JPH05321510A - Construction method for underground tank - Google Patents

Construction method for underground tank

Info

Publication number
JPH05321510A
JPH05321510A JP4154403A JP15440392A JPH05321510A JP H05321510 A JPH05321510 A JP H05321510A JP 4154403 A JP4154403 A JP 4154403A JP 15440392 A JP15440392 A JP 15440392A JP H05321510 A JPH05321510 A JP H05321510A
Authority
JP
Japan
Prior art keywords
core member
sub
wall core
main
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4154403A
Other languages
Japanese (ja)
Inventor
Hidehiko Yoshiwaka
秀彦 義若
Hisashi Hasegawa
久 長谷川
Kinji Sekida
欣治 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4154403A priority Critical patent/JPH05321510A/en
Publication of JPH05321510A publication Critical patent/JPH05321510A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PURPOSE:To make it possible to build an underground tank without any danger of collapse of the surrounding subsoil and in a short period of work, and further more, build the tank deep underground and hence make the best use of land. CONSTITUTION:A main wall core member 3 and a sub-wall core member 4 are built in on a main shaft 1 and a sub shaft excavated on a subsoil 6. Joint arms 9 on the side of the sub-core member are fitted into hollow joints on the side of the main wall core member from the longitudinal direction by way of slits 8. A grout material 5 is filled up in hollow sections formed between the main wall core member 3, the sub-wall core section and each hollow section of the hollow joints 10, the main shaft 1 and the sub-shaft 2, thereby building a side wall section 12. The sub-soil inside the side wall section is excavated and the grout material is applied, thereby building a bottom section 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温水や冷水等の蓄熱タ
ンクまたは河川の流出量調整用の貯水タンク等に利用さ
れる地中タンクの築造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing an underground tank used as a heat storage tank for hot water, cold water or the like, or a water storage tank for adjusting the outflow of a river.

【0002】[0002]

【従来の技術】従来の地中タンクを築造する一般的な方
法では、鋼矢板工法や連続地中壁工法等で土留め工事し
た後、ショベル等の掘削機械による開削工法で築造箇所
の掘削を行なう。その後、掘削孔内で鉄筋の組み上げ作
業、形枠の組み立て作業およびコンクリートの打設作業
を行なって、鉄筋コンクリート製の側壁部と底盤部より
成る地中タンクを築造し、最後に地中タンク外周の埋め
戻しを行なう。
2. Description of the Related Art In the conventional general method of constructing an underground tank, after excavating the construction site by excavating the excavator or other excavating machine after earth retaining work such as steel sheet pile construction or continuous underground wall construction. To do. After that, the work of assembling the rebar, the work of assembling the formwork and the work of placing the concrete are performed in the excavation hole to build an underground tank consisting of a reinforced concrete side wall part and a bottom plate part, and finally the outer circumference of the underground tank Backfill.

【0003】しかしながら、この開削工法で行なわれる
従来方法では、地中タンクは地表面近くに築造されるた
め、地中タンクの設計容積が増大するにつれ、地表面に
おけるタンクの占有面積が増大し、資材ヤード等の周辺
の施工関連用地の面積も著しく広くなるので、交通が非
常に混雑し、地価が高騰している昨今の都市部において
は、大規模な地中タンクの築造は困難な状況にある。
However, in the conventional method performed by this excavation method, since the underground tank is built near the ground surface, the area occupied by the tank on the ground surface increases as the design volume of the underground tank increases. Since the area of construction-related land such as material yard will be significantly widened, it will be difficult to build a large underground tank in urban areas where traffic is extremely congested and land prices are skyrocketing. is there.

【0004】従来方法では土留め工事と開削工事を行っ
た後、配筋工、形枠工、コンクリート打設工を行なうの
で、作業工程が多くなり長い工期を必要とする。また、
軟弱地盤に築造する場合、開削工法において掘削部の周
囲地盤の崩壊防止のために、地盤改良用薬液を注入する
ことが多いが、この薬注が地下水に与える悪影響等の問
題もある。
In the conventional method, since the earth retaining work and the excavation work are carried out, the bar arrangement work, the formwork work and the concrete placing work are carried out, so that the work process is increased and a long construction period is required. Also,
In the case of building on soft ground, a ground improvement chemical is often injected in order to prevent collapse of the ground around the excavated part in the excavation method, but there is also a problem such as the adverse effect of this chemical injection on groundwater.

【0005】[0005]

【発明が解決しようとする課題】したがって本発明の目
的は、軟弱地盤においても大規模な地中タンクを周囲地
盤の崩壊の危険性なしに安全に短い工期で築造できると
共に、側壁部の耐力強度が大きく、地下深部への築造も
可能であるため、都市部でも大容積の地中タンクを無理
なく築造でき、土地の有効利用が行なえる、地中タンク
の築造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to construct a large-scale underground tank even in soft ground without risk of collapse of the surrounding ground safely and in a short construction period, and withstand strength of side walls. Since it is large and can be built in deep underground, it is to provide a method for constructing an underground tank that enables large-scale underground tanks to be constructed reasonably in urban areas and enables effective use of land.

【0006】[0006]

【課題を解決するための手段】以下、添付図面中の参照
符号を用いて説明すると、本発明の築造方法では、築造
する地中タンクの周方向に沿って複数個の主竪孔1を地
盤6に掘削し、両側面に中空継手10が長手方向に突設
された主壁芯部材3を主竪孔1内に建て込み、主竪孔
1,1の中間に掘削した副竪孔2内に、両側面に継手ア
ーム9が長手方向に突設された副壁芯部材4を建て込
み、副壁芯部材4の継手アーム9を隣接の主壁芯部材3
の中空継手10に中空継手10の長手方向のスリット8
を通して長手方向から嵌め合わせる。
In the following, the construction method of the present invention will be described with reference to the accompanying drawings. In the construction method of the present invention, a plurality of main vertical holes 1 are formed along the circumferential direction of the underground tank to be constructed. 6, the main wall core member 3 having hollow joints 10 projecting in the longitudinal direction on both sides is built in the main vertical hole 1, and the sub vertical hole 2 is drilled in the middle of the main vertical holes 1 and 1. Then, the sub-wall core member 4 having joint arms 9 projecting in the longitudinal direction on both sides is built in, and the joint arms 9 of the sub-wall core member 4 are adjacent to the main wall core member 3.
The hollow joint 10 of the hollow joint 10 has a slit 8 in the longitudinal direction of the hollow joint 10.
Through the longitudinal direction.

【0007】主壁芯部材3の長手方向の中空部と、中空
継手10の長手方向の中空部と、副壁芯部材4自体の長
手方向の中空部または副壁芯部材4と主壁芯部材3ない
し中空継手10との間に形成された長手方向の中空部
と、主竪孔1および副竪孔2内にグラウト材5を充填し
て側壁部12を築造し、側壁部12の所要根入れ深さを
残して側壁部12の内側地盤を掘削し、掘削底面部にグ
ラウト材を打設して底盤部7を築造する。
The hollow portion in the longitudinal direction of the main wall core member 3, the hollow portion in the longitudinal direction of the hollow joint 10, the hollow portion in the longitudinal direction of the sub wall core member 4 itself or the sub wall core member 4 and the main wall core member. 3 and the hollow joint in the longitudinal direction formed between the hollow joint 10 and the main vertical hole 1 and the secondary vertical hole 2 are filled with the grout material 5 to construct the side wall portion 12, and the required root of the side wall portion 12 is formed. The inner ground of the side wall portion 12 is excavated leaving the insertion depth, and a grout material is cast on the excavated bottom surface portion to build the bottom board portion 7.

【0008】[0008]

【作用】このように築造された地中タンクの側壁部12
では、隣接配置された複数の主壁芯部材3と副壁芯部材
4がスリット8を通した中空継手10と継手アーム9の
嵌め合いで相互接続されることによって、連鎖状骨格体
を形成しており、主壁芯部材3と副壁芯部材4と中空継
手10の各長手方向の中空部ならびに主竪孔1と副竪孔
2に充填したグラウト材5の硬化によって、緊密に結合
一体化された円筒状構造を構成する。この側壁部12
は、周囲地盤から受ける大きな土圧や地下水圧に耐え、
これら側圧により働く曲げモーメントや剪断力に対して
大きな強度を有する。
Operation: The side wall 12 of the underground tank constructed in this way
Then, a plurality of adjacent main wall core members 3 and sub-wall core members 4 are interconnected by fitting the hollow joint 10 and the joint arm 9 through the slits 8 to form a chain skeleton body. The main wall core member 3, the sub wall core member 4, the hollow joints in the longitudinal direction of the hollow joint 10 and the grout material 5 filled in the main pit 1 and the sub pit 2 are hardened to be tightly coupled and integrated. To form a cylindrical structure. This side wall 12
Withstands large earth pressure and groundwater pressure received from the surrounding ground,
It has great strength against bending moment and shearing force that are exerted by these lateral pressures.

【0009】[0009]

【実施例】図1から図7に示した実施例では、主壁芯部
材3と副壁芯部材4は鋼管製であり、小径鋼管製の中空
継手10は主壁芯部材3の側面全長にわたって溶接で固
着され、鋼板製の継手アーム9は副壁芯部材4の側面全
長にわたって溶接で固着されている。継手アーム9の先
端部には、中空継手10に嵌めあわせた後、継手アーム
9が中空継手10から地中タンクの周方向に抜け出るこ
とがないように、T字形に形成されている。中空継手1
0のスリット8は側面全長にわたって形成されている。
1 to 7, the main wall core member 3 and the sub wall core member 4 are made of steel pipe, and the hollow joint 10 made of a small diameter steel pipe is provided over the entire length of the side face of the main wall core member 3. The joint arm 9 made of steel plate is fixed by welding, and is fixed by welding over the entire side surface of the sub-wall core member 4. The tip end of the joint arm 9 is formed in a T shape so that the joint arm 9 does not come out of the hollow joint 10 in the circumferential direction of the underground tank after being fitted into the hollow joint 10. Hollow joint 1
The 0 slit 8 is formed over the entire length of the side surface.

【0010】主竪孔掘削の基準となるガイド溝をバック
ホウ等で地盤6に先行掘削した後、図3に示したように
ハイドロフレーズ掘削機等の適宜手段によって主竪孔1
を所要の深さに穿設する。両側面の中空継手10が地中
タンクの周方向に配置するように主壁芯部材3を主竪孔
1内に建て込む。築造する地中タンクの長さが短いとき
には、所定長さの主壁芯部材3が1本建て込まれるだけ
であるが、地中タンクの長さが長いときには、複数本の
主壁芯部材3が溶接で接続しながら、主竪孔1に順次建
て込まれる。
After the guide groove, which serves as a reference for excavating the main pit, is preliminarily excavated on the ground 6 with a backhoe or the like, as shown in FIG. 3, the main pit 1 is formed by an appropriate means such as a hydrophrase excavator.
To the required depth. The main wall core member 3 is built in the main vertical hole 1 so that the hollow joints 10 on both sides are arranged in the circumferential direction of the underground tank. When the length of the underground tank to be built is short, only one main wall core member 3 having a predetermined length is built, but when the length of the underground tank is long, a plurality of main wall core members 3 are built. Are sequentially built in the main vertical hole 1 while being connected by welding.

【0011】図4に示したように中空継手10には、ス
リット8を内側から全面的に閉鎖する塞栓用筒体11が
嵌め込まれる。筒体11の外面はプラスチック・ポリエ
チレン等で被覆されている。複数本の筒体11を使用す
るときには、上下の筒体11はねじ込み連結される。主
壁芯部材3と主竪孔1の孔壁間の隙間にグラウト材5を
充填するとき、中空継手10の長手方向の中空部に対す
るグラウト材5の侵入は、塞栓用筒体11によって防止
される。
As shown in FIG. 4, the hollow joint 10 is fitted with an embolus cylinder 11 that completely closes the slit 8 from the inside. The outer surface of the cylinder 11 is covered with plastic, polyethylene or the like. When using a plurality of cylinders 11, the upper and lower cylinders 11 are screwed and connected. When the gap between the main wall core member 3 and the hole wall of the main vertical hole 1 is filled with the grout material 5, the embedding cylinder 11 prevents the grout material 5 from entering the hollow portion in the longitudinal direction of the hollow joint 10. It

【0012】図5に示したように主壁芯部材3の長手方
向の中空部にもグラウト材5が充填される。これによっ
て、主壁芯部材3と硬化グラウト材層が緊密に結合一体
化した合成円柱13が築造される。この合成円柱13か
ら地中タンクの周方向に所定間隔を置いて別の主竪孔1
が掘削され、主壁芯部材3の建て込みと、グラウト材5
の充填が順次行われ、2本目の合成円柱13が築造され
る。以下、同様にして所要本数の合成円柱13が円環状
に配列して築造される。
As shown in FIG. 5, the grout material 5 is also filled in the hollow portion in the longitudinal direction of the main wall core member 3. As a result, the composite column 13 in which the main wall core member 3 and the hardened grout material layer are tightly coupled and integrated is built. Another main vertical hole 1 is provided at a predetermined distance from the synthetic cylinder 13 in the circumferential direction of the underground tank.
Was excavated, the main wall core member 3 was installed, and the grout material 5 was
Are sequentially filled, and a second synthetic column 13 is built. Thereafter, the required number of synthetic cylinders 13 are similarly arranged in an annular shape to be built.

【0013】図6に示したようにグラウト材5の硬化
後、塞栓用筒体11を中空継ぎ手10から引き抜いて撤
去する。隣り合う合成円柱13の相対向する中空継手1
0の該中空部に適当な掘削機のガイド部材を嵌挿して、
隣り合う合成円柱13の中間部分に副竪孔2を掘削す
る。この副竪孔2は両側の主竪孔1,1に一部分重なる
ように掘削されている。
After the grout material 5 is hardened as shown in FIG. 6, the embolus cylinder 11 is pulled out from the hollow joint 10 and removed. Hollow joints 1 of adjacent synthetic columns 13 facing each other
Insert a guide member of a suitable excavator into the hollow portion of 0,
The auxiliary vertical hole 2 is excavated in the intermediate portion of the adjacent synthetic cylinders 13. The sub pit 2 is excavated so as to partially overlap the main pits 1 and 1 on both sides.

【0014】図7に示したように副竪孔2内は、所要本
数の副壁芯部材4が溶接で順次接続しながら建て込まれ
る。この建て込みに際して、副壁芯部材4側の継手アー
ム9がスリット8を通して主壁芯部材3側の中空継手1
0に嵌め込まれる。この後、中空継手10の長手方向の
中空部と、副壁芯部材4の長手方向の中空部と、副壁芯
部材4と副竪孔2の孔壁間の中空部にグラウト材5が充
填される。これによって、副壁芯部材4と硬化グラウト
材層が緊密に結合一体化した合成円柱14が築造され
る。
As shown in FIG. 7, a required number of auxiliary wall core members 4 are built in the auxiliary vertical hole 2 while being sequentially connected by welding. At the time of this installation, the joint arm 9 on the sub-wall core member 4 side passes through the slit 8 and the hollow joint 1 on the main-wall core member 3 side.
It fits in 0. After that, the grout material 5 is filled in the hollow portion in the longitudinal direction of the hollow joint 10, the hollow portion in the longitudinal direction of the sub wall core member 4, and the hollow portion between the sub wall core member 4 and the hole wall of the sub vertical hole 2. To be done. As a result, the composite column 14 in which the sub-wall core member 4 and the hardened grout material layer are tightly bonded and integrated is constructed.

【0015】合成円柱14は合成円柱13より小径であ
るが、これらの合成円柱14の介在により全ての合成円
柱13が連結されるため、複数の主壁芯部材3と副壁芯
部材4が中空継手10と継手アーム9によって結合され
た連鎖状骨格体を芯部に有する円筒状側壁部12が得ら
れることになる。側壁部12の内側地盤は、側壁部12
に必要な根入れ深さを残して掘削され、掘削底面部にグ
ラウト材5を所要厚さに打設して底盤部7が築造され
る。なお、必要に応じて、この底盤部7は配筋を施して
鉄筋コンクリート構造にすることもできる。
Although the synthetic cylinders 14 have a smaller diameter than the synthetic cylinders 13, all the synthetic cylinders 13 are connected by the interposition of these synthetic cylinders 14, so that the plurality of main wall core members 3 and sub-wall core members 4 are hollow. A cylindrical side wall portion 12 having a chain-like skeleton body connected to the joint 10 and the joint arm 9 in the core portion is obtained. The inside ground of the side wall 12 is the side wall 12
Excavation is carried out leaving a necessary rooting depth, and the bottom plate portion 7 is constructed by driving the grout material 5 to a required thickness on the excavation bottom surface portion. In addition, if necessary, the bottom plate portion 7 may be reinforced concrete structure by reinforcing bars.

【0016】上記実施例では、主竪孔1を1個ずつ掘削
しながら、主壁芯部材3の建て込みとグラウト材5の充
填を行なって、合成円柱13を築造した後、副竪孔2を
1個ずつ掘削しながら、副壁芯部材4の建て込みと、グ
ラウト材6の充填を行なって、合成円柱14を築造して
いるが、地盤6の性状によっては、最初に主竪孔1と副
竪孔2を掘削してから、主壁芯部材3と副壁芯部材4の
建て込みを行ない、最後にグラウト材5の充填を一括し
て行なうこともできる。
In the above-mentioned embodiment, while the main vertical holes 1 are excavated one by one, the main wall core member 3 is built and the grout material 5 is filled to construct the composite column 13, and then the secondary vertical holes 2 are formed. While digging one by one, the sub-wall core member 4 is built and the grout material 6 is filled to build the composite column 14, but depending on the property of the ground 6, the main vertical hole 1 Alternatively, the main wall core member 3 and the sub wall core member 4 may be built after excavating the auxiliary vertical hole 2, and finally the grout material 5 may be filled at once.

【0017】図8に示した別の実施例では、主壁芯部材
3は鋼管製であり、小径鋼管製の中空継手10は、主壁
芯部材3の側面全長にわたって2本平行に溶接されてい
る。中空継手10のスリット8は、側面全長にわたって
形成されている。副壁芯部材4は、鋼板をH形断面とな
るように溶接した組立形鋼で構成されている。2枚の継
手アーム9は、該組立形鋼の2枚のフランジ部の延長部
分で構成されている。各継手アーム9の先端部はスリッ
ト8から抜けないようにT字形断面に形成されている。
In another embodiment shown in FIG. 8, the main wall core member 3 is made of steel pipe, and two hollow joints 10 made of small diameter steel pipe are welded in parallel over the entire side surface of the main wall core member 3. There is. The slit 8 of the hollow joint 10 is formed over the entire length of the side surface. The sub-wall core member 4 is composed of an assembled shaped steel obtained by welding a steel plate so as to have an H-shaped cross section. The two joint arms 9 are formed by extension portions of the two flange portions of the assembled shaped steel. The tip of each joint arm 9 is formed in a T-shaped cross section so as not to come off from the slit 8.

【0018】この実施例では、最初に主竪孔1を掘削し
てから、主壁芯部材3の建て込みを行ない、グラウト材
5の充填を行なう。同様に副竪孔2を掘削してから、副
壁芯部材4の建て込みを行ない、グラウト材5の充填を
行なう。副竪孔2は小径なものが3個一直線状に連鎖し
て形成されている。グラウト材5は、2本の中空継手1
0と副壁芯部材4のウェブ部との間に形成された長手方
向の中空部にも充填されている。本実施例では、前記実
施例における合成円柱14に相当するものはなく、合成
円柱13は副壁芯部材4によって直結されている。主壁
芯部材3と副壁芯部材4は、2組の中空継手10と継手
アーム9によって連結されているため、連結強度が増大
している。
In this embodiment, the main vertical hole 1 is first excavated, then the main wall core member 3 is built and the grout material 5 is filled. Similarly, after the sub pit 2 is excavated, the sub wall core member 4 is built and the grout material 5 is filled. The sub vertical holes 2 are formed by connecting three small diameter holes in a straight line. The grout material 5 includes two hollow joints 1
0 and the web portion of the sub-wall core member 4 are filled in the hollow portion in the longitudinal direction. In this embodiment, there is no equivalent to the composite column 14 in the above-mentioned embodiment, and the composite column 13 is directly connected by the sub-wall core member 4. Since the main wall core member 3 and the sub wall core member 4 are connected by the two sets of hollow joints 10 and joint arms 9, the joint strength is increased.

【0019】図9に示した更に別の実施例では、主壁芯
部材3は、中央部でヘ字形に屈曲した箱形断面となるよ
うに鋼板を組立溶接して作製したものである。小径鋼管
製の中空継手10は、該箱形断面の2枚の長辺用鋼板の
延長部分に全長にわたって溶接されている。中空継手1
0のスリット8は、側面全長にわたって形成されてい
る。副壁芯部材4は、鋼板をH形断面となるように溶接
した組立形鋼で構成されている。継手アーム9は、該組
立形鋼の2枚のフランジ部の延長部分で構成され、各継
手アーム9の先端部はスリット8から抜けないようにT
字形断面になっている。
In yet another embodiment shown in FIG. 9, the main wall core member 3 is made by assembling and welding steel plates so that the main wall core member 3 has a box-shaped cross section bent in a V shape at the center. The hollow joint 10 made of a small-diameter steel pipe is welded over the entire length to the extended portion of the two steel plates for long sides of the box-shaped cross section. Hollow joint 1
The 0 slit 8 is formed over the entire length of the side surface. The sub-wall core member 4 is composed of an assembled shaped steel obtained by welding a steel plate so as to have an H-shaped cross section. The joint arm 9 is composed of an extension portion of two flange portions of the assembled shaped steel, and the tip end portion of each joint arm 9 is T-shaped so as not to come off from the slit 8.
It has a V-shaped cross section.

【0020】この実施例では、最初に主竪孔1を掘削し
てから、主壁芯部材3の建て込みを行ない、グラウト材
5の充填を行なう。同様に副竪孔2を掘削してから、副
壁芯部材4の建て込みを行ない、グラウト材5の充填を
行なう。副竪孔2は、小径なものが3個一直線上に連鎖
して形成されている。グラウト材5は、主壁芯部材1の
前記箱形断面の短辺用鋼板と2本の中空継手10と副壁
芯部材4のウェブ部との間に形成された長手方向の中空
部にも充填されている。前記実施例における合成円柱1
4に相当するものはなく、合成円柱13は副壁芯部材4
によって直結されている。主壁芯部材3と副壁芯部材4
は、2組の中空継手10と継手アーム9で連結されてい
るため、連結強度が増大している。
In this embodiment, the main vertical hole 1 is first excavated, then the main wall core member 3 is built and the grout material 5 is filled. Similarly, after the sub pit 2 is excavated, the sub wall core member 4 is built and the grout material 5 is filled. The sub vertical holes 2 are formed by connecting three small diameter holes in a straight line. The grout material 5 is also provided in the longitudinal hollow portion formed between the steel plate for the short side of the box-shaped cross section of the main wall core member 1, the two hollow joints 10 and the web portion of the sub wall core member 4. It is filled. Composite cylinder 1 in the above embodiment
There is no equivalent to 4, and the composite column 13 is the sub-wall core member 4
Is directly connected by. Main wall core member 3 and sub wall core member 4
Is connected by the two sets of hollow joints 10 and joint arms 9, so that the joint strength is increased.

【0021】[0021]

【発明の効果】本発明の築造方法では、地盤6に掘削し
た主竪孔1と副竪孔2に主壁芯部材3と副壁芯部材4を
建て込み、主壁芯部材側面の長手方向の中空継手10に
副壁芯部材側面の長手方向の継手アーム9を側面スリッ
ト8を通して長手方向から嵌め合わせ、主壁芯部材3と
副壁芯部材4と中空継手10の各中空部と、副壁芯部材
3と主壁芯部材1ないし中空継手10との間に形成され
る中空部と、主竪孔1および副竪孔2内にグラウト材5
を充填して側壁部12を築造するものであり、側壁部1
2によって周囲地盤の崩壊が防止されているため、側壁
部12の内側地盤の掘削とグラウト材の打設が作業員の
安全性を万全に確保して行なえる。
According to the construction method of the present invention, the main wall core member 3 and the sub wall core member 4 are built in the main vertical hole 1 and the sub vertical hole 2 which are excavated in the ground 6, and the longitudinal direction of the side surface of the main wall core member. The hollow joint 10 is fitted with the joint arm 9 in the longitudinal direction on the side surface of the sub wall core member through the side surface slit 8 from the longitudinal direction, and the main wall core member 3, the sub wall core member 4, each hollow portion of the hollow joint 10, and the sub joint. The grout material 5 is provided in the hollow portion formed between the wall core member 3 and the main wall core member 1 or the hollow joint 10 and in the main pit 1 and the sub pit 2.
To form the side wall portion 12, and the side wall portion 1
Since the surrounding ground is prevented from collapsing by 2, the excavation of the inner ground of the side wall portion 12 and the placing of grout material can ensure the safety of the worker.

【0022】この地中タンクの側壁部では、中空継手1
0と継手アーム9で相互連結された主壁芯部材3と副壁
芯部材4が連鎖状骨格体を構成し、該骨格体をグラウト
材5の硬化層が包み込むことによって、緊密に結合一体
化した円筒状合成構造になっているため、側壁部12は
周囲地盤からの大きな土圧や地下水圧に耐え、曲げモー
メントや剪断力に対して大きな強度を発揮するものであ
り、本発明の築造方法によれば、軟弱地盤であっても大
規模な地中タンクを容易に築造できる。
At the side wall of this underground tank, the hollow joint 1
0 and the joint wall 9 interconnect the main wall core member 3 and the sub wall core member 4 to form a chain-like skeleton, and the hardened layer of the grout material 5 wraps the skeleton to tightly bond and integrate them. Since it has a cylindrical composite structure, the side wall 12 withstands large earth pressure and groundwater pressure from the surrounding ground, and exerts great strength against bending moment and shearing force. According to this, a large-scale underground tank can be easily built even on soft ground.

【0023】本発明の築造方法では、先行して築造され
る側壁部12によって周囲地盤の崩壊が阻止されている
ため、従来方法のように薬液注入による地盤改良を予め
行なう必要がなく、薬注による地下水の汚染問題を低減
できる。
In the construction method of the present invention, since the surrounding ground is prevented from collapsing by the side wall portion 12 which is built in advance, it is not necessary to previously improve the ground by injecting a chemical solution as in the conventional method, and chemical injection is possible. It can reduce the problem of groundwater pollution.

【0024】本発明の築造方法では、前記連鎖状骨格体
とグラウト材層の結合一体化により側壁部12が強固な
円筒状構造を構成し、側壁部12の耐力強度が増大して
いるので、相当の大深度でも地中タンクを築造できる。
そのため、タンク容積を一定とすれば、タンク長を可能
な限り長くしてタンク口径を小さくすることができる。
この地下深部の活用により、地表面におけるタンクの占
有面積を節減し、周囲の施工関連用地の面積を縮減し
て、土地を有効利用できるので、都市部でも土地代の負
担を減らし、かつ周辺の交通障害を招かないで、大容積
の地中タンクを容易に築造できる。
In the building method of the present invention, since the side wall portion 12 has a strong cylindrical structure due to the integration of the chain-like skeleton body and the grout material layer, the side wall portion 12 has an increased proof strength. An underground tank can be built even at a considerable depth.
Therefore, if the tank volume is kept constant, the tank length can be made as long as possible and the tank diameter can be made small.
By utilizing this deep underground area, the area occupied by the tank on the ground surface can be saved, the area of surrounding construction-related land can be reduced, and the land can be effectively used. Large volume underground tanks can be easily constructed without inviting traffic obstacles.

【0025】また、本発明の築造方法は、主竪孔1と副
竪孔2の掘削工、主壁芯部材3と副壁芯部材4の建て込
み工、グラウト材5の充填工、内側地盤の掘削工、底盤
部7の打設工といったように、いずれも比較的簡単にな
される作業工程の組み合わせで実施されるものであり、
土留め工や配筋工、形枠工等といった手間のかかる工事
を削除できるため、従来方法と比べて工期を短縮でき
る。
Further, the construction method of the present invention includes the excavation of the main vertical hole 1 and the sub vertical hole 2, the construction of the main wall core member 3 and the sub wall core member 4, the filling work of the grout material 5, the inner ground. Such as the excavator and the bottom plate portion 7 are carried out by a combination of relatively simple work processes,
Since laborious works such as earth retaining work, bar arranging work, and formwork work can be deleted, the construction period can be shortened compared to the conventional method.

【0026】側壁部12の骨格体を構成する主壁芯部材
3、副壁芯部材4、中空継手10、継手アーム7を鋼製
とし、グラウト材5としてセメントコンクリートを用い
たときには、これら骨格体の内外面がアルカリ性層で包
囲され、骨格体の酸化腐食が的確に防止されるので、防
食施工を別途実施する必要がない。この地中タンクを蓄
熱タンクとして使用する場合には、コンクリート層の固
有の断熱性で所要の保温効果が得られるので、地中タン
クに保温施工を別途実施する必要もない。
When the main wall core member 3, the sub-wall core member 4, the hollow joint 10 and the joint arm 7 constituting the skeleton of the side wall 12 are made of steel and cement concrete is used as the grout material 5, these skeletons are used. Since the inner and outer surfaces are surrounded by an alkaline layer and oxidative corrosion of the skeleton is accurately prevented, it is not necessary to separately perform anticorrosion construction. When this underground tank is used as a heat storage tank, it is not necessary to separately carry out heat insulating work because the heat insulating effect inherent in the concrete layer provides the required heat insulating effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る築造方法で施工された
地中タンクの完成状態の平面図である。
FIG. 1 is a plan view of a completed state of an underground tank constructed by a building method according to an embodiment of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】該築造方法において地盤に主竪孔を掘削した段
階の平面図である。
FIG. 3 is a plan view of a stage where a main vertical hole is excavated in the ground in the building method.

【図4】該築造方法において地盤に主竪孔を掘削し、主
竪孔内に主壁芯部材を建て込み、主壁芯部材および中空
継手と主竪孔の孔壁間にグラウト材を充填した段階の平
面図である。
[Fig. 4] In the construction method, a main pit is excavated in the ground, a main wall core member is built in the main pit, and a grout material is filled between the main wall core member and the hollow joint and the hole wall of the main pit. It is a top view of the stage which it did.

【図5】該築造方法において主壁芯部材および中空継手
と主竪孔の孔壁間に加えて、主壁芯部材の長手方向の中
空部にもグラウト材を充填した段階の平面図である。
FIG. 5 is a plan view of the step of filling the grout material in the longitudinal hollow portion of the main wall core member in addition to the space between the main wall core member and the hollow joint and the main vertical wall in the building method. ..

【図6】該築造方法においてグラウト材充填済み2個の
主竪孔の間に副竪孔を主竪孔に一部重ね合わせて掘削し
た段階の平面図である。
FIG. 6 is a plan view of a stage in which a sub pit is partially overlapped with the main pit and excavated between the two main pits filled with grout material in the building method.

【図7】該築造方法において副竪孔に建て込んだ副壁芯
部材の継手アームを主壁芯部材の中空継手に嵌め合わ
せ、中空継手および副壁芯部材の各長手方向の中空部と
副竪孔内にグラウト材を充填した段階の平面図である。
FIG. 7: Fitting the joint arm of the sub-wall core member built in the sub-vertical hole in the building method into the hollow joint of the main-wall core member to form a hollow joint and a hollow portion in the longitudinal direction of the sub-wall core member and the sub-wall core member. It is a top view of the stage which filled up the grout material in the vertical hole.

【図8】本発明の別の実施例に係る築造方法で施工され
た地中タンクの完成状態の平面図である。
FIG. 8 is a plan view showing a completed state of the underground tank constructed by the construction method according to another embodiment of the present invention.

【図9】本発明の更に別の実施例に係る築造方法で施工
された地中タンクの完成状態の平面図である。
FIG. 9 is a plan view showing a completed state of an underground tank constructed by a construction method according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 主竪孔 2 副竪孔 3 主壁芯部材 4 副壁芯部材 5 グラウト材 6 地盤 7 地中タンクの底盤部 8 中空継手のスリット 9 副壁芯部材側の継手アーム 10 主壁芯部材側の中空継手 11 中空継手の塞栓用筒体 12 地中タンクの側壁部 13 合成円柱 14 合成円柱 1 Main Vertical Hole 2 Sub Vertical Hole 3 Main Wall Core Member 4 Sub Wall Core Member 5 Grout Material 6 Ground 7 Bottom Plate of Underground Tank 8 Hollow Joint Slit 9 Joint Arm on Side Wall Core Member Side 10 Main Wall Core Member Side Hollow joint 11 Hollow joint embolization cylinder 12 Side wall of underground tank 13 Synthetic column 14 Synthetic column

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 E03B 11/14 9125−2D ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location E03B 11/14 9125-2D

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 築造する地中タンクの周方向に沿って複
数個の主竪孔を地盤に掘削し、両側面に中空継手が長手
方向に突設された主壁芯部材を該主竪孔内に建て込み、
主竪孔の中間の地盤に掘削した副竪孔内に、両側面に継
手アームが長手方向に突設された副壁芯部材を建て込
み、副壁芯部材の継手アームを隣接の主壁芯部材の中空
継手に中空継手の長手方向のスリットを通して長手方向
から嵌め合わせ、主壁芯部材と中空継手の各長手方向の
中空部と、副壁芯部材自体の長手方向の中空部または副
壁芯部材と主壁芯部材ないし中空継手との間に形成され
る長手方向の中空部と、主竪孔および副竪孔内にグラウ
ト材を充填して側壁部を築造し、該側壁部の根入れ深さ
を残して側壁部の内側地盤を掘削し、掘削底面部にグラ
ウト材を打設して底盤部を築造する地中タンクの築造方
法。
1. A main wall core member in which a plurality of main vertical holes are excavated in the ground along the circumferential direction of an underground tank to be built, and hollow joints are provided on both side surfaces in a longitudinal direction to project the main wall core member. Built in,
A sub-wall core member with joint arms projecting in the longitudinal direction on both sides is built in the sub-hole excavated in the ground in the middle of the main pit, and the joint arm of the sub-wall core member is attached to the adjacent main wall core. The hollow joints of the members are fitted from the longitudinal direction through the slits in the longitudinal direction of the hollow joints, and the hollow portions in the longitudinal direction of the main wall core member and the hollow joint, and the hollow portions or the sub wall cores in the longitudinal direction of the sub-wall core member itself. A hollow part in the longitudinal direction formed between the member and the main wall core member or hollow joint, and a side wall part is constructed by filling the main pit and the sub pit with grout material, and the side wall part is embedded. A method of constructing an underground tank in which the inner ground of the side wall is excavated leaving the depth, and grout material is placed on the bottom of the excavation to construct the bottom.
JP4154403A 1992-05-21 1992-05-21 Construction method for underground tank Withdrawn JPH05321510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4154403A JPH05321510A (en) 1992-05-21 1992-05-21 Construction method for underground tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4154403A JPH05321510A (en) 1992-05-21 1992-05-21 Construction method for underground tank

Publications (1)

Publication Number Publication Date
JPH05321510A true JPH05321510A (en) 1993-12-07

Family

ID=15583388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4154403A Withdrawn JPH05321510A (en) 1992-05-21 1992-05-21 Construction method for underground tank

Country Status (1)

Country Link
JP (1) JPH05321510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248658A (en) * 2004-03-08 2005-09-15 Kumagai Gumi Co Ltd Cylinder to be embedded in ground, and method of producing same
JP2015124563A (en) * 2013-12-27 2015-07-06 前田建設工業株式会社 Box type steel sheet pile and underground storage tank using the same
CN110359525A (en) * 2019-06-20 2019-10-22 河海大学 A kind of static-pressure precast assembled pond and its method of construction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248658A (en) * 2004-03-08 2005-09-15 Kumagai Gumi Co Ltd Cylinder to be embedded in ground, and method of producing same
JP2015124563A (en) * 2013-12-27 2015-07-06 前田建設工業株式会社 Box type steel sheet pile and underground storage tank using the same
CN110359525A (en) * 2019-06-20 2019-10-22 河海大学 A kind of static-pressure precast assembled pond and its method of construction
CN110359525B (en) * 2019-06-20 2020-10-02 河海大学 Static pressure prefabricated assembled water pool and construction method thereof

Similar Documents

Publication Publication Date Title
KR102009077B1 (en) Earth retaining wall construction method using castinplace concrete pile of impermeable peristyle type
JP4881555B2 (en) Construction method of underground structure
KR100806867B1 (en) Steel pipe roof assembly and the construction method for Tunnel using thereof
KR20030038237A (en) Construction establishment method and the structure for underground tunnel formation
KR20070052109A (en) Down-ward construction method of the underground slabs and retaining walls by the slim-type composit floor system consisted of the architectural conposit deep deck and unsymmetric h-beam without preliminary wall-attached support beams and sub-beams of the floor
JP2000352296A (en) Method o constructing passage just under underground structure
KR101974826B1 (en) The Precast Pile Having Interlocking Secant and The Earth Retaining Wall Method Constructed by It's Continuous Pile
JP4440497B2 (en) Construction method of underground continuous wall and construction method of underground structure
JPH05321510A (en) Construction method for underground tank
JP3930954B2 (en) Construction method of structure
KR100753140B1 (en) Steel pipe roof assembly and the construction method for tunnel using thereof
KR200296444Y1 (en) Underaround continued wall structure using a large diameter cast-in-place pile installed by Benoto method
KR100327547B1 (en) Composite retaining wall construction method
KR100401330B1 (en) A method of construction for earth-protection walls of building
KR102151496B1 (en) Underground continuous wall structure of concrete steel composite and construction method there of
KR102551842B1 (en) Wall structure construction method with top-down construction using cast in place piles
KR102610909B1 (en) Method and structure of steel pipe propulsion using anchor installation inside steel pipe to prevent sinking
CN113338990B (en) Prestress binding structure for continuous large-span underground space and construction method
KR20040023915A (en) Underaround continued wall structure using a large diameter cast-in-place pile installed by Benoto method and construction method thereof
KR102676285B1 (en) Non-excavation construction structure for constructing a precast structure by minimizing face collapse
JP3082054B2 (en) Large-scale, deep steel continuous basement wall and method of constructing the same
JPH09111754A (en) Soldier pile cut-of wall construction method
CN219080385U (en) Mortise and tenon assembled open caisson
KR102153702B1 (en) On-site manufacturing underground indentation method and underground structure formation method
KR102656370B1 (en) Underground structure capable of forming a supporting point of a molded beam and its construction method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803