JPH05329356A - Method for synthesizing diamond single crystal - Google Patents

Method for synthesizing diamond single crystal

Info

Publication number
JPH05329356A
JPH05329356A JP5009058A JP905893A JPH05329356A JP H05329356 A JPH05329356 A JP H05329356A JP 5009058 A JP5009058 A JP 5009058A JP 905893 A JP905893 A JP 905893A JP H05329356 A JPH05329356 A JP H05329356A
Authority
JP
Japan
Prior art keywords
diamond
crystal
solvent
weight
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5009058A
Other languages
Japanese (ja)
Other versions
JP3291804B2 (en
Inventor
Hitoshi Sumiya
均 角谷
Shuichi Sato
周一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP00905893A priority Critical patent/JP3291804B2/en
Priority to KR1019930013401A priority patent/KR940014144A/en
Priority to EP93306785A priority patent/EP0603995A1/en
Publication of JPH05329356A publication Critical patent/JPH05329356A/en
Application granted granted Critical
Publication of JP3291804B2 publication Critical patent/JP3291804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To inexpensively and stably synthesize a colorless transparent diamond single crystal, in the synthesis of a diamond crystal due to a temp. difference method, by adding a metal selected from Ti, Zr. Hf, V, Nb and Ta to a solvent metal as a nitrogen getter and further adding a substance decomposing metal carbide thereto. CONSTITUTION:A carbon source 1, a solvent metal 2, a seed crystal 3, an insulator 4, a graphite heater 5 and a pressure medium 6 are provided in a sample chamber for the synthesis of a diamond crystal by a temp. difference method. One or more kinds of metals selected from Ti, Zr, Hf, V, Nb and Ta are added to the solvent metal (e.g. iron and 0.1-6.0wt.% of carbon) as a nitrogen getter and a substance (e.g. copper) decomposing carbides of Ti, Zr, Hf, V, Nb and Ta is added. The total addition amounts of metals as the nitrogen getter are 0.1-5%, by wt. of solvent metal and the addition amount of the substance decomposing carbide is 0.1-20% by wt. of the solvent metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は装飾用途や光学部品など
に用いられる無色で透明なダイヤモンド単結晶の合成方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing colorless and transparent diamond single crystals used for decorative purposes and optical parts.

【0002】[0002]

【従来の技術】現在市販されている装飾用ダイヤモンド
は、主に南アフリカ、ロシアより産出されるものの中か
ら、無色透明で内部欠陥の少ないものを選別して用いら
れている。天然装飾用ダイヤモンドは宝石の中でも最も
販売量が多い。また、ダイヤモンドを用いた光学部品と
して、レーザー窓やIRアンビルセルなどがあるが、い
ずれも天然原石の中から赤外領域に光の吸収のない透明
なダイヤモンド(IIa型とよばれる)が選ばれて用いら
れている。しかし、無色透明な原石の産出は極めて少な
く、安定供給や価格に問題がある。
2. Description of the Related Art Decorative diamonds currently on the market are used by selecting those which are colorless and transparent and have few internal defects from those mainly produced in South Africa and Russia. Natural ornamental diamonds are the most sold gemstones. In addition, there are laser windows, IR anvil cells, etc. as optical parts using diamond, but in each case, transparent diamond (called type IIa) that does not absorb light in the infrared region is selected from natural rough stones. Is used. However, the production of colorless and transparent rough stones is extremely low, and there are problems with stable supply and prices.

【0003】一方、人工合成によるダイヤモンドは通
常、超高圧高温下で合成する際に溶媒中の窒素が結晶格
子内に取り込まれるために黄色く着色してしまうが、溶
媒中に窒素ゲッターを添加することで無色透明のダイヤ
モンドを得ることができる。この窒素ゲッターとして
は、たとえば、The Journal of Physical Chemistry, v
ol.75, No.12 (1971) p1838 に示されているように、A
lがよく知られている。具体的には、米国特許第403
4066号明細書には、Fe溶媒にAlを3〜5重量%
添加することにより宝石級の無色透明なダイヤモンド単
結晶が得られると記載されている。Al以外の窒素ゲッ
ターを用いた例として、たとえば無機材質研究所研究報
告書第39号(1984)、p16〜19項にTiやZ
rを溶媒金属に添加することにより、結晶中の窒素が除
去されたという報告がある。
On the other hand, artificially synthesized diamond is usually colored yellow because nitrogen in the solvent is taken into the crystal lattice when it is synthesized under ultrahigh pressure and high temperature. However, it is necessary to add a nitrogen getter to the solvent. A colorless and transparent diamond can be obtained with. As this nitrogen getter, for example, The Journal of Physical Chemistry, v
ol.75, No.12 (1971) p1838, A
l is well known. Specifically, US Pat. No. 403
No. 4066 describes that the Fe solvent contains 3 to 5% by weight of Al.
It is described that a gem-grade colorless and transparent diamond single crystal is obtained by the addition. As an example of using a nitrogen getter other than Al, for example, Ti and Z are described in Research Report No. 39 (1984), Inorganic Materials Research Institute, p16 to p19.
There is a report that nitrogen in crystals was removed by adding r to the solvent metal.

【0004】[0004]

【発明が解決しようとする課題】しかし、特に無色透明
の合成ダイヤモンドは合成コストが天然ダイヤモンドよ
りはるかに高くなるため工業生産は行われていない。こ
の理由は、合成には高価で特殊な装置が必要である上
に、Alなどを窒素ゲッターとして添加した場合、その
添加量の増加に従って、溶媒が結晶中に取り込まれ(以
下インクルージョンと呼ぶ)て、不良結晶となることが
多くなるため、良質な結晶とするためには成長速度を大
幅に下げる必要があるからである。とくにTiやZrを
窒素ゲッターとして用いた場合は、合成中に溶媒中に生
成したTiCやZrCなどの炭化物が原因でより多くの
インクルージョンが結晶中に取り込まれるようになる。
However, since the synthetic cost of a colorless and transparent synthetic diamond is much higher than that of natural diamond, industrial production is not performed. The reason for this is that the synthesis requires expensive and special equipment, and when Al or the like is added as a nitrogen getter, the solvent is taken into the crystal as the addition amount increases (hereinafter referred to as inclusion). This is because the number of defective crystals increases, and therefore the growth rate needs to be significantly reduced in order to obtain good quality crystals. In particular, when Ti or Zr is used as the nitrogen getter, more inclusions are incorporated into the crystal due to carbides such as TiC and ZrC formed in the solvent during the synthesis.

【0005】本発明者らが行った実験による結果では、
窒素ゲッターとしてAlを用い、溶媒金属に均一混合し
た場合、無色透明なダイヤモンド結晶を合成するために
は、その添加量は溶媒に対し少なくとも4重量%(約1
2体積%)必要であるが、この場合インクルージョンの
巻き込みなしに結晶成長させるためには成長速度を1m
g/hr以下にする必要がある。この場合、たとえば1
カラット(200mg)の結晶を合成するには200時
間以上の合成時間を要し、製造コストは膨大なものとな
る。また、Ti、Zrなど、Alより窒素との反応性の
高い物質を窒素ゲッターとして溶媒に均一添加した場
合、添加量は1重量%でも無色透明な結晶となる。しか
し、これらは炭化物を形成しやすく、成長速度を大幅に
低下させたとしてもTiCやZrCなどの炭化物の影響
で、良質な結晶は殆ど得られない。すなわち、TiCや
ZrCなどの炭化物自体がダイヤモンド結晶中へ混入し
たり、また、これらの炭化物が溶媒中の炭素の拡散を妨
げて、炭素の結晶表面への供給量が低下し、その結果、
溶媒が結晶中に巻き込まれやすくなる。本発明はかかる
問題点を解決し、無色透明でインクルージョのほとんど
ない結晶を、安価にしかも安定して合成できる新規な製
法を提供し、人工合成ダイヤモンドの装飾用途又は光学
部品用途への使用を可能にすることを意図するものであ
る。
According to the result of the experiment conducted by the present inventors,
When Al is used as a nitrogen getter and uniformly mixed with a solvent metal, the amount of addition is at least 4% by weight (about 1%) with respect to the solvent in order to synthesize a colorless and transparent diamond crystal.
2% by volume), but in this case the growth rate is 1 m in order to grow crystals without inclusion inclusion.
It must be g / hr or less. In this case, for example, 1
It takes 200 hours or more to synthesize a carat (200 mg) crystal, resulting in a huge production cost. Further, when a substance having a higher reactivity with nitrogen than Al, such as Ti or Zr, is uniformly added to the solvent as a nitrogen getter, colorless and transparent crystals are obtained even if the addition amount is 1% by weight. However, these tend to form carbides, and even if the growth rate is significantly reduced, good quality crystals are hardly obtained due to the influence of carbides such as TiC and ZrC. That is, carbides such as TiC and ZrC themselves are mixed in the diamond crystal, and these carbides prevent the diffusion of carbon in the solvent, and the supply amount of carbon to the crystal surface is reduced.
The solvent is easily caught in the crystal. The present invention solves such a problem, provides a novel method for synthesizing a colorless and transparent crystal having almost no inclusions at low cost and stably, and using the artificial synthetic diamond for decoration or optical parts. It is intended to be possible.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
め、本発明者らは、溶媒中に窒素ゲッターとして、T
i、Zr、Hfなどの、窒素との反応性の高い元素を添
加し、同時にCu、Ag、Au、Zn、などを添加すれ
ば、窒素の除去効率が上がり、また、TiCやZrCな
どの炭化物が合成中に溶媒中に生成することが少なくな
り、炭化物のダイヤ結晶中への混入や、溶媒の巻き込み
によるインクルージョンが大幅に少なくなり、その結
果、窒素不純物やインクルージョンをほとんど含まない
高純度なIIaタイプのダイヤモンド結晶が、比較的はや
い成長速度でも得られることを見いだした。さらに検討
を重ねたところ、Ti、Zr、Hfなどの元素とCu、
Ag、Auなどの元素からなる合金もしくは金属間化合
物を窒素ゲッターとして溶媒中に添加すれば、より効果
的であることが判った。
In order to solve the above-mentioned problems, the present inventors used T as a nitrogen getter in a solvent.
If elements such as i, Zr, and Hf having high reactivity with nitrogen are added, and at the same time Cu, Ag, Au, Zn, etc. are added, the removal efficiency of nitrogen is increased, and carbides such as TiC and ZrC are added. Is less likely to be generated in the solvent during the synthesis, inclusion of carbide into the diamond crystal and inclusion due to entrainment of the solvent is significantly reduced, and as a result, high-purity IIa containing almost no nitrogen impurities or inclusions is formed. It has been found that diamond crystals of this type can be obtained at relatively fast growth rates. After further study, elements such as Ti, Zr, Hf and Cu,
It has been found that it is more effective if an alloy or intermetallic compound made of an element such as Ag or Au is added to the solvent as a nitrogen getter.

【0007】すなわち、本発明は温度差法によるダイヤ
モンド結晶合成において、溶媒金属に、窒素ゲッターと
してTi,Zr,Hf,V,Nb,Taから選ばれる一
種もしくは二種以上の金属を添加し、かつ、Ti、Z
r、Hf、V、Nb、Taの炭化物を分解する物質を添
加することを特徴とするものである。ここで、Ti、Z
r、Hf、V、Nb、Taの炭化物を分解する物質がC
u、Ag、Au、Zn、Cdから選ばれる金属であるこ
とを特徴とするものである。窒素ゲッターとして添加す
るTi、Zr、Hf、V、Nb、Taから選ばれる一種
もしくは二種以上の金属の添加量は、溶媒に対して、
0.1重量%以上、5重量%以下が好ましく、かつ、T
i、Zr、Hf、V、Nb、Taの炭化物を分解する物
質の添加量が溶媒に対して、0.1重量%以上20重量
%以下であることが好ましい。
That is, in the present invention, in diamond crystal synthesis by the temperature difference method, one or more metals selected from Ti, Zr, Hf, V, Nb, and Ta as a nitrogen getter are added to a solvent metal, and , Ti, Z
It is characterized in that a substance that decomposes carbides of r, Hf, V, Nb, and Ta is added. Where Ti, Z
The substance that decomposes the carbides of r, Hf, V, Nb, and Ta is C
It is characterized by being a metal selected from u, Ag, Au, Zn and Cd. The amount of one or more metals selected from Ti, Zr, Hf, V, Nb and Ta added as a nitrogen getter is
It is preferably 0.1% by weight or more and 5% by weight or less, and T
It is preferable that the addition amount of the substance that decomposes carbides of i, Zr, Hf, V, Nb, and Ta is 0.1% by weight or more and 20% by weight or less with respect to the solvent.

【0008】また、本発明は温度差法によるダイヤモン
ド結晶合成において、溶媒金属にX−Y系の合金もしく
は金属間化合物(ここで、XはTi、Zr、Hf、V、
Nb、Taから選ばれる元素、YはCu、Ag、Au、
Zn、Cdから選ばれる元素)を添加することを特徴と
するものである。ここで、前記、X−Y系の合金もしく
は金属間化合物(ここで、XはTi、Zr、Hf、V、
Nb、Taから選ばれる元素、YはCu、Ag、Au、
Zn、Cdから選ばれる元素)の添加量は、溶媒に対し
て、0.1重量%以上、10重量%以下であることが好
ましい。さらに、本発明において、溶媒金属は、Fe,
Co,Ni,Mn,Crの中から選ばれる一種もしくは
二種以上からなり、且つ0.1〜6.0重量%の炭素を
含むことが好ましい。
Further, in the present invention, in the diamond crystal synthesis by the temperature difference method, the solvent metal is an XY alloy or an intermetallic compound (where X is Ti, Zr, Hf, V,
An element selected from Nb and Ta, Y is Cu, Ag, Au,
An element selected from Zn and Cd) is added. Here, the aforementioned XY alloy or intermetallic compound (where X is Ti, Zr, Hf, V,
An element selected from Nb and Ta, Y is Cu, Ag, Au,
The addition amount of an element selected from Zn and Cd) is preferably 0.1% by weight or more and 10% by weight or less with respect to the solvent. Further, in the present invention, the solvent metal is Fe,
It is preferable that it is made of one or more selected from Co, Ni, Mn, and Cr, and contains 0.1 to 6.0% by weight of carbon.

【0009】図1は本発明の一具体例であって、ダイヤ
モンド結晶合成用の試料室構成を示す図であり、溶媒金
属2中に、窒素ゲッターとしてTi、Zr、Hf、V、
Nb、Taから選ばれる一種もしくは二種以上の金属を
添加すると同時に、Ti、Zr、Hf、V、Nb、Ta
の炭化物を分解する物質としてCu、Ag、Au、Z
n、Cdから選ばれる金属を添加する。窒素ゲッターと
して添加するTi、Zr、Hf、V、Nb、Taから選
ばれる一種もしくは二種以上の金属の添加量は、溶媒に
対して、0.1重量%以上、5重量%以下であることが
好ましい。0.1重量%より少ないと、窒素が十分に除
去されずに結晶が黄色味を帯びてくる。また5重量%を
越えると、結晶中のインクルージョンが多くなり良質な
結晶が得られなくなる。また、Ti、Zr、Hf、V、
Nb、Taの炭化物を分解する物質の添加量は溶媒に対
して、0.1重量%以上20重量%以下であることが好
ましい。0.1重量%より少ないと炭化物分解の効果が
不十分で、20重量%をこえると多結晶化や自然核発
生、インクルージョンが多くなり良質な結晶が得られな
くなる。
FIG. 1 is a diagram showing the structure of a sample chamber for synthesizing a diamond crystal, which is one embodiment of the present invention. In a solvent metal 2, Ti, Zr, Hf, V as a nitrogen getter,
At least one metal selected from Nb and Ta is added, and at the same time Ti, Zr, Hf, V, Nb and Ta are added.
Cu, Ag, Au, Z as substances that decompose the carbides of
A metal selected from n and Cd is added. The amount of one or more metals selected from Ti, Zr, Hf, V, Nb, and Ta added as a nitrogen getter should be 0.1 wt% or more and 5 wt% or less with respect to the solvent. Is preferred. If the amount is less than 0.1% by weight, nitrogen is not sufficiently removed and the crystals become yellowish. On the other hand, if it exceeds 5% by weight, inclusions in the crystal are increased and a good quality crystal cannot be obtained. In addition, Ti, Zr, Hf, V,
The addition amount of the substance that decomposes Nb and Ta carbides is preferably 0.1% by weight or more and 20% by weight or less with respect to the solvent. If the amount is less than 0.1% by weight, the effect of decomposing the carbide is insufficient, and if it exceeds 20% by weight, polycrystallization, natural nucleation, and inclusions increase, and it becomes impossible to obtain high quality crystals.

【0010】また、本発明の別の方法では、前記溶媒金
属2中にX−Y系の合金もしくは金属間化合物(ここ
で、XはTi、Zr、Hf、V、Nb、Taから選ばれ
る元素、YはCu、Ag、Au、Zn、Cdから選ばれ
る元素)を添加する。たとえばTi−Cu合金の例とし
ては25Ti−75Cu合金(重量比、以下同じ)、5
0Ti−50Cu合金、75Ti−25Cuなどが挙げ
られる。また、たとえばTi−Cu系金属間化合物の例
としては、Cu2 Ti(原子比、以下同じ)、CuT
i、CuTi2 、Cu3 Ti2 などが、Cu−Zr系の
金属間化合物としては、Cu3 Zr、Cu3 Zr2 、C
uZr、CuZr2 などが挙げられる。このX−Y系の
合金もしくは金属間化合物の添加量は溶媒に対して、
0.1重量%以上、10重量%以下であることが好まし
い。0.1重量%より少ないと窒素が十分に除去されず
に結晶が黄色味を帯びてくる。10重量%をこえると多
結晶化や自然核発生、インクルージョンが多くなり良質
な結晶が得られなくなる。
According to another method of the present invention, an XY alloy or an intermetallic compound (where X is an element selected from Ti, Zr, Hf, V, Nb and Ta) in the solvent metal 2 is used. , Y is an element selected from Cu, Ag, Au, Zn and Cd). For example, as an example of Ti-Cu alloy, 25Ti-75Cu alloy (weight ratio, the same applies hereinafter), 5
0Ti-50Cu alloy, 75Ti-25Cu, etc. are mentioned. Further, for example, as an example of a Ti—Cu-based intermetallic compound, Cu 2 Ti (atomic ratio, the same applies hereinafter), CuT
i, CuTi 2 , Cu 3 Ti 2 and the like are Cu 3 Zr, Cu 3 Zr 2 and C as Cu-Zr intermetallic compounds.
Examples include uZr and CuZr 2 . The amount of the XY alloy or the intermetallic compound added to the solvent is
It is preferably 0.1% by weight or more and 10% by weight or less. If it is less than 0.1% by weight, nitrogen is not sufficiently removed and the crystals become yellowish. If it exceeds 10% by weight, polycrystallization, spontaneous nucleation, and inclusions increase, and it becomes impossible to obtain high quality crystals.

【0011】ここで、図1の2の溶媒金属は一般にはF
e,Co,Ni,Mn,Crの中から選ばれる一種もし
くは二種以上からなる金属であり、種結晶溶解防止のた
め0.1〜6.0重量%の炭素をあらかじめ添加してお
くのが好ましい。炭素添加量が0.1重量%未満もしく
は炭素を含まない溶媒金属を用いた場合、種結晶上にP
tなどの種結晶溶解防止材を配置する必要があるが、こ
のような種結晶溶解防止材を配置することは、多結晶化
やインクルージョンの巻き込みの原因となり好ましくな
い。また、炭素添加量が6重量%をこえると、自然核発
生がおこりやすくなり、種結晶以外の部所より結晶成長
するため結晶同士が干渉し、良質な結晶が得られなくな
る。
Here, the solvent metal 2 in FIG. 1 is generally F.
e, Co, Ni, Mn, Cr, which is a metal consisting of one or more selected from the group of 0.1 to 6.0% by weight of carbon to prevent the dissolution of seed crystals. preferable. When the amount of carbon added is less than 0.1% by weight or when a solvent metal containing no carbon is used, P on the seed crystal is used.
It is necessary to dispose a seed crystal dissolution preventing material such as t, but disposing such a seed crystal dissolution preventing material is not preferable because it causes polycrystallization and inclusion is included. On the other hand, if the amount of carbon added exceeds 6% by weight, spontaneous nucleation is likely to occur, and crystals grow from a portion other than the seed crystal, so that the crystals interfere with each other and a good quality crystal cannot be obtained.

【0012】本発明に用いる種結晶、炭素源等はこの種
の技術分野で公知のものを用いることができる。また、
温度差法による合成の条件等は適宜選択することができ
る。具体的な例は後記する実施例に挙げられる。
The seed crystal, carbon source, etc. used in the present invention may be those known in the technical field of this type. Also,
The conditions for synthesis by the temperature difference method can be appropriately selected. Specific examples will be given in Examples described later.

【0013】[0013]

【作用】本発明によるダイヤモンド合成方法によると、
溶媒金属に窒素ゲッターとしてTi,Zr,Hf,V,
Nb,Taから選ばれる一種もしくは二種以上の金属を
添加し、かつ、Ti、Zr、Hf、V、Nb、Taの炭
化物を分解する物質たとえばCu、Ag、Au、Zn、
Cdから選ばれる金属を添加する、あるいは、溶媒金属
にX−Y系の合金もしくは金属間化合物(ここで、Xは
Ti、Zr、Hf、V、Nb、Taから選ばれる元素、
YはCu、Ag、Au、Zn、Cdから選ばれる元素)
を添加するため、窒素の除去効率が高く、また、TiC
やZrCなどの炭化物の結晶中への混入や、溶媒の巻き
込みによるインクルージョンが大幅に少なくなり、その
結果、窒素不純物やインクルージョンをほとんど含まな
い高純度なIIaタイプのダイヤモンド結晶が、従来より
かなり速い成長速度でも得られるようになる。
According to the diamond synthesis method of the present invention,
Nitrogen getters for solvent metals such as Ti, Zr, Hf, V,
A substance such as Cu, Ag, Au, Zn, to which one or more metals selected from Nb and Ta are added and which decomposes carbides of Ti, Zr, Hf, V, Nb, and Ta.
A metal selected from Cd is added, or an XY alloy or an intermetallic compound (where X is an element selected from Ti, Zr, Hf, V, Nb and Ta, is added to the solvent metal,
Y is an element selected from Cu, Ag, Au, Zn and Cd)
Since nitrogen is added, the removal efficiency of nitrogen is high, and TiC
The inclusion of carbides such as ZrC and ZrC in the crystal and inclusion due to entrainment of the solvent are significantly reduced. As a result, a high-purity IIa type diamond crystal containing almost no nitrogen impurities and inclusions grows much faster than before. You can also get it at speed.

【0014】この理由について、次に具体的に述べる。
先にも述べたように、Tiのみを窒素ゲッターとして用
いた場合、窒素との反応性が高いので添加量は〜1重量
%という微量でも無色透明なダイヤモンド結晶となる
が、TiCが溶媒中に多量に生成する。そのため結晶成
長が阻害されたり、また結晶の成長速度を大幅に低下さ
せたとしても、このTiCが結晶中に取り込まれたりし
て、良質な結晶は殆ど得られない。しかし、窒素ゲッタ
ーとしてTiを添加するとともに、炭化物を形成せず、
しかもTiCを溶解・分解する働きのあるCuを同時に
添加することにより、溶媒中のTiCの影響によるイン
クルージョンの混入を抑えることができる。さらにTi
とCuからなる合金又は金属間化合物、例えばCuTi
などを添加した場合、より効果的であり、良質な結晶が
かなり得やすくなる。また、窒素の除去効率も、Tiと
同程度で、1重量%程度の微量の添加でも殆ど窒素が除
去される。以上のように、窒素ゲッター及び炭化物分解
性物質を併用することにより、AlやTiなどの従来の
窒素ゲッターを用いる場合より、速い成長速度で無色透
明でインクルージョンのない良質なIIaダイヤモンド結
晶を合成することが可能となる。具体的には例えばCu
とTiをCuTi金属間化合物の形で溶媒金属に対し1
重量%添加した場合、成長速度2.5mg/hrでも、
無色透明な良質なIIaダイヤモンド結晶が得られる。
The reason for this will be specifically described below.
As described above, when only Ti is used as the nitrogen getter, the reactivity with nitrogen is high, so even if the addition amount is up to 1% by weight, a colorless and transparent diamond crystal can be obtained. Generate a large amount. Therefore, even if the crystal growth is hindered, or even if the crystal growth rate is significantly reduced, the TiC is taken into the crystal, and a good crystal is hardly obtained. However, when Ti is added as a nitrogen getter, carbide is not formed,
Moreover, by simultaneously adding Cu having a function of dissolving and decomposing TiC, inclusion of inclusion due to the influence of TiC in the solvent can be suppressed. Further Ti
Alloys and intermetallic compounds consisting of Cu and Cu, eg CuTi
And the like are more effective, and it becomes easy to obtain good quality crystals. Further, the removal efficiency of nitrogen is about the same as that of Ti, and even if a small amount of about 1% by weight is added, most of the nitrogen is removed. As described above, by using the nitrogen getter and the carbide decomposing substance together, a high quality IIa diamond crystal that is colorless and transparent and has no inclusion is synthesized at a higher growth rate than when a conventional nitrogen getter such as Al or Ti is used. It becomes possible. Specifically, for example, Cu
And Ti in the form of CuTi intermetallic compound against solvent metal 1
When added by weight%, even at a growth rate of 2.5 mg / hr,
A high quality colorless and transparent IIa diamond crystal is obtained.

【0015】[0015]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Co粉末、グラファイト粉末を用い、 Fe:Co:C=60:40:4.5(重量比) となるように配合した。これに、さらに平均粒径50ミ
クロンのTi粉末と、平均粒径50ミクロンのCu粉末
をいずれも溶媒金属量(グラファイトを除く)に対し
1.5重量%添加し、十分に混合した。この混合粉末を
型押し成形し、脱ガス、焼成したもの(直径20mm、
厚み10mm)を溶媒とした。図1に示す試料室構成で
炭素源(1)にはダイヤモンドの粉末、種結晶(3)に
は直径500ミクロンのダイヤモンド結晶3個を用い
た。そして、炭素源(1)と種結晶(3)部に約30℃
の温度差がつくように加熱ヒーター(5)内にセットし
た。これを超高圧発生装置を用いて、圧力5.5GP
a、温度1300℃で70時間保持し、ダイヤモンドの
合成を行った。その結果0.7〜0.9カラットの無色
透明な、インクルージョンのほとんどない良質なIIa型
のダイヤモンド結晶が得られた。ESRにより、結晶中
の窒素濃度を測定するといずれも0.1ppm以下であ
った。磁気天秤によりインクルージョン量を測定すると
いずれも0.5重量%以下であった。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto. Example 1 High-purity F having a particle size of 50 to 100 microns as a solvent raw material
e powder, Co powder, and graphite powder were used and blended so that Fe: Co: C = 60: 40: 4.5 (weight ratio). To this, Ti powder having an average particle size of 50 microns and Cu powder having an average particle size of 50 microns were both added in an amount of 1.5% by weight based on the amount of solvent metal (excluding graphite) and mixed sufficiently. This mixed powder was pressed, degassed and fired (diameter 20 mm,
A thickness of 10 mm) was used as a solvent. In the sample chamber configuration shown in FIG. 1, diamond powder was used as the carbon source (1) and three diamond crystals having a diameter of 500 μm were used as the seed crystals (3). Then, the carbon source (1) and the seed crystal (3) part have a temperature of about 30 ° C.
It was set in the heater (5) so that there was a temperature difference. Using an ultra-high pressure generator, this pressure is 5.5 GP
a, the temperature was maintained at 1300 ° C. for 70 hours to synthesize diamond. As a result, a 0.7 to 0.9 carat colorless and transparent, high quality inclusion type IIa diamond crystal with almost no inclusion was obtained. When the nitrogen concentration in the crystal was measured by ESR, all were 0.1 ppm or less. When the inclusion amount was measured with a magnetic balance, all were 0.5% by weight or less.

【0016】実施例2〜8 TiとCuの添加量を重量%で(Ti,Cu)=(0.
5,0.5)、(1,1)、(1,2)、(1,3)、
(1,5)、(2,2)、(2,3)と変えた他は実施
例1と同様にして、ダイヤモンド合成を行った。いずれ
も0.8カラット前後の良質なIIa型ダイヤモンド結晶
が得られた。いずれの結晶も窒素濃度は0.2ppm以
下、インクルージョン量は0.7重量%以下であった。
Examples 2 to 8 The addition amount of Ti and Cu is (Ti, Cu) = (0.
5,0.5), (1,1), (1,2), (1,3),
Diamond synthesis was performed in the same manner as in Example 1 except that (1, 5), (2, 2) and (2, 3) were changed. In each case, a good quality IIa diamond crystal of about 0.8 carat was obtained. Each crystal had a nitrogen concentration of 0.2 ppm or less and an inclusion amount of 0.7% by weight or less.

【0017】実施例9 Tiの代わりにZrを用いた他は実施例1と同様に、ダ
イヤモンド結晶を合成した。その結果、実施例1と殆ど
同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 9 Diamond crystals were synthesized in the same manner as in Example 1 except that Zr was used instead of Ti. As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 1, was obtained.

【0018】実施例10 Cuの代わりにAgを用いた他は実施例1と同様に、ダ
イヤモンド結晶を合成した。その結果、実施例1と殆ど
同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 10 Diamond crystals were synthesized in the same manner as in Example 1 except that Ag was used instead of Cu. As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 1, was obtained.

【0019】実施例11 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Co粉末、グラファイト粉末を用い、 Fe:Co:C=60:40:4.5(重量比) となるように配合した。これに、さらに添加材として平
均粒径50ミクロンの50Ti−50Cu合金粉末(重
量比)を、溶媒金属量(グラファイトを除く)に対し3
重量%添加し、十分に混合した。この混合粉末を型押し
成形し、脱ガス、焼成したもの(直径20mm、厚み1
0mm)を溶媒とした。図1に示す試料室構成で炭素源
(1)にはダイヤモンドの粉末、種結晶(3)には直径
500ミクロンのダイヤモンド結晶3個を用いた。そし
て、炭素源(1)と種結晶(3)部に約30℃の温度差
がつくように加熱ヒーター(5)内にセットした。これ
を超高圧発生装置を用いて、圧力5.5GPa、温度1
300℃で70時間保持し、ダイヤモンドの合成を行っ
た。その結果0.7〜0.9カラットの無色透明な、イ
ンクルージョンのほとんどない良質なIIa型のダイヤモ
ンド結晶が得られた。ESRにより、結晶中の窒素濃度
を測定するといずれも0.1ppm以下であった。磁気
天秤によりインクルージョン量を測定するといずれも
0.3重量%以下であった。
Example 11 High-purity F having a particle size of 50 to 100 μm as a solvent raw material
e powder, Co powder, and graphite powder were used and blended so that Fe: Co: C = 60: 40: 4.5 (weight ratio). In addition to this, 50Ti-50Cu alloy powder (weight ratio) having an average particle size of 50 microns was added as an additive material to the solvent metal amount (excluding graphite) in an amount of 3
Wt% was added and mixed well. This mixed powder was pressed, degassed and fired (diameter 20 mm, thickness 1
0 mm) was used as the solvent. In the sample chamber configuration shown in FIG. 1, diamond powder was used as the carbon source (1) and three diamond crystals having a diameter of 500 μm were used as the seed crystals (3). Then, the carbon source (1) and the seed crystal (3) were set in the heater (5) so that there was a temperature difference of about 30 ° C. Using an ultrahigh pressure generator, the pressure was 5.5 GPa and the temperature was 1
It was kept at 300 ° C. for 70 hours to synthesize diamond. As a result, a 0.7 to 0.9 carat colorless and transparent, high quality inclusion type IIa diamond crystal with almost no inclusion was obtained. When the nitrogen concentration in the crystal was measured by ESR, all were 0.1 ppm or less. When the inclusion amount was measured by a magnetic balance, all were 0.3% by weight or less.

【0020】実施例12〜16 50Ti−50Cu合金粉末の添加量を溶媒金属量(グ
ラファイトを除く)に対し0.5、1.0、2.0、
5.0、8.0重量%と変えた他は実施例11と同様に
してダイヤモンド合成を行った。いずれも、0.8カラ
ット前後の良質なIIa型ダイヤモンド結晶が得られた。
いずれの結晶も窒素量0.2ppm以下、インクルージ
ョン量は0.3重量%以下であった。
Examples 12 to 16 The amount of 50Ti-50Cu alloy powder added was 0.5, 1.0, 2.0 with respect to the amount of solvent metal (excluding graphite).
Diamond synthesis was performed in the same manner as in Example 11 except that the amounts were changed to 5.0 and 8.0% by weight. In each case, a good quality IIa type diamond crystal of about 0.8 carat was obtained.
In each crystal, the amount of nitrogen was 0.2 ppm or less and the amount of inclusion was 0.3% by weight or less.

【0021】実施例17 添加材として、70Ti−30Cu(重量比)合金粉末
を、2重量%添加した他は実施例11と同様にしてダイ
ヤモンド結晶を合成した。その結果、実施例11と殆ど
同じ、良質なIIa型ダイヤモンド結晶が得られた。
Example 17 Diamond crystals were synthesized in the same manner as in Example 11 except that 2% by weight of 70Ti-30Cu (weight ratio) alloy powder was added as an additive. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 11, was obtained.

【0022】実施例18 添加材として、25Ti−75Cu(重量比)合金粉末
を、4重量%添加した他は実施例11と同様にしてダイ
ヤモンド結晶を合成した。その結果、実施例11と殆ど
同じ、良質なIIa型ダイヤモンド結晶が得られた。
Example 18 A diamond crystal was synthesized in the same manner as in Example 11 except that 4% by weight of 25Ti-75Cu (weight ratio) alloy powder was added as an additive. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 11, was obtained.

【0023】実施例19 添加材として、10Ti−90Cu(重量比)合金粉末
を、8重量%添加した他は実施例11と同様にしてダイ
ヤモンド結晶を合成した。その結果、実施例11と殆ど
同じ、良質なIIa型ダイヤモンド結晶が得られた。
Example 19 A diamond crystal was synthesized in the same manner as in Example 11 except that 8% by weight of 10Ti-90Cu (weight ratio) alloy powder was added as an additive. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 11, was obtained.

【0024】実施例20 添加材として、70Ti−30Ag(重量比)合金粉末
を、3重量%添加した他は実施例11と同様にしてダイ
ヤモンド結晶を合成した。その結果、実施例11と殆ど
同じ、良質なIIa型ダイヤモンド結晶が得られた。
Example 20 Diamond crystals were synthesized in the same manner as in Example 11 except that 3% by weight of 70Ti-30Ag (weight ratio) alloy powder was added as an additive. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 11, was obtained.

【0025】実施例21 添加材として、50Ti−50Ag(重量比)合金粉末
を、2重量%添加した他は実施例11と同様にしてダイ
ヤモンド結晶を合成した。その結果、実施例11と殆ど
同じ、良質なIIa型ダイヤモンド結晶が得られた。
Example 21 A diamond crystal was synthesized in the same manner as in Example 11 except that 2% by weight of 50Ti-50Ag (weight ratio) alloy powder was added as an additive. As a result, a good quality IIa type diamond crystal, which is almost the same as in Example 11, was obtained.

【0026】実施例22〜26 添加材として、CuTi金属間化合物合金粉末を用い、
その添加量を0.5,1.0,2.0,4.0,8.0
重量%とした他は実施例11と同様にしてダイヤモンド
結晶を合成した。その結果、実施例11と殆ど同じ、
0.8カラット前後の良質なIIa型ダイヤモンド結晶が
得られた。いずれの結晶も窒素量0.2ppm以下、イ
ンクルージョン0.3重量%以下であった。
Examples 22 to 26 CuTi intermetallic compound alloy powder was used as an additive,
The addition amount is 0.5, 1.0, 2.0, 4.0, 8.0.
Diamond crystals were synthesized in the same manner as in Example 11 except that the content was changed to% by weight. As a result, almost the same as Example 11,
A good type IIa diamond crystal of about 0.8 carat was obtained. In each crystal, the amount of nitrogen was 0.2 ppm or less and the inclusion was 0.3% by weight or less.

【0027】実施例27 添加材として、CuTi2 金属間化合物粉末を、1重量
%添加した他は実施例22と同様にしてダイヤモンド結
晶を合成した。その結果、実施例22と殆ど同じ、良質
なIIa型ダイヤモンド結晶が得られた。
Example 27 Diamond crystals were synthesized in the same manner as in Example 22 except that 1% by weight of CuTi 2 intermetallic compound powder was added as an additive. As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 22, was obtained.

【0028】実施例28 添加材として、CuZr金属間化合物粉末を、4重量%
添加した他は実施例22と同様にしてダイヤモンド結晶
を合成した。その結果、実施例22と殆ど同じ、良質な
IIa型ダイヤモンド結晶が得られた。
Example 28 4 wt% of CuZr intermetallic compound powder was added as an additive.
Diamond crystals were synthesized in the same manner as in Example 22 except for the addition. As a result, almost the same quality as in Example 22
A type IIa diamond crystal was obtained.

【0029】実施例29 添加材として、CuZr2 金属間化合物粉末を、2重量
%添加した他は実施例22と同様にしてダイヤモンド結
晶を合成した。その結果、実施例22と殆ど同じ、良質
なIIa型ダイヤモンド結晶が得られた。
Example 29 Diamond crystals were synthesized in the same manner as in Example 22 except that 2 % by weight of CuZr 2 intermetallic compound powder was added as an additive. As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 22, was obtained.

【0030】実施例30 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末、グラファイト粉末を用
い、 Fe:Ni:Co:C=60:30:10:4.2(重
量比) となるように配合した他は実施例11と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例1とほとん
ど同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 30 High-purity F having a particle size of 50 to 100 μm as a solvent raw material
e powder, Ni powder, Co powder, and graphite powder were used, and blended so that Fe: Ni: Co: C = 60: 30: 10: 4.2 (weight ratio), in the same manner as in Example 11. A diamond was synthesized. As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 1, was obtained.

【0031】実施例31 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Mn粉末、グラファイト粉末を用
い、 Fe:Ni:Mn:C=60:30:10:4(重量
比) となるように配合した他は実施例11と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例11とほと
んど同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 31 High-purity F having a particle size of 50 to 100 μm as a solvent raw material
e powder, Ni powder, Mn powder and graphite powder were used, and Fe: Ni: Mn: C = 60: 30: 10: 4 (weight ratio) was added, and the same procedure as in Example 11 was repeated except that the blending was performed. The synthesis was carried out. As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 11, was obtained.

【0032】実施例32 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、グラファイト粉末を用い、 Fe:Ni:C=70:30:3.5(重量比) となるように配合した他は実施例11と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例11とほと
んど同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 32 As a solvent raw material, high-purity F having a particle size of 50 to 100 μm was used.
Diamond was synthesized in the same manner as in Example 11 except that Fe powder, Ni powder, and graphite powder were used and blended so that Fe: Ni: C = 70: 30: 3.5 (weight ratio). As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 11, was obtained.

【0033】実施例33 溶媒の原料として粒径50〜100ミクロンの高純度C
o粉末、グラファイト粉末を用い、 Co:C=100:4.7(重量比) となるように配合した他は実施例11と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例11とほと
んど同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 33 High purity C having a particle size of 50 to 100 microns as a solvent raw material
Diamond was synthesized in the same manner as in Example 11 except that o powder and graphite powder were used and blended so that Co: C = 100: 4.7 (weight ratio). As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 11, was obtained.

【0034】実施例34 溶媒の原料として粒径50〜100ミクロンの高純度N
i粉末、グラファイト粉末を用い、 Ni:C=100:4.2(重量比) となるように配合した他は実施例11と同様にしてダイ
ヤモンドの合成を行った。その結果、実施例11とほと
んど同じ良質なIIa型ダイヤモンド結晶が得られた。
Example 34 High purity N having a particle size of 50 to 100 μm as a solvent raw material
Diamond was synthesized in the same manner as in Example 11 except that i powder and graphite powder were used and were mixed so that Ni: C = 100: 4.2 (weight ratio). As a result, a good quality IIa diamond crystal, which is almost the same as that of Example 11, was obtained.

【0035】比較例1 Cuを添加せずに、Tiのみ添加(1.5重量%)した
他は実施例1と同様にしてダイヤモンド結晶の合成を試
みた。窒素量が約0.2ppmと少ない結晶が得られた
が成長量は一個あたり0.3カラットと少なく、また多
くのTiCが結晶中に見られ、溶媒の巻き込みも約1.
3重量%と多く、良質な結晶は得られなかった。
Comparative Example 1 Synthesis of diamond crystals was tried in the same manner as in Example 1 except that Ti was added (1.5% by weight) without adding Cu. Although crystals with a small amount of nitrogen of about 0.2 ppm were obtained, the growth amount was as small as 0.3 carat, and a large amount of TiC was found in the crystals, and the entrainment of the solvent was about 1.
It was as large as 3% by weight, and no good quality crystal was obtained.

【0036】比較例2 50Ti−50Cu合金粉末の添加量を15重量%とし
た他は実施例11と同様にダイヤモンドの合成を試み
た。種結晶から成長した結晶は多結晶化しており、良質
な結晶は得られなかった。
Comparative Example 2 An attempt was made to synthesize diamond in the same manner as in Example 11 except that the amount of 50Ti-50Cu alloy powder added was 15% by weight. The crystal grown from the seed crystal was polycrystallized and a good crystal could not be obtained.

【0037】比較例3 窒素ゲッターとして溶媒に添加するTiの量を15重量
%とした他は実施例1と同様にダイヤモンドの合成を試
みた。種結晶から成長した結晶は多結晶化しており、良
質な単結晶は得られなかった。、また、自然核発生も多
数みられた。
Comparative Example 3 An attempt was made to synthesize diamond in the same manner as in Example 1 except that the amount of Ti added to the solvent as a nitrogen getter was 15% by weight. The crystal grown from the seed crystal was polycrystallized and a good single crystal could not be obtained. Moreover, many spontaneous nuclei were also observed.

【0038】比較例4 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末を用い、 Fe:Ni:Co=60:30:10(重量比) となるように配合し、グラファイトを添加しなかった他
は実施例11と同様にしてダイヤモンドの合成を行っ
た。その結果、種結晶は溶媒中に溶解して消失してしま
い、ダイヤモンドの成長は認められなかった。
Comparative Example 4 High-purity F having a particle size of 50 to 100 μm as a solvent raw material
e powder, Ni powder, and Co powder were mixed in the same manner as in Example 11 except that Fe: Ni: Co = 60: 30: 10 (weight ratio) was blended and graphite was not added. The synthesis was carried out. As a result, the seed crystal was dissolved in the solvent and disappeared, and no diamond growth was observed.

【0039】比較例5 溶媒の原料として粒径50〜100ミクロンの高純度F
e粉末、Ni粉末、Co粉末、グラファイト粉末を用
い、 Fe:Ni:Co:C=60:30:10:7(重量
比) となるように配合した他は実施例11と同様にしてダイ
ヤモンドの合成を行った。その結果、種結晶以外の所よ
りダイヤモンドが多数自然核発生し、このため結晶同士
が干渉し、良質なダイヤモンド結晶はほとんど得られな
かった。
Comparative Example 5 High-purity F having a particle size of 50 to 100 microns as a solvent raw material
Diamond powder was prepared in the same manner as in Example 11 except that Fe powder, Ni powder, Co powder, and graphite powder were mixed so that Fe: Ni: Co: C = 60: 30: 10: 10 (weight ratio). The synthesis was carried out. As a result, a large number of diamonds were naturally nucleated from places other than the seed crystal, and the crystals interfered with each other, so that good quality diamond crystals could hardly be obtained.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
無色透明でインクルージョンのほとんどないダイヤモン
ド結晶を、安価に安定して合成できる。本方法によって
合成ダイヤモンドを装飾用途、光学部品などに利用する
ことが可能である。
As described above, according to the present invention,
A colorless and transparent diamond crystal with almost no inclusion can be inexpensively and stably synthesized. According to this method, synthetic diamond can be used for decorative purposes, optical parts, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一具体例における結晶合成用の試料室
構成を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing a structure of a sample chamber for crystal synthesis in one specific example of the present invention.

【符号の説明】[Explanation of symbols]

1 炭素源 2 溶媒金属 3 種結晶 4 絶縁体 5 黒鉛ヒーター 6 圧力媒体 1 Carbon source 2 Solvent metal 3 Seed crystal 4 Insulator 5 Graphite heater 6 Pressure medium

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 温度差法によるダイヤモンド結晶合成に
おいて、溶媒金属に窒素ゲッターとしてTi、Zr、H
f、V、Nb、Taから選ばれる一種もしくは二種以上
の金属を添加し、かつ、Ti、Zr、Hf、V、Nb、
Taの炭化物を分解する物質を添加することを特徴とす
るダイヤモンド単結晶の合成方法。
1. In the synthesis of diamond crystal by the temperature difference method, Ti, Zr, H as a nitrogen getter is used as a solvent metal.
One or more metals selected from f, V, Nb and Ta are added, and Ti, Zr, Hf, V, Nb,
A method for synthesizing a diamond single crystal, which comprises adding a substance which decomposes a carbide of Ta.
【請求項2】 Ti、Zr、Hf、V、Nb、Taの炭
化物を分解する物質がCu、Ag、Au、Zn、Cdか
ら選ばれる金属であることを特徴とする請求項1記載の
ダイヤモンド単結晶の合成方法。
2. The single diamond according to claim 1, wherein the substance that decomposes carbides of Ti, Zr, Hf, V, Nb, and Ta is a metal selected from Cu, Ag, Au, Zn, and Cd. Crystal synthesis method.
【請求項3】 窒素ゲッターとして添加するTi、Z
r、Hf、V、Nb、Taから選ばれる一種もしくは二
種以上の金属の添加量が溶媒に対して、0.1重量%以
上、5重量%以下であり、かつ、Ti、Zr、Hf、
V、Nb、Taの炭化物を分解する物質の添加量が溶媒
に対して、0.1重量%以上20重量%以下であること
を特徴とする請求項1または2記載のダイヤモンド単結
晶の合成方法。
3. Ti and Z added as a nitrogen getter
The amount of one or more metals selected from r, Hf, V, Nb, and Ta is 0.1 wt% or more and 5 wt% or less with respect to the solvent, and Ti, Zr, Hf,
The method for synthesizing a diamond single crystal according to claim 1 or 2, wherein the addition amount of the substance that decomposes carbides of V, Nb, and Ta is 0.1% by weight or more and 20% by weight or less with respect to the solvent. ..
【請求項4】 温度差法によるダイヤモンド結晶合成に
おいて、溶媒金属にX−Y系の合金もしくは金属間化合
物(ここで、XはTi、Zr、Hf、V、Nb、Taか
ら選ばれる元素、YはCu、Ag、Au、Zn、Cdか
ら選ばれる元素)を添加することを特徴とするダイヤモ
ンド単結晶の合成方法。
4. In the diamond crystal synthesis by the temperature difference method, an XY alloy or an intermetallic compound is used as a solvent metal (where X is an element selected from Ti, Zr, Hf, V, Nb and Ta, Y. Is an element selected from Cu, Ag, Au, Zn, and Cd), and is a method for synthesizing a diamond single crystal.
【請求項5】 前記、X−Y系の合金もしくは金属間化
合物(ここで、XはTi、Zr、Hf、V、Nb、Ta
から選ばれる元素、YはCu、Ag、Au、Zn、Cd
から選ばれる元素)の添加量が溶媒に対して、0.1重
量%以上、10重量%以下であることを特徴とる請求項
4記載のダイヤモンド単結晶の合成方法。
5. The XY alloy or intermetallic compound (where X is Ti, Zr, Hf, V, Nb, Ta).
Element selected from Y, Cu is Cu, Ag, Au, Zn, Cd
5. The method for synthesizing a diamond single crystal according to claim 4, wherein the addition amount of the element selected from 0.1 to 10% by weight with respect to the solvent.
【請求項6】 前記溶媒金属は、Fe,Co,Ni,M
n,Crの中から選ばれる一種もしくは二種以上からな
り、且つ0.1〜6.0重量%の炭素を含むことを特徴
とする請求項1、2、3、4、または5記載のダイヤモ
ンド単結晶の合成方法。
6. The solvent metal is Fe, Co, Ni, M.
The diamond according to claim 1, 2, 3, 4, or 5, comprising one or more selected from n and Cr and containing 0.1 to 6.0% by weight of carbon. Single crystal synthesis method.
JP00905893A 1992-01-22 1993-01-22 Method of synthesizing diamond single crystal Expired - Fee Related JP3291804B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP00905893A JP3291804B2 (en) 1992-04-03 1993-01-22 Method of synthesizing diamond single crystal
KR1019930013401A KR940014144A (en) 1992-01-22 1993-07-16 Manufacturing method of diamond single crystal
EP93306785A EP0603995A1 (en) 1992-12-22 1993-08-26 Process for the synthesising diamond single crystals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8214292 1992-04-03
JP4-82142 1992-04-03
JP00905893A JP3291804B2 (en) 1992-04-03 1993-01-22 Method of synthesizing diamond single crystal

Publications (2)

Publication Number Publication Date
JPH05329356A true JPH05329356A (en) 1993-12-14
JP3291804B2 JP3291804B2 (en) 2002-06-17

Family

ID=13766186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00905893A Expired - Fee Related JP3291804B2 (en) 1992-01-22 1993-01-22 Method of synthesizing diamond single crystal

Country Status (1)

Country Link
JP (1) JP3291804B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603995A1 (en) * 1992-12-22 1994-06-29 Sumitomo Electric Industries, Limited Process for the synthesising diamond single crystals
US7404399B2 (en) 2003-10-10 2008-07-29 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry
WO2021106283A1 (en) * 2019-11-26 2021-06-03 住友電気工業株式会社 Synthetic single crystal diamond, tool equipped with same, and synthetic single crystal diamond production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603995A1 (en) * 1992-12-22 1994-06-29 Sumitomo Electric Industries, Limited Process for the synthesising diamond single crystals
US7404399B2 (en) 2003-10-10 2008-07-29 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method of synthesizing single crystal diamond, and diamond jewelry
EP2468392A2 (en) 2003-10-10 2012-06-27 Sumitomo Electric Industries, Ltd. Diamond tool, synthetic single crystal diamond and method for synthesizing single crystal diamond, and diamond jewelry
WO2021106283A1 (en) * 2019-11-26 2021-06-03 住友電気工業株式会社 Synthetic single crystal diamond, tool equipped with same, and synthetic single crystal diamond production method

Also Published As

Publication number Publication date
JP3291804B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
EP0525207B1 (en) Process for synthesizing diamond
Burns et al. Growth of high purity large synthetic diamond crystals
Sumiya et al. High-pressure synthesis of high-purity diamond crystal
US6835365B1 (en) Crystal growth
Kanda et al. New catalysts for diamond growth under high pressure and high temperature
KR100216619B1 (en) Diamond synthesis
JP3259384B2 (en) Method of synthesizing diamond single crystal
KR100503542B1 (en) Diamond growth
JPH0779958B2 (en) Large diamond synthesis method
Sumiya et al. Development of high-quality large-size synthetic diamond crystals
JP3291804B2 (en) Method of synthesizing diamond single crystal
JPH06165929A (en) Method for synthesizing diamond single crystal
EP0603995A1 (en) Process for the synthesising diamond single crystals
JP3282249B2 (en) Method of synthesizing diamond single crystal
JP3206050B2 (en) Method of synthesizing diamond single crystal
JPS58161995A (en) Method for synthesizing diamond
JP3259383B2 (en) Method of synthesizing diamond single crystal
US3124422A (en) Synthesis of diamonds
JP3205970B2 (en) Diamond synthesis method
JPH05137999A (en) Method for synthesizing diamond single crystal
JPH0686927A (en) Method for synthesis of diamond signal crystal
JPH0576747A (en) Synthetic method for diamond single crystal
JPH06269654A (en) Synthesis of diamond
Wakatsuki Formation and Growth of Diamond-For Understanding and Better Control of The Process
Tenhover et al. A body centred cubic phase of elemental yttrium prepared by the rapid solidification of yttrium-iron alloys

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees