent/JPS5855553A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5855553A (en) | 1983-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3524479B2 (en) | Free-cutting steel for machine structures with excellent mechanical properties | |
US3850621A (en) | High-speed tool steels | |
JP3587348B2 (en) | Machine structural steel with excellent turning workability | |
JP3141735B2 (en) | Steel for plastic molding dies | |
JPH025813B2 (en) | ||
US5013524A (en) | Martensite-hardenable steel | |
JPH11350065A (en) | Non-refining steel for hot forging excellent in machinability | |
JPH0555585B2 (en) | ||
SE500008C2 (en) | High speed steel with good hot hardness and durability made of powder | |
JP3360926B2 (en) | Prehardened steel for plastic molding and method for producing the same | |
US5236521A (en) | Abrasion resistant steel | |
JPH01119645A (en) | Powdery high-speed steel | |
JP2001220646A (en) | Prehardened steel for plastic molding die | |
JP2003034842A (en) | Steel for cold forging superior in swarf treatment property | |
JPH02138439A (en) | Tool steel for tool for forming | |
JPS5937742B2 (en) | High wear resistance sintered high speed steel | |
JPH04180541A (en) | Cold-working tool steel excellent in machinability | |
JPS63203751A (en) | Alloy tool steel | |
JPS5937741B2 (en) | Sintered high-speed steel with excellent wear resistance and toughness | |
JPS5843196B2 (en) | Cutting edge metal alloy for woodworking tools | |
JPS5937740B2 (en) | High wear resistance sintered high speed steel | |
JP2000119799A (en) | High strength steel excellent in machinability and toughness and having corrosion resistance | |
JPH09176784A (en) | Case hardening steel excellent in fatigue characteristic and machinability | |
JPS6075550A (en) | Free-cutting steel for prehardened metallic mold for molding plastic | |
JPH0617187A (en) | High manganese cold tool steel |